ZrO_2基复合氧化物磁性固体酸的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烃类的催化裂化,烯烃的异构化,芳烃和烯烃的烷基化反应,烯烃和二烯烃的低聚、共聚和高聚,酯化及水解等反应是目前催化领域研究的热点。长期以来,科研工作者致力于通过开发新型的固体超强酸来代替目前工业上主要采用的液体酸。近年来,人们借助迅速发展的纳米技术,合成了纳米固体超强酸。纳米粒子具有大的比表面积和比表面自由能,大大提高了固体超强酸的催化活性,但纳米固体超强酸催化剂在液相催化体系中易团聚,分离和回收困难,在气固催化体系中,会造成床层阻力增大。因此,研究和开发一种易于分离和回收,同时又具有较高催化活性的新型纳米固体酸催化剂,具有重要的理论和实际意义。
     本论文系统地总结、综述了固体酸的分类以及氧化物固体酸的形成机理。采用化学共沉淀法合成具有较高磁响应性和悬浮稳定性的磁性基质,通过将磁性基质与固体酸氧化物复合,首次合成了既具有磁性又具有较高酸强度的ZrO_2基三元复合氧化物磁性纳米固体超强酸催化剂。以ZrO_2为固体酸催化剂的主活性组分和载体,通过掺杂其它氧化物来改进单组分二氧化锆作为固体酸热稳定性差、比表面小的缺陷。在高温焙烧过程中,多组分复相金属氧化物催化剂的各组分发生了氧物种在物相之间的迁移,导致多组分复合氧化物各个物种之间的协同作用,高温焙烧过程中延迟了主活性组分ZrO_2的晶化温度,有效抑制了ZrO_2晶体颗粒的长大,抑制了四方晶相ZrO_2(t)向单斜晶相ZrO_2(m)的转变,增强了催化剂的稳定性,增加了酸中心密度和酸强度,形成比单组分体系多得多的活性中心。Fe_3O_4磁性基质的引入赋予固体超强酸以顺磁性,在产物的分离、洗涤和回收过程中,引入了磁分离技术。与离心、抽滤等传统分离方法相比,具有省时、简捷、耗能低等优点。
     设计并合成了SO_4~(2-)/ZrO_2/Fe_3O_4/Al_2O_3、SO_4~(2-)/ZrO_2/Fe_3O_4/TiO_2、SO_4~(2-)/ZrO_2/Fe_3O_4/B_2O_3、SO_4~(2-)/ZrO_2/Fe_3O_4/WO_3四种不同系列的SO_4~(2-)促进型三元复合氧化物磁性纳米固体超强酸催化剂。利用XRD、IR、TG-DSC、TEM、HRTEM、SEM、NH_3-TPD、Mossbauer、VSM以及N_2吸附-脱附等综合实验手段,系统考察了Fe_3O_4、Al_2O_3、B_2O_3、TiO_2、WO_3等氧化物的引入对固体酸催化剂粒子大小、磁学性能、晶体结构、表面酸性、孔径分布、比表面积等变化规律的影响。研究和探讨了磁性基质负载量、氧化物的掺杂量及焙烧温度等因素对ZrO_2晶化温度和晶型转变温度的影响。磁性基质的引入及B_2O_3、WO_3、Al_2O_3、TiO_2等氧化物的掺杂稳定了介稳态的ZrO_2(t)。Al_2O_3、TiO_2、WO_3等粒子高度分散在ZrO_2中,在烧结过程中有效地阻碍了扩散传质的进行以及晶界的移动,抑制ZrO_2晶体的生长,细化了晶粒,降低了ZrO_2(t)的晶相转变温度。样品的HRTEM显示,氧化物的掺杂可以有效的抑制ZrO_2(t)向ZrO_2(m)晶相的转化,使晶体按ZrO_2(t)的(101)晶面取向生长,晶面间距为d(101)=0.29 nm。本文以酯化反应作为磁性复合氧化物固体酸催化剂的探针反应,对磁场对酯化反应的影响机理作了初步探讨研究,取得了一些重要的实验结果和创新性成果,为深入研究磁性催化剂的磁化学反应机制提供了实验参考,并为开发环境友好的新型双功能催化材料提供了参考依据。
In present, catalytic cracking of hydrocarbon, isomerization of olefins, alkylation of aromatic hydrocarbon and olefins, polymerization of olefins and diolefine, esterification and hydrolysis have attracted much attention in the field of catalysis. In the past decades, great effort have been made in developing novel solid superacid instead of liquid acid which has been mostly used in industrial applications. Recently, nano-scale solid superacid has been synthesized by rapid developing nanotechnology. These nano-scale particles with high specific surface area and large free energy can greatly improve the catalytic activity of solid superacid. However, the difficulties of separating and reclaiming in the liquid phase reaction and the large mass transfer resistance in the gas phase reaction of these catalysts have greatly limited their application. Therefore, it is essential to design a novel nano-scale solid acid catalyst with the advantages of high catalytic activity and ease of separation and recovery.
     In this dissertation, classification and formation mechanics of solid acid has been reviewed. Magnetic substrates with high magnetism and suspension stability were prepared by chemical co-precipitation process. In addition, a novel zirconium based ternary-oxide solid acid catalyst with high magnetism and acidity was prepared by assembling of as-made magnetic substrates and solid acid for the first time. The drawbacks of low thermal stability and low specific surface area for zirconia have been improved by doping other oxide. Multi-component heterogeneous metal oxide catalyst migrated during different phases under high heat treatment, which lead to the coordination of multi-component oxide in the phase. As a result, the crystallization temperature of zirconia has been delayed greatly, which markedly inhibited the growth of crystal particle and phase transformation from tetragonal zircoina to monoclinic zirconia. Furthermore, the thermal stability, acid amount and intensity, the number of active centers have been also increased as well. The introduction of Fe_3O_4 magnetic substrate endowed solid superacid with supermagnetism, which can be easily separated and recovered in comparison with the traditional solid acid catalysts.
     In this work, four magnetic solid acid catalysts includingSO_4~(2-)/ZrO_2/Fe_3O_4/Al_2O_3, SO_4~(2-)/ZrO_2/Fe_3O_4/TiO_2, SO_4~(2-)/ZrO_2/Fe_3O_4/B_2O_3,SO_4~(2-)/ZrO_2/Fe_3O_4/WO_3 have been prepared. The structure, morphology, textural, and magnetic properties of the catalysts were systematically characterized by XRD, FT-IR, TG-DSC, TEM, SEM, NH_3-TPD, Mossbauer spectra, VSM and N_2 adsorption/desorption techniques. Influence of magnetic substrate, doped amount of oxide and calcination temperature on crystalline temperature and crystal transformation temperature have been investigated. The results indicated that the introduction of magnetic substrate and oxides such as B_2O_3, WO_3, Al_2O_3 and TiO_2 markedly improved the thermal stability of tetragonal zirconia resulting from the uniform distribution of the doped oxide throughout the matrix of the zirconia. Because of the existence of Fe_3O_4 particles, magnetic solid acid catalyst shows the characteristics of superparamagnetism, and the easy-axis of samples are perpendicular to magnetic field. In addition, the HRTEM showed that the tropism of the crystal plane is (101) of tetragonal zirconia, and the interplanar spacing is d(101) = 0.29 nm.
     The effect of magnetic field on the mechanism of esterification was investigated by esterification which was used as probe reaction for magnetic solid acid catalysts. And some important experiment results and creative achievements have been obtained, which can provide the reference for further study of magnetism chemistry mechanics and for developing novel environmental friendly catalytic materials with double functions.
引文
[1] Andreas Feller, Iker Zuazo, Alexander Guzman, et al. Common mechanistic aspects of liquid and solid acid catalyzed alkylation ofisobutane with n-butene[J].Journal of Catalysis, 2003, 216(1-2): 313-323P
    [2] T Okruham. Water-tolerant solid acid catalysis[J]. Chem. Rev, 2002, 102: 3641P
    [3] Dunn J P, Stenger H G, Wachs I E, et al. Molecular structure-reactivity relationships for the oxidation of sulfur dioxide over supported metal oxide catalysts [J]. Catalysis Today, 1999, 53(4): 543-556P
    [4] Semelsberger T A, Ott K C,Borup R L, et al. Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using physical mixtures of a commercial Cu/Zn/Al_2O_3 catalyst and several solid-acid catalysts[J]. Applied Catalysis B-Environmental, 2006, 65(3-4): 291-300P
    [5] Reddy B M, Sreekanth P M, Lakshmanan P, Khan A, Synthesis, characterization and activity study of SO_4~(2-)/Ce_xZr_(1-x)O_2 solid superacid catalyst[J]. Journal of Molecular Catalysis a-Chemical, 2006, 244(1-2): 1-7P
    [6] L K Noda, R M Almeida and L F Dias Probst, et al. TiO_2 with a high sulfate content-thermogravimetrie analysis, determination of acid sites by infrared spectroscopy and catalytic activity[J]. Catalysis Today, 2003, 85: 69-74P
    [7] B M Reddy, P M Sreekanth and Y Yamada, et al. Surface Characterization and Catalytic Activity of Sulfate-, Molybdate- and Tungstate-Promoted Al_2O_3-ZrO_2 Solid Acid Catalysts[J]. Journal of Molecular Catalysis A, 2005, 227: 81-89P
    [8] Chen X R, Chen C L, Xu N P, Mou C Y. Al-and Ga-promoted WO_3/ZrO_2 strong solid acid catalysts and their catalytic activities in n-butane isomerization[J]. Catalysis Today, 2004, (93-95): 129-134P
    [9] 金华峰,李文弋.纳米复合固体超强酸SO_4~(2-)-ZnFe_2O_4的合成与催化合成癸二酸二乙酯的研究.无机化学学报.2002,18(3):265-268页
    [10] Toyoshi Y, Nakato T, Tamura R, Takahashi H, Tsue H, Hirao K, Okuhara T. Solid-solid catalysis by ultrafine crystallites of heteropoly compound for pinacol rearrangement[J]. Chemistry Letters, 1998, (2): 135-136P
    [11] Higashio Y, Nakayama T. One-step synthesis of methyl isobutyl ketone catalyzed by palladium supported on niobic acid. Catalysis Today, 1996, 28 (1-2): 127-131P
    [12] Okuhara T, mKiura, M.Kawal T, Xu Z, Nakato T. Organic reactions in excess water catalyzed by solid acids[J]. Catalysis Today, 1998, 45(1-4): 73-77P
    [13] 陈同云,古绪鹏,胡祥余.低温陈化法合成SO_4~(2-)-ZrO_2-TiO_2超强酸及其催化性能和稳定性研究[J].无机化学学报.2002,18(4):378-382页
    [14] H Yang, R Lu, L Wang. Study of preparation and properties on solid superacid sulfated titanic-silica nanomaterials[J]. Materials Letters, 2003, (57): 1190-1196P
    [15] W M Hua, Z Gao. Catalytic combustion of n-pentane on Pt supported on solid superacids[J]. Applied Catalysis B, 1998, (17): 37-42P
    [16] Sui Y, Fu X K, Chen J R, Ma X B, Zeng R Q. Preparation and properties of solid acid zirconium oligo (sulfostyrenyl) phosphonate hydrogen phorsphate sppoted on TiO_2[J]. Materials Letters, 2005, 59(17): 2115-2119P
    [17] Ziolek M, Nowak I, Karge H G. Solid-state interaction between niobium oxide and Y-type zeolites[J]. Catalysis by Mieroporous Materials, 1995, 94: 270-277P
    [18] 吴越著.催化化学[M].北京:科技出版社,2000:659-672页
    [19] 田部浩三,御圆生诚,小野嘉夫等编著.新固体酸和碱及其催化作用(第二版)[M].应慕良译.北京:化学工业出版社,1991:4-9页
    [20] Kirsch F W, Potts J D, Barmbv D S. Isoparaffm-olefin alkylation's with crystalline aluminosilieates I early studies-C4-olefins[J]. J Catal, 1972, 27: 142-150P
    [21] Seurrel M S Conversion. of methane-ethylene mixtures over sulphate-treated zireonia catalysis[J]. Appl Catal, 1987, 34: 109-117P
    [22] Corma A. Isobutane/2-butene alkylation on ultrastable Yzeolites: Influence of zeolite cell size[J]. J Catal, 1994, 146(1): 185-191P
    [23] Garwood W E, Venuto P B .Paraffin-olefin alkylation over a crystalline aluminosilicate[J]. J Catal, 1968, 11: 175-181P
    [24] Chernyshkova F A. Niobic eid as a new heterogeneous catalyst for processes of petrochemical and organic-synthesis[J]. Uspekhi Khimii, 1993, 62(8): 788-795P
    [25] Shishido T, Tanaka T, Hattori H, State of platinum in zirconium oxide promoted by platinum and sulfate ions[J]. Journal of Catalysis, 1997, 172(1): 24-33P
    [26] 吴长增,宋晓平.固体酸ZrO_2-Ce_2O_3/SO_4~(2-)催化合成丙二酸二丁酯[J].合成化学.2004(12):574-576页
    [27] Brayshaw P A, Hall A K, Harrison W T A, Harrowfield J M, Pearce D, Shand T M, Skelton B W, Whitaker C R, White A H. Structural studies of rare earth/transition metal complex ion systems as a basis for understanding their thermal decomposition to mixed oxides[J]. European Journal of Inorganic Chemistry, 2005, (6): 1127-1141P
    [28] Adhikary K, Takahashi M, Kikkawa S. Some new aspects of low-temperature lithium cobalt oxides prepared through citric acid precursor route[J]. Materials Research Bulletin, 1998, 33(12): 1845-1855P
    [29] Mohamed M A, Galwey A K, Halawy S A. Kinetic and thermodynamic study of the non-isothermal decompositions of cobalt malonate dihydrate and of cobalt hydrogen malonate dehydrate [J]. Thermochimica Acta 2000, 346(1-2): 91-103P
    [30] Sales M J A, Serra O A, de Barros G G. Energy transfer to Eu(Ⅲ) in the solid-state low-density polyethylene-poly(acrylic acid)and low-density polyethylene-Fe_2O_3-poly(acrylic acid) matrices[J]. Journal of Applied Polymer Science, 2000, 78(4): 919-931P
    [31] Takagaki A,Yoshida T, Lu D L, Kondo J N, Hara M, Domen K, Hayashi S. Titanium niobate and titanium tantalate nanosheets as strong solid acid catalysts[J]. Journal of Physical Chemistry B, 2004, 108(31): 11549-11555P
    [32] Hino M, Kurashige M, Arata K. Synthesis of a solid acid of tungsta-niobia more active than aluminosilicates for decompositions of cumene, ethylbenzene, and toluene [J]. Catalysis Communications 2004, 5(3): 107-109P
    [33] Z H Zhao. Catalytic Synthesis of 3,3,4-trimethyl-4-penten-2-one over Solid-Supported H_3PO_4 [J]. Journal of Molecular Catalysis, 2003, 17(2): 129-135P
    [34] Jin T. Machida M, Yamaguchi T, et al. Infrared study of sulfurcontaining iron oxide behaviore of sulfur during reduction and oxidation[J]. Inorg Chem., 1984, 23: 4396-4398P
    [35] Yamaguchi T, Jin T, Tanabe K. Structure of acid sites on sulfur-promoted iron oxide[J]. J. Phys. Chem, 1986, 90: 3148-3152P
    [36] Babou F, Bigot B, Sautet P. The superacidity of sulfated zirconia: anab-initio guantum mechanical study[J]. J. Phys. Chem, 1993, 97:11501-11509P
    [37] Olindo R, Goeppert A, Habermacher D, Sommer J, Pinna F. New methods for quantitative determination of Bronsted acid sites on solid acids: Applicability and limits for Al_2O_3-promoted SO_4~(2-)/ZrO_2 catalysts[J]. Journal of Catalysis, 2001, 197(2): 344-349P
    [38] Fikry E M, Abdelghaffar A, Anwar A, Abouifotouh S. Heteropoly acids supported on alpha-Al_2O_3 as solid acid catalysts for methanol transformation[J]. Collection of Czechoslovak Chemical Communications, 1993, 58(9): 2079-2089P
    [39] Kim J Y, Chang I J ,Kim J K, Yu J W. Solid-state photovoltaie devices based on perylene acid-sensitized nanostructural SnO_2 with P(VdF-co-HFP) gel electrolyte[J]. Current Applied Physics, 2006, 6(5): 969-973P
    [40] Pan H H, Yu Z W, Pu Z Y. Preparation of Pt-SO_4~(2-)/ZrO_2 solid acid catalyst through hydrothermal modification of zirconium hydroxide I. Influence of hydrothermal temperature[J]. Chinese Journal of Catalysis, 2003, 24(3): 193-197P
    [41] Umbarkar S B, Biradar A V, Mathew S M, Shelke S B, Malshe K M, Patil P T, Dagde S P, Niphadkar S P, Dongare M K. Vapor phase nitration of benzene using mesoporous MoO_3/SiO_2 solid acid catalyst[J]. Green Chemistry, 2006, 8 (5): 488-493P
    [42] Sun W D, Xu L P, Liu H Y, Chu Y, Wu Y. Synthesis of strong solid acid MoO_3/ZrO_2 and application to the alkylation of isobutane with butane [J]. Chemical Journal of Chinese Universities-Chinese, 2004, 25(8): 1499-1503P
    [43] Reddy B M, Sreekanth P M, Yamada Y, Kobayashi T. Surface characterization and catalytic activity of sulfate-, molybdate-and tungstate-promoted Al_2O_3-ZrO_2 solid acid catalysts [J]. Journal of Molecular Catalysis a-Chemical, 2005, 227(1-2): 81-89P
    [44] Chen X R, Chen C L, Xu N P, Mou C Y, Catalytic activity of Al_2O_3/WO_3/ZrO_2 strong solid acid catalyst for n-butane isomerization [J]. Chinese Journal of Catalysis, 2003, 24(12): 924-928P
    [45] Contescu C, Popa V T, Miller C. Bronsted-type relationship for surface active sites on solid acid catalysts: 1-butene isomerization on TiO_2-SiO_2, ZrO_2-SiO_2, and Al_2O_3-SiO_2 mixed oxide catalysts[J]. Chemical Engineering Journal, 1996, 64(2): 265-272P
    [46] Budziak D, da Silva E L, de Campos S D, Carasek E. Application of Nb_2O_5-SiO_2 in pre-concentration and determination of copper and cadmium by flow system with flame atomic absorption spectrometry[J]. Microchimica Acta, 2003, 141(3-4): 169-174P
    [47] Morselli S, Moggi P, Cauzzi D, Predieri G. Preparation and characterization of niobia and silica-niobia systems[J]. Preparation of Catalysts ⅶ, 1998, 118: 763-772P
    [48] Fagal G A, Attia A A, El-Shobaky H G. Catalytic decomposition of H_2O_2 over a gamma-irradiated CuO-ZnO/Al_2O_3 system[J]. Adsorption Science & Technology, 1998, 16(5): 381-390P
    [49] Sun W D, Zhao Z B, Chu W L, Guo C, Ye X K, Wu Y. Studies on the alkylation of isobutane with butene over WO_3/ZrO_2 strong solid acid (Ⅰ)-Effect of preparation, load of WO3 and calcination temperature[J]. Chemical Journal of Chinese Universities-Chinese, 2000, 21(3): 448-452P
    [50] Wang H M, Xu J S, Xiao R H, Cheng H Z. Preparation and catalytic use of the solid acid SO_4~(2-)/Fe_2O_3-MxOy for the reaction of crotonaldehyde with n-butanol[J]. Journal of Molecular Catalysis a-Chemical, 2006, 248(1-2): 70-75P
    [51] Wu D H, Li D, Yang J, Yang X J, Lu L D, Wang X. Preparation of solid acid SO_4~(2-)/Fe_2O_3-SiO_2 by stearic acid method and preliminary study on its catalytic activity[J]. Chemical Journal of Chinese Universities-Chinese, 2001, 22(11): 1877-1880P
    [52] Liao D Z, He J Y. A study on catalytic performance of a new solid acid SO_4~2 SO_4~(2-)-MoO_3-TiO_2 in preparation of n-butyl propanoate[J]. Chinese Journal of Organic Chemistry, 2001, 21(12): 1153-1156P
    [53] Pan H H, He M Y, Yu Z W, Pu Z Y. Effect of alumina on structure and acidity of solid acid catalyst Pt-SO_4~(2-)/ZrO_2-Al_2O_3[J]. Chinese Journal of Catalysis, 2005, 26(12): 1067-1072P
    [54] Du C H, Qin Y N, He Y F, Ma Z, Wu S X. Study on structure SO_4~(2-)/ZrO_2-Al_2O_3-Al solid acid for catalytic distillation[J]. Chinese Journal of Chemical Physics, 2003, 16(6): 504-508P
    [55] Zhang Q, Chang J, Wang T J, Xu Y. Preparation of solid acid SO_4~(2-)/SiO_2-TiO_2 and its catalytic activity for esterification[J]. Chinese Journal of Catalysis, 2006, 27(11): 1033-1038P
    [56] 王大全,于世涛,刘福胜等编著.固体酸与精细化工[M].北京:化学工业出版社,2006:207-256页
    [57] Xu Y Z, Mao J X, Zhang X M. Once step catalytic synthesis of arylalkanoic acids over 12-Tungstophosphoric acid[J]. Chinese Journal of Catalysis, 2005, 10(26): 835-836P
    [58] Mizuno N, Misono M. Heterogenous catalysis[J]. Chem. Rev, 1998, 98: 199-217P
    [59] Kaur J, Kozhevnikov I V. Efficient acylation of toluene and anisole with aliphatic carboxylic acids atalysed y-eteropolp salt CS_(2.5)H_(0.5)PW_(12)O_(40)[J]. Chem. Commun, 2002, (21): 2508-2509P
    [60] S Ganapathy, M Foumier, J F Paul, L Delevoye, M Guelton, J P Amoureux. Location of protons in anhydrous keggin heteropolyacids H_3PMo_(12)O_(40) and H_3PW_(12)O_(40) by REDOR NMR and DFT quantum chemical calculations[J]. J. Am. Chem. Soc, 2002, 124: 7821-7829P
    [61] J Yang, M J Janik, D Ma, A Zheng, M Zhang, M Neurock, R J Davis, C Ye, F Deng. Location, acid strength, and mobility of the acidic protons in keggin 12-H_3PW_(12)O_(40): A combined solid-state NMR spectroscopy and DFT quantum chemical calculation Study [J]. J. Am. Chem. Soc, 2005, 127: 18274-18281P
    [62] Kishore P S, Viswanathan B, Varadarajan T K. Heteropolyacid-eatalyzed synthesis of chloromethyl methyl ether[J]. Tetrahedron Letters, 2006, 47(4): 429-431P
    [63] 申凤善,彭军,孔育梅,李丽.杂多酸催化剂在烷基化反应中的研究进展[J].分子科学学报.2006,22(1):28-31页
    [64] A Corma, A Martinez and C Martinez. Isobutane/2-butene alkylation on ultrastable Y zeolites: Influence of zeolite unit cell size[J]. J. Catal, 1994, 146(1): 185-192P
    [65] M F Simpsin, J Wei. S Sundaresan netic analysis of isobutane/butane alkylation over ultrastable H-Y zeolite[J]. Ind. Eng. Chem Res, 1996, 35: 3861-3873P
    [66] K P de Jong, C M AM Mesters, D G.R Peferoen, P T M van Brugge, C de Groot. Paraffin alkylation using zeolite catalysts in a slurry reactor: Chemical engineering principles to extend catalyst lifetime[J]. Chemical Engineering Science, 1996, 51(10): 2053-2060P
    [67] R J Taylor, D E Sherwood Jr. Effects of process parameters on isobutane/2-butene alkylation usinga solid acid catalyst[J]. Applied Catalysis A, 1997, 155(2): 195-215P
    [68] A Corma, A Martinez, C Martinez. Isobutane/2-butene alkylation on MCM-22 catalyst.Influence of zeolite structure and acidity on activity and Isobutane/2-butene alkylation on ultrastable Y zeolites: Influence of zeolite unit cell size[J]. J. Catal,1994, 146(1): 185-192P
    [69] Kyesang Yoo, Eric C Burckle, Panagiotis G Smirniotis. Comparison of protonated zeolites with various dimensionalities for the liquid phase alkylation of i-betane LaHY-FAU catalyst deactivation in the alkylation of isobutane with 2-butene[J]. Applied Catalysis A, 1995, 124(1): 107-119P
    [70] Kyesang Yoo, Eric C. Burckle, Panagiotis G Smirniotis. Isobutane/2-butene alkylation using large-pore zeolites: influence of pore structure on activity and selectivity[J]. Journal of Catalysis, 2002, 211(1): 176-180P
    [71] Kugita T, Ezawa M, Owada T, Tomita T, Namba S, Hashimoto N, Onaka M. MCM-41 as a highly active catalyst for Diels-Alder reaction of anthracene with p-benzoquinone[J]. Mic and Mes Master, 2001, (44-45): 531-536P
    [72] Climent M J, Corma A, Guil-Lopez R, Iborra S, Primo J. Use of mesoporous MCM-41 aluminosilicates as catalysts in the preparation of fine chemicals-a new route for the preparation of iasminaldehyde with high selectivity[J]. J Catal, 1998, (175): 70-78P
    [73] Amengol E, Cano M L, Corma A, et al. Mesoporous aluminosilicate MCM-41 as a convenient acid catalyst for Friedel-Crafts alkylation of a bulky aromatic compound with cinnamyl alcohol [J]. J Chem Soc Chem Commun, 1995, (5): 519-520P
    [74] Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds[J]. Nature, 1994, 368: 321-323P
    [75] corma A, Navarra M T, Perez-Pariente J. Synthesis of an ultrolarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrwcarbons[J]. J chem Soc Chem Commun, 1994, (1): 147-148P
    [76] Reddy K M, Moudrakovski I. Synthesis of mesoporous vanadium silicate molecular sieves[J]. J chem. Soc Chem. Commun, 1994, (9): 1059-1060P
    [77] Reddy J S, Sayari A J. Room-temperature synthesis of a highly active vanadium-containing mesoporous molecular sieve V-HMS[J]. J chem. Soc Chem. Commun, 1995, (21): 2231-2232P
    [78] Das T K, Chaudhari K. Cr-MCM-41catalyzed selective oxidation of alkylarenes with TBHP[J]. Tetrahedron Lett, 1997, 38 : 3631-3634P
    [79] Cho D-H, Chang T-S, Ryu S-K. Characterization and catalytic activities of Mo-MCM-4[J]. Catal Lett, 2000, 64 (2-4): 227-232P
    [80] Reddy B M, Sreekanth P M, Yamada Y, Xu X, Kobayashi T. Surface characterization of sulfate, molybdate, and tungstate promoted TiO_2-ZrO_2 solid acid catalysts by XPS and other techniques[J]. Applied Catalysis a-General, 2002, 228(1-2): 269-278P
    [81] Benjamin S V, Engelhard J, Hall W K. On the strength of solid acids[J]. J Catal, 1991, 127: 128-140P
    [82] Clearfield A, Serrette G P D, Khazi-Syed A H. Nature of hydrous zirconia and sulfated hydrous zirconia[J]. Catal Today, 1994, 20:295-312P
    [83] Jin T, Machida M, Yamaguchi T, et al. Infrared study of sulfur-containing iron oxide behavior of sulfur during reduction and oxidation[J]. Inorg Chem., 1984, 23: 4396-4398P
    [84] 钱岭,阎子封,丁荣刚等.复合SO_4~(2-)/ZrO_2固体超强酸催化剂的结构表征[C].第九届全国催化学术报告会论文集.北京.1998.557-558页
    [85] DeLeon S A G, Grange P, Delmon B. Characterization by temperature-programmed reduction of non-conventional catalysts for hydrotreatment[J]. Catalysis Letters, 1997, 47 (1): 51-55P
    [86] Delmon B. The Control of Reaction Selectivity and Stability of Catalysts by Spillover Processes[J]. Heterogeneous Chemistry Reviews, 1994, 1(3): 219-230P
    [87] 韩维屏等著.催化化学导论(第三版)[M].北京:科技出版社,2006:209-216页
    [88] Arata K. Preparation of superacids by metal oxides for reactions of butanes and pentanes[j]. Applied Catalysis a-General, 1996, 146(1): 3-32P
    [89] 刘坚,赵震,徐春明.VO_x/ZrO_2和K-VO_x/ZrO_2催化剂的结构与催化碳黑氧化性能[J].物理化学学报.2005,21(2):156页
    [90] Reddy B M, Sreekanth P M, Lakshmanan P, Khan A. Synthesis, characterization and activity study of SO_4~(2-)/Ce_xZr_(1-x)O_2 solid superacid catalyst[J]. Journal of Molecular Catalysis a-Chemical 2006, 244(1-2): 1-7P
    [91] Wang X C, Yu J C, Hou Y D, Fu X Z. Three-dimensionally ordered mesoporous molecular-sieve films as solid superacid photo catalysts[J]. Advanced Materials, 2005, 17(1): 99-104P
    [92] Matsuhashi H, Miyazaki H, Kawamura Y, Nakamura H, Arata K. Preparation of a solid superacid of sulfated tin oxide with acidity higher than that of sulfated zirconia and its applications to aldol condensation and benzoylation[J]. Chemistry of Materials 2001, 13 (9): 3038-3042P
    [93] Zane F, Melada S, Signoretto M, Pinna F. Active and recyclable sulphated zirconia catalysts for the acylation of aromatic compounds[J]. Applied Catalysis a-General, 2006, 299:137-144P
    [94] Yadav G D, Murkute A D. Novel efficient mesoporous solid acid catalyst UDCaT-4: Dehydration of 2-propanol and alkylation of mesitylene[J]. Langmuir, 2004, 20(26): 11607-11619P
    [95] Yadav G D, Murkute A D. Development of a novel mesoporous catalyst UDCaT-6: Kinetics of synthesis of tert-amyl methyl ether (TAME) from tert-amyl alcohol and methanol[J]. Journal of Physical Chemistry A, 2004, 108(44): 9557-9566P
    [96] Lei T, Xu J S, Tang Y, Hua W M, Gao Z. New solid superacid catalysts for n-butane isomerization: gamma-Al_2O_3 or SiO_2 supported sulfated zirconia[J]. Applied Catalysis a-General, 2000, 192(2): 181-188P
    [97] Triwahyono S, Yamada T, Hattori H. Effects of Na addition, pyridine preadsorpfion, and water preadsorpfion on the hydrogen adsorption property of Pt╱SO_4~(2-)-ZrO_2[J]. Catalysis Letters, 2003, 85(1-2): 109-115P
    [98] 景晓燕,李茹民,王鹏,王君,袁艺,朱果逸.磁微球及其在生化分离分析中的应用[J].分析化学.1999,12(27):1462-1467P
    [99] 尹衍升,李嘉.氧化锆陶瓷及其复合材料[M].北京:化学工业出版社,2003:108-134页
    [100] 尹衍升,陈守刚,刘英才.氧化锆陶瓷的掺杂稳定及生长动力学[M].北 京:化学工业出版社,2004:101-135页
    [101] 廖世军,王乐夫,杨兆禧,梁路一,黄新晖.SO_4~(2-)/ZrO_2-SiO_2催化剂的结构及其形成过程[J].物理化学学报.2000,16(3):278-283页
    [102] 潘晖华,何鸣元,于中伟,濮仲英.氧化铝对Pt-SO_4~(2-)/ZrO_2-Al_2O_3固体酸催化剂结构与酸性的影响[J].催化学报.2005,26(12):1067-1072页
    [103] Pieck C L, Banares MA, Vicente MA, Fierro J L G. Chemical structures of ZrO_2-supported V-Sb oxides. Chemistry of Materials 2001, 13(4): 1174-1180P
    [104] Xie S B, Iglesia E, Bell A T. Water-assisted tetragonal-to-monoclinic phase transformation of ZrO_2 at low temperatures[J]. Chemistry of Materials, 2000, 12(8): 2442-2447P
    [105] 于冬亮,都有为.NiFe_2O_4纳米线阵列的合成与磁性[J].物理学报.2005,54(2):930-934页
    [106] 姜继森,高濂,杨燮龙等.α—Fe_2O_3纳米微粒的合成及其Mossbauer谱研究[J].物理化学学报.2000,16(4):312-316页
    [107] Liu D Y, Wang C, Zhang H F, Hu Z Q. Preparation and properties of Fe-based bulk metallic glass[J]. Acta Metallurgica Sinica, 2005, 41(2): 209-213P
    [108] Shen W Z, Zheng J T, Qin Z F, Wang J G, Liu Y H. Preparation of mesoporous activated carbon fiber by steam activation in the presence of cerium oxide and its adsorption of Congo red and Vitamin B12 from solution[J]. Journal of Materials Science, 2004, 39(14): 4693-4696P
    [109] Shibata H, Mukai T, Akita T, Ohkubo T, Sakai H, Abe M. Preparation of mesoporous titania particles with photocatalytic activity under visible-light irradiation. Chem Lett, 2005, 34(12): 1696-1697P
    [110] Yamaguchi T. Recent progress in solid superacid[J]. Appl Catal, 1990, 61:125-129P
    [111] 王知彩,张红玲.SO_4~(2-)/ZrO_2-TiO_2固体酸催化剂的合成条件对苯与1-十二烯烷基化反应的影响[J].石油化工.2006,35(5):483-488页
    [112] Liang H P, Zhang H M, Hu J S, et al. Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts[J]. Argew. Chem. Int. Ed., 2004, 43(12): 1540-1543P
    [113] Su W Y, Chen Y L, Fu X Z, Wei K M. Acid strength and photocatalytic activity of SO_4~(2-)/TiO_2 solid acid catalyst[J]. Chinese Journal of Catalysis, 2001, 22 (2): 175-176P
    [114] Jimmy C Y, Zang L Z, Yu J G. Rapid synthesis ofmeso-porous TiO_2 with high photocatalytic activity by ultrasound-induced agglomeration[J]. New J Chem, 2002, 26(4): 416P
    [115] Contescu C, Popa V T, Miller J B, Ko E I, Schwarz J A. Bronsted-type relationship for surface active sites on solid acid catalysts: 1-butene isomerization on TiO_2-SiO_2, ZrO_2-SiO_2, and Al_2O_3-SiO_2 mixed oxide catalysts[J]. Chemical Engineering Journal, 1996, 64(2): 265-272P
    [116] 杜长海,秦永宁,贺岩峰等.催化精馏专用填料型固体酸SO_4~(2-)/ZrO_2-Al_2O_3-Al的研究[J].化学物理学报.2003,16(6):504-508页
    [117] 陈同云,古绪鹏,万玉保.合成条件及添加稀土对SO_4~(2-)/ZrO_2-Al_2O_3固体超强酸酸性影响的研究[J].化学物理学报.2002,15(1):75-79页
    [118] Lei T, Xu J S, Tang Y, Hua W M, Gao Z. New solid superacid catalysts for n-butane isomerization: gamma-Al_2O_3 or SiO_2 supported sulfated zirconia[J]. Applied Catalysis a-General, 2000, 192(2): 181-188P
    [119] Ma Zh, Yue Y H, Deng X Y, et al. Nanosized anatase TiO_2 as precursor for preparation of sulfated titanic catalysts[J]. Journal of Molecular Catalysis A, 2002, 178: 97-104P
    [120] Roh H S, Jun K W, Dong W S, Park S E, Baek Y S. Highly stable Ni catalyst supported on Ce-ZrO_2 for oxy-steam reforming of methane[J]. Catalysis Letters, 2001, 74(1-2): 31-36P
    [121] 马中义,徐润,杨成,魏伟,李文怀,孙予罕.不同形态ZrO_2的合成及其表面性质研究[J].物理化学学报.2004,20(10):1221-1225页
    [122] 姜国华,姜继森.棒状γ-Fe_2O_3纳米粒子的合成及表征.无机材料学报.2005,20(5):1066-1070页
    [123] Liu D Y, Wang C, Zhang H, Hu Z Q. Preparation and properties of Fe-based bulk metallic glass[J]. Acta Metallurgica Sinica, 2005, 41(2): 209-213P
    [124] 黄碧纯,黄仲涛.SO_4~(2-)/MoO_3/ZrO_2催化剂酯化催化性能的研究[J].石油化工.1996,25(11):765-768页
    [125] Huo Q S, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis ofmesoporous silica-based materials[J]. Chem. Mater, 1996, 8(5): 1147-1160P
    [126] Zhao D Y, Sun J Y, Li Q Z, et al. Morphological control of highly ordered mesoporous silica SBA-15[J]. Chem. Mater, 2000, (12): 275-279P
    [127] Shah J T, liao S J, wang L F, et al. Preparation and characterization of novel superacid catalyst SO_4~(2-)/Zr-ZSM-5[J]. Journal of Molecular Catalysis, 2002, 16(5): 379-384P
    [128] 程华.磁场影响化学反应[J].化学通报.1989(5):35-44页
    [129] 张淑仙,汤鸣,谢文惠.磁场对乙酸乙酯皂化反应的影响[J].化学通报.1996(5):25-26页
    [130] 金增瑗,王玉贤.磁场对蔗糖转化影响的研究[J].化学研究与应 用.1998,10(6):628-631页
    [131] Lei Y Y, Ito Y, Browning N D. Segregation effects at grain boundaries in fluorite structured ceramics [J]. J. AM. Ceram Soc., 2002, 85(9): 2359-1363P
    [132] 徐柏庆,程时标.ZrO_2表面B_2O_3的分散及其作用状态[J].物理化学学报.2001,17(5):443-447页
    [133] 许利苹.纳米固体酸催化剂的合成及其在异丁烷-丁烯烷基化反应中的应用[D].长春:东北师范大学.2003:22-27页
    [134] 程时标,徐柏庆.合成方法对.B_2O_3/ZrO_2催化剂结构的影响[J].石油炼制与化工.2003,34(2):36-41页
    [135] 毛东森,陈庆铃,卢冠忠.B_2O_3/TiO_2-ZrO_2的结构表征及其与酸性和催化性能间的关系[J].无机化学报.2002(11):1086-1092页
    [136] 黄碧纯,黄仲涛.超强酸催化剂SO_4~(2-)/MoO_3/ZrO_2的合成与表征[J].精细石油化工.1996(4):34-36页
    [137] 管国锋,谭强,万辉.SO_4~(2-)/TiO_2/Al_2O_3固体酸催化剂的表征及其催化合成均苯四甲酸四异辛酯[J].石油化工.2005(7):643-647页
    [138] 常铮,郭灿雄,李峰,段雪,张密林.新型磁性纳米固体酸催化剂ZrO_2/Fe_3O_4的合成及表征[J].化学学报.2002,60(2):298-304页
    [139] Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J]. Chen Mat, 2001, (13): 3169-3183P
    [140] 孙闻东,赵振波,吴越.WO_3/ZrO_2固体强酸催化剂上异丁烷/丁烯的烷基化反应Ⅱ.过渡金属的助催化作用[J].催化学报.2000,21(3):229-233页
    [141] Amiriclis M D, Duevel R V, Wachs I E. The effect of metal oxide additives on the activity of V_2O_5/TiO_2 catalysts for the selective catalytic reduction of nttric oxicle by ammonia[J]. Applied Catalysis B:Environmental, 1999, (20):111-122P
    [142] C Bigey, L Hilaire, G Mair. WO_3-CeO_2 and Pd/WO_3-CeO_2 as potential catalysts for reforning applications[J]. J. Catal, 2001, 198: 208-222P
    [143] C Martin,. G Solaria, P Malet, et al. Nb_2O_5-supported WO_3 a comparative study with WO_3/AL_2O_3 [J]. J. Catal.Today, 2003, 78: 365- 376P
    [144] David G B, Stuart L S, George D M. Structual and catalytic characteri-zation of solid acids based on zirconia modified by tungsten oxide[J]. J.Catal, 1999, 181(1): 52-72P
    [145] Guidi V, Carotta M C, Ferroni M G. Effect of dopants on grain coalescence and oxygen mobility in nanostructured titania anatase andrutile[J]. J. Phys. Chem. B, 2003, 107: 120-124P
    [146] Chen X R, Chen C L, Xu N P, Mou C Y. Al-and Ga-promoted WO_3/ZrO_2 strong solid acid catalysts and their catalytic activities in n-butane isomerization[J]. Catalysis Today 2004, (93-95): 129-134P
    [147] 孙闻东,赵振波,楚文玲,郭川,叶兴凯,吴越.WO_3/ZrO_2固体强酸催化剂上异丁烷-丁烯烷基化反应研究(Ⅰ)——钨负载量和焙烧温度的影响[J].高等学校化学学报.2000,3(21):448-452页
    [148] 郑国渠,郑华均,倪似愚,于学宏,董虹星.铁纳米线阵列的合成及磁性研究[J].浙江工业大学学报.2005,33(4):365-367页
    [149] Kung H H. Formation of new acid sites in dilute oxide solid solutions: A predictive model[J]. J Solid State Chem., 1984, 52(2): 191-196P
    [150] Klein F, Blanchard J, Zibrowius B, Schuth F, Agren P, Linden M. Influence of cosurfactants on the properties of mesostructured materials[J]. Langmuir, 2002, 18(12): 4963-497IP
    [151] Sakamoto Y, Kim T W, Ryoo R, Terasaki O. Three-dimensional structure of large-pore mesoporous cubic Ia(3) over-bard silica with complementary pores and its carbon replica by electron crystallography[J]. Angew Chem. Int. Ed, 2004, 43(39): 5231-5234P
    [152] Feng P Y, Bu X H, Pine D J. Control of pore sizes in mesoporous silica templated by liquid crystals in block copolymer-cosurfactant-water systems [J]. Langmuir, 2000, 16(12): 5304-5310P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700