第一原理方法对钠团簇铋纳米管和Si(15,3,23)表面的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文应用第一原理计算方法研究了钠团簇的基态构型,一维铋纳米管的力学和电学性质和高指数Si(15,3,23)表面的再构现象,展示了第一原理计算对纳米科学和技术发展的促进作用。
     纳米科技自上世纪90年代兴起以来取得了巨大的发展,论文第一章从纳米材料的制备、表征和组装三个方面介绍了纳米科技的实验进展,并介绍了现在理论研究纳米材料物性的主要第一原理方法。在第一章中还介绍了计算平台硬件和软件方面的进展。
     论文第二章提出了金属键优选法系统地研究了钠团簇Na_n,n≤15的基态构形。在金属键优选法中,我们根据Na_n团簇稳定构形中金属键的特性来构建Na_(n+1)团簇的合适的初始几何构形,用第一原理结构优化方法得到相应的稳定构形,然后通过总能来确定团簇Na_(n+1)的基态构形。金属键优选法使得我们可以大大缩小团簇起始几何构形的尝试范围。对钠团簇的研究发现了一些有趣的性质,如在Na_(13)、Na_(14)和Na_(15)团簇中发现具有钠晶体(110)面特征的子结构。钠团簇基态构形的系统确定使得定量研究钠团簇质谱的结构细节成为可能,我们发现通过捕获和解离一个Na原子来达到平衡的过程决定了钠团簇质谱的主要特征,而为了理解质谱的细节还必须考虑通过捕获和解离一个Na_2团簇达到平衡的过程,这个过程对小尺寸钠团簇尤其重要。
     第三章应用第一原理方法研究了铋纳米管Bi(n,n),2≤n≤10和Bi(n,0),4≤n≤18的力学和电学性质,发现铋纳米管是结构稳定的半导体性纳米材料。铋纳米管的应力能与碳纳米管相当,“扶手椅型”铋纳米管遵从经典的应变理论,但小尺寸的“之字型”铋纳米管却偏离了这一理论。计算发现铋纳米管的杨氏模量为0.06TPa(0.25TPa(?)),大概为碳纳米管的5%。计算表明铋纳米管具有有趣的电学性质,不同旋度和管径的铋纳米管都是半导体性的。在小尺寸铋纳米管中由于强杂化效应的存在,其能带结构和能隙有较大的变化。但是当铋纳米管的管径大于18(?)时,能隙稳定在0.63eV附近,对应于卷成铋纳米管的铋层在Γ点的能隙。我们预期铋纳米管将在未
In this dissertation, we show the importance of the first-principles calculations to the nano-science and nano-technology with applying the first-principles methods to determine the groud-state atomic-structures of sodium clusters, investigate the mechanical and electronic properties of bismuth nanotubes and study the reconstruction of Si(15,3,23) surface.In Chapter One, we introduce the experimental developments of nano-science in generating, characterizing and assembling of nano-materials and the main first-principles methods to investigate the properties of nano-materials. The developments of computing conditions in hardwares and softwares are also introduced in this chapter.In Chapter Two, the optimum metallic-bond scheme is presented to investigate the ground-state atomic-structures of sodium clusters Na_n, n≤l5. In the optimum metallic-bond scheme, the characters of metallic bonds of Na_n cluster are combined to construct the initial geometrical coordinates of Na_(n+1) cluster, and then the corresponding stable stucture of Na_(n+1) is obtained by first-principles structure relaxation. The ground-state structure of Na_(n+1) can be determined by comparing the total energies of its various stable stuctures. The optimum metallic-bond scheme reduces the initial guesses of geometrical coordinates of clusters dramatically. Some interesting features have been revealed from the ground-state structures of sodium clusters, for instance, there are plane-like subunits in Na_(13), Na_(14) and Na_(15) that are similar to the frags of (110) surface of sodium crystal. The systematic research on the ground-state structures make it possible to elucidate the mass spectra of sodium clusters quantitatively. We find that the quasi-steady processes through capturing or dissociating a sodium atom dominate the main features of the mass spectra. The quasi-steady processes through capturing or dissociating a sodium dimer are also important to understand the detailed features of mass spectra, especially for small size clusters.In Chapter Three, the mechanical and electronic properties of bismuth nanotubes Bi(n,n), 2≤n≤10 and Bi(n,0), 4≤n≤18 are investigated with first-principles methods.
    We find that the bismuth nanotubes have comparative strain energies to carbon nanotubes, and the strain energies of armchair bismuth nanotubes follow the classical strain theory while the small size zigzag bismuth nanotubes deviate the theory with much larger strain energies. The bismuth nanotubes have a Young's modulus in the order of 0.06TPa(0.25TPaA), which is approximately 5% that of carbon nanotubes. All the bismuth nanotubes are found to be semi-conducting materials independent of their diameters and helicities. For bismuth nanotubes with small diameters, the band structures and bandgaps vary evidently with the strong hybridization effect. When the diameters are larger than 18A, the bandgaps of bismuth nanotubes approach 0.63 eV, corresponding to that of bismuth sheet at the T point. In addition, we expect the constant-bandgap bismuth nanotubes to be a potential semiconducting nano-material in future nano-electronics.In Chapter Four, a reconstruction model is presented to explain the experimental STM images of Si(15,3,23) surface. The calculated STM images of the model with first-principles methods agree well with experiment which indicates that our model is a possible candidate of the reconstruction of Si(15,3,23). This chapter also introduces the stable high index silicon surfaces and their family territories, and the principles and theories of STM.
引文
[1] Feynman R.P. There's plenty of room at the bottom — an invitation to enter a new field of physics. http://www.zyvex.com/nanotech/feynman.html, 1959.
    [2] Binnig G. and Rohrer H. Scanning tunneling microscopy. Helv. Phys. Acta., 55:726-735, 1982.
    [3] Binnig G. and Rohrer H. Scanning tunneling microscopy — form birth to adolescence. Rev. Mod. Phys., 56:615-625, 1987.
    [4] 陈成钧. 扫描隧道显微学引论, 华中一, 等译. 北京: 中国轻工业出版社, 1996.
    [5] Binnig G., Quate C.F., and Gerber Ch. Atomic force microscopy. Phys. Rev. Lett., 56:930-933, 1986.
    [6] Kroto H.W., Heath J.R., O'Brien S.C., Curl R.F., and Smalley R.E. C_(60): Buckminsterfullerene. Nature, 318:162, 1985.
    [7] Iijima S. Helical microtubules of graphitic carbon. Nature (London), 354:56, 1991.
    [8] Johnston R.L. Atomic and Molecular Cluster. London: Taylor & Francis, 2002.
    [9] de Heer W.A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys., 65:611-676, 1993.
    [10] Alivisatos A.R Semiconductor clusters, nanocrystals, and quantum dots. Science, 271(5251):933-937, 1996.
    [11] Alivisatos A.R Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, 271(5251):933-937, 1996.
    [12] Loiseau A., Willaime F., Demoncy N., and et al. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett., 76(25):4737-4740, 1996.
    [13] Li Y.D., Wang J.W., Deng Z.X., Wu Y.Y., Sun X.M., Yu D.P., and Yang P.D. Bismuth nanotubes: A rational low-temperature synthetic route. J. Am. Chem. Soc., 123:9904-9905, 2001.
    [14] Morales A.M. and Lieber C.M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 279(5348):208-211, 1998.
    [15] Han W.Q., Fan S.S., Li Q.Q., and Hu Y.D. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science, 277(5330): 1287-1289, 1997.
    [16] Pan Z.W., Dai Z.R., and Wang Z.L. Nanobelts of Semiconducting Oxides. Science, 291(5510):1947-1949, 2001.
    [17] Corso M., Auwarter W., Muntwiler M., Tamai A., Greber T., and Osterwalder J. Boron Nitride Nanomesh. Science, 303(5655):217-220, 2004.
    [18] Knight W.D., Clemenger K., de Heer W.A., and et al. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett., 24:2141-2143, 1984.
    [19] Ebbesen T.W. and Ajayan P.M. Large scale synthesis of carbon nanotubes. Nature, 358(6383):220-222, 1992.
    [20] Thess A., Lee R., Nikolaev P., and et al. Crystalline ropes of metallic carbon nanotubes. Science, 273(5274):483 - 487, 1996.
    [21] Kong J., Cassell A.M., and Dai H.J. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett., 292(4-6):567-574, 1998.
    [22] Xie S.S., Li W.Z., Pan Z.W., Chang B.H., and Sun L.F. Carbon nanotube arrays. Mater. Sci. Eng.A,286(1):11-15, 2000.
    [23] Ernst W.E. and Rakowsky S. Rotational analysis of pseudorotational bands of Na_3. Ber. Bunsen. Phys. Chem., 99:441-446, 1995.
    [24] Treacy M.M.J., Ebbesen T.W., and Gibson J.M. Exceptionally high young's modulus observed for individual carbon nanotubes. Nature, 381(6584):678-680, 1996.
    [25] Hou J.G., Yang J.L., Wang H.Q., and et al. Identifying molecular orientation of individual c-60 on a Si(111)-(7×7) surface. Phys. Rev. Lett., 83(15):3001-3004, 1999.
    [26] Wildoer J.W.G., Venema L.C., Rinzler A.G., and et al. Electronic structure of atomically resolved carbon nanotubes. Nature, 391(6662):59-62, 1998.
    [27] Hahn J.R. and Ho W. Single molecule imaging and vibrational spectroscopy with a chemically modified tip of a scanning tunneling microscope. Phys. Rev. Lett., 87(19):196102-1-196102-4, 2001.
    [28] Tans S.J., Verschueren R.M., and Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 393(6680):49-52, 1998.
    [29] Martel R., Schmidt T., Shea H.R., Hertel T., and Avouris Ph. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett., 73(17):2447-2449, 1998.
    [30] Collins P.G., Arnold M.S., and Avouris Ph. Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown. Science, 292(5517):706-709, 2001.
    [31] Duan X.F., Huang Y., Cui Y., Wang J.F., and Lieber C.M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 409(6816):66-69, 2001.
    [32] Cui Y, Duan X.F., Hu J.T., and Lieber C.M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B, 104(22):5213-5216, 2000.
    [33] Yao Z., Postma H.W.C., Balents L., and Dekker C. Carbon nanotube intramolecular junctions. Nature, 402(6759):273-276, 1999.
    [34] Fuhrer M.S., Nygard J., Shin L., Forero M., Yoon Y.G., Mazzoni M.S.C., Choi H.J., Ihm J.S., Louie S.G., Zettl A., and McEuen P.L. Crossed Nanotube Junctions. Science, 288(5465):494-497, 2000.
    [35] Cui Y. and Lieber C.M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 291(5505):851-853, 2001.
    [36] Derycke V., Martel R., Appenzeller J., and Avouris Ph. Carbon nanotube inter- and intramolecular logic gates. Nano Letters, 1(9):453-456, 2001.
    [37] Liu X.L., Lee C, Zhou C.W., and Han J. Carbon nanotube field-effect inverters. Appl. Phys. Lett., 79(20):3329-3331, 2001.
    [38] Huang Y., Duan X.F., Cui Y., Lauhon L.J., Kim K.H., and Lieber C.M. Logic Gates and Computation from Assembled Nanowire Building Blocks. Science, 294(5545):1313-1317, 2001.
    [39] Adrian B., Peter H., Takeshi N., and Dekker C. Logic Circuits with Carbon Nanotube Transistors. Science, 294(5545):1317-1320, 2001.
    [40] Hamada N., Sawada S., and Oshiyama A. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett., 68(10): 1579-1581, 1992.
    [41] Ghosh Sh., Sood A.K., and Kumar N. Carbon nanotube flow sensors. Science, 299(5609): 1042-1044, 2003.
    [42] Lin Y.H., Lu F., Tu Y, and Ren Z.F. Glucose biosensors based on carbon nanotube nano-electrode ensembles. Nano Letters, 4(2): 191-195, 2004.
    [43] Hohenberg P. and Kohn W. Inhomogeneous electron gas. Phys. Rev., 136(3B):B864 - B871, 1964.
    [44] Kohn W. and Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140(4A):A1133 - A1138, 1965.
    [45] Ceperler D.M. and Alder B.J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett, 45:566-569, 1980.
    [46] Perdew J.P. and Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23:5048-5079, 1981.
    [47] Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38:3098-3100, 1988.
    [48] Perdew J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B, 33:8822-8824, 1986.
    [49] Lee C, Yang W., and Parr R.G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37:785-789, 1988.
    [50] Foulkes W.M.C., Mitas L., Needs R.J., and Rajagopal G. Quantum monte carlo simulations of solids. Rev. Mod. Phys., 73(1):33-83, 2001.
    [51] Hybertsen M.S. and Louie S.G. First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators. Phys. Rev. Lett., 55(13):1418 - 1421, 1985.
    [52] Hybertsen M.S. and Louie S.G. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B, 34(8):5390 - 5413, 1986.
    [53] Onida G., Reining L., and Rubio A. Electronic excitations: density-functional versus manybody green's-function approaches. Rev. mod. phys., 74(2):601-659, 2002.
    [54] Vasiliev I., Ogut S., and Chelikowsky J.R. Ab Initio excitation spectra and collective electronic response in atoms and clusters. Phys. Rev. Lett., 82(9):1919 - 1922, 1999.
    [55] Goedecker S. Linear scaling electronic structure methods. Rev. Mod. Phys., 71(4):1085-1123, 1999.
    [56] Kohn W. Density functional and density matrix method scaling linearly with the number of atoms. Phys. Rev. Lett., 76(17):3168 - 3171, 1996.
    [57] Cohen M.L. and Chelikowsky J.R. Electronic Structure and Optical Properties of Semiconductors. Berlin: Springer-Verlag, 1988.
    [58] Cohen M.L. and Heine V. Solid State Phys., 24:37, 1970.
    [59] Hamann D.R., Schluter M., and Chiang C. Norm-conserving pseudopotentials. Phys. Rev. Lett., 43(20):1494 - 1497, 1979.
    [60] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41(11):7892 - 7895, 1990.
    [61] Press W.H., Flannery B.R, Teukolsky S.A., and W.T. Vetterling. Numerical Recipes. New York: Cambridge University Press, 1986.
    [62] Deaven D.M. and Ho K.M. Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett, 75:288-291, 1995.
    [63] Ho K.M., Shvartsburg A.A., Pan B.C., and et al. Structures of medium-sized silicon clusters. Nature, 392(6676):582-585, 1998.
    [64] Xiang Y., Sun D.Y., and Gong X.G. Generalized simulated annealing studies on structures and properties of Ni_n (n=2-55) clusters. J. Phys. Chem. A, 104:2746-2751, 2000.
    [65] Andersen H.C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys., 72(4):2384-2393, 1980.
    [66] Nose S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81(1):511-519, 1984.
    [67] Hoover W.G. Constant-pressure equations of motion. Phys. Rev. A, 34(3):2499-2500, 1986.
    [68] Frenkel D. and Smit B. Understanding Molecular Simulation: From Algorithms to Applications. London: Academic Press, 2002.
    [69] Car R. and Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett., 55(22):2471 - 2474, 1985.
    [70] http://www.netlib.org.
    [71] http://www.beowulf.org.
    [72] 王广厚.团簇物理学.物理24(1):13-19,1995.
    [73] 张培鸿,杨金龙,刘磊等.Naa的电子结构和构形.物理学报, 46:870-877,1997.
    [74] 福井谦一.化学反应与电子轨道,李荣森译.北京:科学出版社,1985。
    [75] Clemenger K. Ellipsoidal shell structure in free-electron metal clusters. Phys. Rev. B, 32:1359-1362, 1985.
    [76] Martins J. L., Buttet J., and Car R. Electronic and structural properties of sodium clusters. Phys. Rev. B, 31:1804-1816, 1985.
    [77] Cocchini F., Upton Th. H., and Andreoni W. Excited states and Jahn-Teller interactions in the sodium trimer. J. Chem. Phys., 88(10):6068-6077, 1988.
    [78] Marin R. L. Mol. Phys., 35:1713, 1978.
    [79] Flad J., Stoll H., and Preuss H. Calculation of equilibrium geometries and ionization energies of sodium clusters up to Na_8. J. Chem. Phys., 71(7):3042-3052, 1979.
    [80] Martins J. L., Car R., and Buttet J. Electronic properties of alkali trimers. J. Chem. Phys., 78(9):5646-5655, 1983.
    [81] Bonacic-Koutecky V., Fantucci P., and Koutecky J. Systematic ab initio configurationinteraction study of alkali-metal clusters. Phys. Rev. B, 37:4369-4374, 1988.
    [82] Honea E. C., Homer M. L., Person J. L., and et al. Generation and photoionization of cold Na_n clusters; n to 200. Chem. Phys. Lett., 171:147-154, 1990.
    [83] Martin T. P., Bergmann T., Goehlich H., and et al. Observation of electronic shells and shells of atoms in large na clusters. Chem. Phys. Lett., 172:209-213, 1990.
    [84] Martin T. P. Shells of atoms. Phys. Rep., 273:199-241, 1996.
    [85] Bonacic-Koutecky V., Fantucci P., and Koutecky J. Quantum chemistry of small elemental clusters. Chem. Rev., 91:1035-1108, 1991.
    [86] Rothlisberger U. and Andreoni W. Structural and electronic properties of sodium microclusters(n=2-20) at low and high temperatures: New insights from ab initio molecular dynamics studies. J. Chem. Phys., 94:8129-8151, 1991.
    [87] Solov'yov I. A., Solov'yov A. V., and Greiner W. Structure and properties of small sodium clusters. Phys. Rev. A, 65(5):053203, 2002.
    [88] Bockstedte M., Kley A., Neugebauer J., and Scheffler M. Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Comp. Phys. Comm., 107:187-222, 1997.
    [89] Fuchs M. and Scheffler M. Ab initio pesudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comp. Phys. Comm., 119:6798, 1999.
    [90] Huber K. P. and Herzberg G. Molecular Spectra and Molecular Structure Ⅳ. Constants of Diatomic Molecules. New York: Van Nostrand Reinhold Company, 1979.
    [91] Martin T. P. Alkali-halide clusters and microcrystals. Phys. Rep., 95:167-199, 1983.
    [92] Blase X., Charlier J.C., DeVita A., and Car R. Theory of composite B_xC_yN_z nanotube heterojunctions. Applied Physics Letters, 70(2): 197-199, 1997.
    [93] Jo C, Kim C., and Lee Y.H. Electronic properties of k-doped single-wall carbon nanotube bundles. Phys. Rev. B, 65(3):035420, 2002.
    [94] Haruyama J., Takesue I., and Hasegawa T. Anti-localization caused by small doping of heavy-mass impurity-atoms in carbon nanotubes and a novel spintronics device. Physica E, 12:735 - 740, 2002.
    [95] Blase X., Rubio A., Louie S.G., and et al. Stability and band-gap constancy of boron-nitride nanotubes. Europhys. Lett., 28(5):335-340, 1994.
    [96] Cote M., Cohen M.L., and Chadi D.J. Theoretical study of the structural and electronic properties of gase nanotubes. Phys. Rev. B, 58(8):R4277 - R4280, 1998.
    [97] Seifert G. and Hernandez E. Theoretical prediction of phosphorus nanotubes. Chem. Phys. Lett., 318(4-5):355 - 360, 2000.
    [98] Zhao M.W., Xia Y.Y., Zhang D.J., and Mei L.M. Stability and electronic structure of AIN nanotubes. Phys. Rev. B, 68(23):235415(4), 2003.
    [99] King H.W. Crystal structures and lattice parameters of allotropes of the elements. In David R. Lide, editor, CRC Handbook of Chemistry and Physics, pages 12-19. CRC Press, 79th edition, 1998-1999.
    [100] Kresse G. and Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47(1):558 - 561, 1993.
    [101] Kresse G. and Hafner J. Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B, 49(20): 14251-14269, 1994.
    [102] Kresse G. and Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci., 6(l):15-50, 1996.
    [103] Kresse G. and Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54(16): 11169-11186, 1996.
    [104] Kresse G. and Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements. J. Phys.-Condens. Mat, 6(40):8245-8257, 1994.
    [105] Hernandez E., Goze C, Bernier P., and Rubiol A. Elastic properties of c and B_xC_yN_z composite nanotubes. Phys. Rev. Lett, 80(20):4502 - 4505, 1998.
    [106] Blase X., Benedict L.X., Shirley E.L., and Louie S.G. Hybridization effects and metallicity in small radius carbon nanotubes. Phys. Rev. Lett, 72(12):1878 - 1881, 1994.
    [107] Olshanetsky B.Z. and Mashanov V.I. Clean high Miller index surface of Si. Surf. Sci., 111:414-428, 1981.
    [108] Neddermeyer H. Scanning tunnelling microscopy of semiconductor surfaces. Rep. Prog. Phys., 59(6):701 - 769, 1996.
    [109] Jurkovic M.J., Alperin J., Du Q., and et al. AlGaAs/GaAs Npn heterojunction bipolar transistors grown on si (311) by molecular beam epitaxy. J. Vac. Sci. Technol. B, 16(3):1401-1403, 1998.
    [110] Li J.L., Jia J.F., Liang X.J., and et al. Spontaneous assembly of perfectly ordered identicalsize nanocluster arrays. Phys. Rev. Lett., 88(6):066101(4), 2002.
    [111] Baski A.A., Erwin S.C., and Whitman L.J. The structure of silicon surfaces from (001) to (111). Surf. Sci., 392(1-3):69-85, 1997.
    [112] Pendry J.B. Low Energy Electron Diffraction. New York: Academic, 1974.
    [113] 李文杰, 姜金龙, 周立, 等. 三个新的稳定硅表面及其家族领地. 物理学报, 51(11):2567-2574, 2002.
    [114] Baski A.A., Erwin S.C., and Whitman L.J. A stable high-index surface of silicon: Si(5,5,12). Science, 269(5230):1556-1560, 1995.
    [115] http://www.werkstoff.tu-ilmenau.de/Labore-und-Ausruestung/spmguide/1-1-0.htm.
    [116] Tersoff J. and Hamann D.R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett., 50(25):1998 - 2001, 1983.
    [117] Tersoff J. and Hamann D.R. Theory of the scanning tunneling microscope. Phys. Rev. B, 31(2):805 - 813, 1985.
    [118] Zhang S.B. and Zunger A. Structure of the As vacancies on GaAs(110) surfaces. Phys. Rev. Lett, 77(1): 119-122, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700