载脂蛋白E与应激刺激相互作用对小鼠情绪和学习记忆的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
载脂蛋白E(ApoE)是一个34KD的蛋白,它主要参与脑内脂质和胆固醇等在体内的运输和重新分配。在人体中,ApoE主要由三种亚型(ε2,ε3, andε4)。其中,ApoE4被认为是散发型阿尔兹海默病(AD)及其它一些疾病的风险因子。本论文中,我们主要进行了以下方面的研究:
     1不同ApoE基因型对焦虑样行为的影响
     ApoE4作为阿尔兹海默病的一个重要的风险基因也常被认为参与了精神类疾病发病机制之中。本课题中,我们旨在研究不同亚型ApoE对小鼠焦虑样行为的影响,并揭示其中可能的机制。我们的结果显示,与ApoE3型转基因小鼠相比,三月龄的ApoE4转基因小鼠在多个行为学任务中表现出焦虑样行为。为评估下丘脑-垂体-肾上腺轴的功能,我们检测了在束缚应激条件下皮质酮的分泌情况。应对束缚应激反应,ApoE3和ApoE4型转基因小鼠中的皮质酮分泌都都有所升高,然而,我们并没有发现不同亚型之间的显著差异。进一步实验,显示ApoE4抑制了雌激素的生物合成。同时,我们发现多种相关受体在ApoE4型新生和成年小鼠的下丘脑和前额叶中有所上调,而在老年组中这种多受体的上调消失。小结,ApoE影响了雌激素的生物合成和多种受体的表达平衡,进而影响焦虑样行为。
     2慢性应激对不同ApoE小鼠行为学影响
     有证据表明,遗传基因和环境因素在阿尔茨海默氏病(AD)发病进程中都起到了重要的作用。本研究旨在探讨在慢性应激条件下,不同的人类ApoE转基因小鼠的行为变化和病理进程的改变。我们的结果显示,8月龄ApoE4的小鼠与ApoE3小鼠相比,自主活动能力和探索行为减少,而焦虑样行为增多。经历慢性应激后,ApoE3型转基因小鼠表现出较少的自主活动和探索行为,和较高的焦虑水平;而ApoE4小鼠的自主活动和探索行为有所增加,并且焦虑样行为有所减少。在新物体识别任务中,我们发现,慢性应激操作的ApoE4型小鼠在一小时间隔的任务中显示出认知功能障碍;在24小时间隔的任务中,慢性应激处理的ApoE3和ApoE4小鼠均表现出表现出认知功能缺陷。在Y -迷宫任务中,正常的8月龄ApoE4的小鼠和慢性应激的ApoE3小鼠在自发选择新臂时出现了认知功能的障碍。然而,我们发现在8月龄时,不管是ApoE基因型还是慢性应激都没有显著地改变突触蛋白的表达水平。综上所述,与ApoE3相比,ApoE4导致了小鼠自主活动和探索行为的减少以及焦虑样行为的增多;慢性应激使ApoE3小鼠的自主活动和探索行为的减少以及焦虑样行为的增多,而ApoE4小鼠的自主活动和探索行为的增加以及焦虑样行为的减少。
     3载脂蛋白E基因多态性与中国女性生理周期特征相关性研究
     目的:初潮年龄和绝经年龄受到多种遗传因素影响,本研究旨在中国女性中研究ApoE不同基因型与初潮和绝经年龄之间可能存在的相关性。结果:老年组:单因素方差分析表明ApoE基因型与自然绝经年龄之间存在显著地相关性(P = 0.010)。与ApoE3/3型携带者相比,ApoE3/4型携带女性的自然绝经年龄延迟了约1.8年。不同ApoE基因型携带者的E2,LH和FSH水平没有显著地差异。年轻组:ApoE单个等位基因阳性/阴性分析显示,与ApoEε4阴性携带者相比,ApoEε4携带者的初潮年龄有所提前(P=0.048).结论:我们的研究显示ApoE基因型与自然绝经年龄显著相关,与初潮年龄轻度相关。这些结果表明ApoEε4与延长了中国女性的生育期。
Apolipoprotein (ApoE) is a 34 KD protein that participates in the transport of plasma lipids and redistribution of lipoproteins and cholesterol. There are three isoforms of ApoE in human, (ε2,ε3, andε4). Of the three common human ApoE isoform, inheritance of ApoE4 is a great genetic risk factor for the development of sporadic Alzheimer’s disease (AD) and other diseases. In the present study, we investigated the role of ApoE in the following aspects:
     1 The role of ApoE in the anxiety-like behavior
     Anxiety symptoms occur in a large part of AD patients. ApoE4, as a great risk factor of AD, also has been recognized as an important contributor for psychiatric disorders. In the present study, we aimed to investigate anxiety related behavior changes in different ApoE isoforms transgenic mice. Our results show that 3mons ApoE4 transgenic mice showed more anxiety-like behaviors than that in ApoE3 mice. To assess the function of Hypothalamic-pituitary-adrenal axis (HPA), we measured corticosterone secretion responsed to acute restraint stress. The level of corticosterone secretion increased rapidly reponsed to stress in both ApoE3 and ApoE4 transgenic mice. However, no significant difference was found between the ApoE3 and ApoE4 mice. We measured the estrogen level in the central never system. We found a lower estrogen level in ApoE4 transgenic mice than that in ApoE3 mice. Also, we found that several receptors were dysregulated in ApoE4 postnatal mice and 3mons adult mice compared with ApoE3 mice, rather than in aged mice. In summary, ApoE4 inbibited CRH expression by dowregulating biosynthesis of estrogen, which mediated by the ERE in the promoter of CRH.
     2 The behavior changes in ApoE mice response to chronic stress
     There is evidence that both genetic and environmental factors may play a role in the pathogenesis of Alzheimer's disease (AD). This study was designed to investigate the behavioral and synapse changes under chronic stress administration in different human ApoE transgenic mice. We found that the exploration and locomotor activity were lower in ApoE4 mice compared with that in ApoE3 mice. After chronic stress treatment, ApoE3 mice showed a lower level of exploration and locomotor activity, while ApoE4 mice became more active in exploration and travel. A higher level of anxiety-like behaviors was found in non-stressed ApoE4 mice than that in non-stressed ApoE3 mice. After chronic stress treatment, both ApoE3 and ApoE4 mice became anxious in the light dark box test. In the open field test, stressed ApoE3 mice showed a higher level of anxiety, while stressed ApoE4 mice, unexpectedly, became less anxious. In the novel object recognition task, we found that stressed ApoE4 mice showed impairment in novel object recognition in one-hour interval task and both stressed ApoE3 and ApoE4 mice showed cognitive deficits in twenty-four hour interval task. In the Y-maze, impairment in spontaneous alternation to the novel arm was found in non-stressed ApoE4 mice and stressed ApoE3 mice. However, we did not find any significant difference in the expression of synapsinI and PSD95 among the four groups. In summary, we found that chronic stress decreased the spontaneous locomotor activity and exploration behavior, increased anxiety-like behavior in ApoE3 mice; and increased locomotor activity and exploration behavior, decreased anxiety-like behavior in ApoE4 mice.
     3 Association of ApoE genotypes with the age at natural menopause in Chinese females
     Objective: The age at natural menarche and menopause are influenced by several genetic factors. This study aimed to investigate possible relationship between ApoE genotype and the age at menarche and natural menopause in Chinese females. Results: Elderly group: one-way ANOVA analysis revealed that ApoE genotype was significantly associated with the age at natural menopause (P = 0.010). Compared with ApoEε3/3 carriers, ApoEε3/4 female showed a delay about 1.8 year (P=0.002) at the age of natural menopause. Young group: ApoE single allele positive/negative analysis showed the age at menarche in ApoEε4 carriers was slightly earlier than ApoEε4 negative carriers’(P=0.048). Conclusions: We demonstrated that ApoE genotype is linked to the age at natural menopause significantly and the age at menarche slightly. The results indicate that ApoEε4 is associated with prolonged reproductive period in Chinese females.
引文
[1] Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240, 622-630.
    [2] Paik YK, Chang DJ, Reardon CA, Davies GE, Mahley RW & Taylor JM (1985) Nucleotide sequence and structure of the human apolipoprotein E gene. Proc Natl Acad Sci U S A 82, 3445-3449.
    [3] Rall SC, Jr., Weisgraber KH & Mahley RW (1982) Human apolipoprotein E. The complete amino acid sequence. J Biol Chem 257, 4171-4178.
    [4] Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS & Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90, 1977-1981.
    [5] Robertson J, Curley J, Kaye J, Quinn J, Pfankuch T & Raber J (2005) apoE isoforms and measures of anxiety in probable AD patients and Apoe-/- mice. Neurobiol Aging 26, 637-643.
    [6] Segrest JP, Jones MK, De Loof H, Brouillette CG, Venkatachalapathi YV & Anantharamaiah GM (1992) The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res 33, 141-166.
    [7] Yokoyama S, Kawai Y, Tajima S & Yamamoto A (1985) Behavior of human apolipoprotein E in aqueous solutions and at interfaces. J Biol Chem 260, 16375-16382.
    [8] Wetterau JR, Aggerbeck LP, Rall SC, Jr. & Weisgraber KH (1988) Human apolipoprotein E3 in aqueous solution. I. Evidence for two structural domains. J Biol Chem 263, 6240-6248.
    [9] Wilson C, Wardell MR, Weisgraber KH, Mahley RW & Agard DA (1991) Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252, 1817-1822.
    [10] Morrow JA, Segall ML, Lund-Katz S, Phillips MC, Knapp M, Rupp B & Weisgraber KH (2000) Differences in stability among the human apolipoprotein E isoforms determined by the amino-terminal domain. Biochemistry 39, 11657-11666.
    [11] Weisgraber KH (1994) Apolipoprotein E: structure-function relationships. Adv Protein Chem 45, 249-302.
    [12] Morrow JA, Arnold KS, Dong J, Balestra ME, Innerarity TL & Weisgraber KH (2000) Effect of arginine 172 on the binding of apolipoprotein E to the low density lipoprotein receptor. J Biol Chem 275, 2576-2580.
    [13] Dong LM, Wilson C, Wardell MR, Simmons T, Mahley RW, Weisgraber KH & Agard DA (1994) Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferencesof the E3 and E4 isoforms. J Biol Chem 269, 22358-22365.
    [14] Hauser PS, Narayanaswami V & Ryan RO (2010) Apolipoprotein E: From lipid transport to neurobiology. Prog Lipid Res.
    [15] Innerarity TL, Pitas RE & Mahley RW (1979) Binding of arginine-rich (E) apoprotein after recombination with phospholipid vesicles to the low density lipoprotein receptors of fibroblasts. J Biol Chem 254, 4186-4190.
    [16] Hatters DM, Peters-Libeu CA & Weisgraber KH (2005) Engineering conformational destabilization into mouse apolipoprotein E. A model for a unique property of human apolipoprotein E4. J Biol Chem 280, 26477-26482.
    [17] Peters-Libeu CA, Newhouse Y, Hatters DM & Weisgraber KH (2006) Model of biologically active apolipoprotein E bound to dipalmitoylphosphatidylcholine. J Biol Chem 281, 1073-1079.
    [18] Fisher CA, Narayanaswami V & Ryan RO (2000) The lipid-associated conformation of the low density lipoprotein receptor binding domain of human apolipoprotein E. J Biol Chem 275, 33601-33606.
    [19] Hatters DM, Peters-Libeu CA & Weisgraber KH (2006) Apolipoprotein E structure: insights into function. Trends Biochem Sci 31, 445-454.
    [20] Shore VG & Shore B (1973) Heterogeneity of human plasma very low density lipoproteins. Separation of species differing in protein components. Biochemistry 12, 502-507.
    [21] Zannis VI & Breslow JL (1980) Characterization of a unique human apolipoprotein E variant associated with type III hyperlipoproteinemia. J Biol Chem 255, 1759-1762.
    [22] Utermann G (1987) Apolipoprotein E polymorphism in health and disease. Am Heart J 113, 433-440.
    [23] Weisgraber KH, Rall SC, Jr. & Mahley RW (1981) Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J Biol Chem 256, 9077-9083.
    [24] Finch CE & Sapolsky RM (1999) The evolution of Alzheimer disease, the reproductive schedule, and apoE isoforms. Neurobiol Aging 20, 407-428.
    [25] Weisgraber KH, Innerarity TL & Mahley RW (1982) Abnormal lipoprotein receptor-binding activity of the human E apoprotein due to cysteine-arginine interchange at a single site. J Biol Chem 257, 2518-2521.
    [26] Innerarity TL, Weisgraber KH, Arnold KS, Rall SC, Jr. & Mahley RW (1984) Normalization of receptor binding of apolipoprotein E2. Evidence for modulation of the binding site conformation. J Biol Chem 259, 7261-7267.
    [27] Dong LM, Parkin S, Trakhanov SD, Rupp B, Simmons T, Arnold KS, Newhouse YM, Innerarity TL & Weisgraber KH (1996) Novel mechanism for defective receptor binding of apolipoprotein E2 in type III hyperlipoproteinemia. Nat Struct Biol 3, 718-722.
    [28] Davignon J, Gregg RE & Sing CF (1988) Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 8, 1-21.
    [29] Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL & Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921-923.
    [30] Nakanishi S, Vikstedt R, Soderlund S, Lee-Rueckert M, Hiukka A, Ehnholm C, Muilu M, Metso J, Naukkarinen J, Palotie L, Kovanen PT, Jauhiainen M & Taskinen MR (2009) Serum, but not monocyte macrophage foam cells derived from low HDL-C subjects, displays reduced cholesterol efflux capacity. J Lipid Res 50, 183-192.
    [31] Dong LM & Weisgraber KH (1996) Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins. J Biol Chem 271, 19053-19057.
    [32] Weers PM, Narayanaswami V, Choy N, Luty R, Hicks L, Kay CM & Ryan RO (2003) Lipid binding ability of human apolipoprotein E N-terminal domain isoforms: correlation with protein stability? Biophys Chem 100, 481-492.
    [33] Morrow JA, Hatters DM, Lu B, Hochtl P, Oberg KA, Rupp B & Weisgraber KH (2002) Apolipoprotein E4 forms a molten globule. A potential basis for its association with disease. J Biol Chem 277, 50380-50385.
    [34] Gregg RE, Zech LA, Schaefer EJ, Stark D, Wilson D & Brewer HB, Jr. (1986) Abnormal in vivo metabolism of apolipoprotein E4 in humans. J Clin Invest 78, 815-821.
    [35] Weisgraber KH (1990) Apolipoprotein E distribution among human plasma lipoproteins: role of the cysteine-arginine interchange at residue 112. J Lipid Res 31, 1503-1511.
    [36] Raffai RL, Dong LM, Farese RV, Jr. & Weisgraber KH (2001) Introduction of human apolipoprotein E4 "domain interaction" into mouse apolipoprotein E. Proc Natl Acad Sci U S A 98, 11587-11591.
    [37] Davis CG, Goldstein JL, Sudhof TC, Anderson RG, Russell DW & Brown MS (1987) Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature 326, 760-765.
    [38] Rudenko G & Deisenhofer J (2003) The low-density lipoprotein receptor: ligands, debates and lore. Curr Opin Struct Biol 13, 683-689.
    [39] Hofmann SL, Russell DW, Brown MS, Goldstein JL & Hammer RE (1988)Overexpression of low density lipoprotein (LDL) receptor eliminates LDL from plasma in transgenic mice. Science 239, 1277-1281.
    [40] Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE & Herz J (1993) Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 92, 883-893.
    [41] Yokode M, Hammer RE, Ishibashi S, Brown MS & Goldstein JL (1990) Diet-induced hypercholesterolemia in mice: prevention by overexpression of LDL receptors. Science 250, 1273-1275.
    [42] Brown MS & Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34-47.
    [43] Bersot TP, Mahley RW, Brown MS & Goldstein JL (1976) Interaction of swine lipoproteins with the low density lipoprotein receptor in human fibroblasts. J Biol Chem 251, 2395-2398.
    [44] Mahley RW, Innerarity TL, Pitas RE, Weisgraber KH, Brown JH & Gross E (1977) Inhibition of lipoprotein binding to cell surface receptors of fibroblasts following selective modification of arginyl residues in arginine-rich and B apoproteins. J Biol Chem 252, 7279-7287.
    [45] Raussens V, Slupsky CM, Sykes BD & Ryan RO (2003) Lipid-bound structure of an apolipoprotein E-derived peptide. J Biol Chem 278, 25998-26006.
    [46] Gupta V, Narayanaswami V, Budamagunta MS, Yamamato T, Voss JC & Ryan RO (2006) Lipid-induced extension of apolipoprotein E helix 4 correlates with low density lipoprotein receptor binding ability. J Biol Chem 281, 39294-39299.
    [47] Pitas RE, Innerarity TL & Mahley RW (1980) Cell surface receptor binding of phospholipid . protein complexes containing different ratios of receptor-active and -inactive E apoprotein. J Biol Chem 255, 5454-5460.
    [48] Funahashi T, Yokoyama S & Yamamoto A (1989) Association of apolipoprotein E with the low density lipoprotein receptor: demonstration of its co-operativity on lipid microemulsion particles. J Biochem 105, 582-587.
    [49] Xu PT, Gilbert JR, Qiu HL, Ervin J, Rothrock-Christian TR, Hulette C & Schmechel DE (1999) Specific regional transcription of apolipoprotein E in human brain neurons. Am J Pathol 154, 601-611.
    [50] Han SH, Einstein G, Weisgraber KH, Strittmatter WJ, Saunders AM, Pericak-Vance M, Roses AD & Schmechel DE (1994) Apolipoprotein E is localized to the cytoplasm of human cortical neurons: a light and electron microscopic study. J Neuropathol Exp Neurol 53, 535-544.
    [51] Boyles JK, Pitas RE, Wilson E, Mahley RW & Taylor JM (1985) Apolipoprotein Eassociated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J Clin Invest 76, 1501-1513.
    [52] Pitas RE, Boyles JK, Lee SH, Foss D & Mahley RW (1987) Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta 917, 148-161.
    [53] Ladu MJ, Reardon C, Van Eldik L, Fagan AM, Bu G, Holtzman D & Getz GS (2000) Lipoproteins in the central nervous system. Ann N Y Acad Sci 903, 167-175.
    [54] Fagan AM, Holtzman DM, Munson G, Mathur T, Schneider D, Chang LK, Getz GS, Reardon CA, Lukens J, Shah JA & LaDu MJ (1999) Unique lipoproteins secreted by primary astrocytes from wild type, apoE (-/-), and human apoE transgenic mice. J Biol Chem 274, 30001-30007.
    [55] de Chaves EP & Narayanaswami V (2008) Apolipoprotein E and cholesterol in aging and disease in the brain. Future Lipidol 3, 505-530.
    [56] Cambon K, Davies HA & Stewart MG (2000) Synaptic loss is accompanied by an increase in synaptic area in the dentate gyrus of aged human apolipoprotein E4 transgenic mice. Neuroscience 97, 685-692.
    [57] Moghadasian MH, McManus BM, Nguyen LB, Shefer S, Nadji M, Godin DV, Green TJ, Hill J, Yang Y, Scudamore CH & Frohlich JJ (2001) Pathophysiology of apolipoprotein E deficiency in mice: relevance to apo E-related disorders in humans. FASEB J 15, 2623-2630.
    [58] Anderson R, Barnes JC, Bliss TV, Cain DP, Cambon K, Davies HA, Errington ML, Fellows LA, Gray RA, Hoh T, Stewart M, Large CH & Higgins GA (1998) Behavioural, physiological and morphological analysis of a line of apolipoprotein E knockout mouse. Neuroscience 85, 93-110.
    [59] Bronfman FC, Tesseur I, Hofker MH, Havekens LM & Van Leuven F (2000) No evidence for cholinergic problems in apolipoprotein E knockout and apolipoprotein E4 transgenic mice. Neuroscience 97, 411-418.
    [60] Champagne D, Dupuy JB, Rochford J & Poirier J (2002) Apolipoprotein E knockout mice display procedural deficits in the Morris water maze: analysis of learning strategies in three versions of the task. Neuroscience 114, 641-654.
    [61] Oitzl MS, Mulder M, Lucassen PJ, Havekes LM, Grootendorst J & de Kloet ER (1997) Severe learning deficits in apolipoprotein E-knockout mice in a water maze task. Brain Res 752, 189-196.
    [62] Chapman S, Sabo T, Roses AD & Michaelson DM (2000) Reversal of presynaptic deficits of apolipoprotein E-deficient mice in human apolipoprotein E transgenic mice.Neuroscience 97, 419-424.
    [63] Walker LC, Parker CA, Lipinski WJ, Callahan MJ, Carroll RT, Gandy SE, Smith JD, Jucker M & Bisgaier CL (1997) Cerebral lipid deposition in aged apolipoprotein-E-deficient mice. Am J Pathol 151, 1371-1377.
    [64] Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A & Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294, 1354-1357.
    [65] Goritz C, Mauch DH & Pfrieger FW (2005) Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol Cell Neurosci 29, 190-201.
    [66] Koudinov AR & Koudinova NV (2002) Cholesterol's role in synapse formation. Science 295, 2213.
    [67] de Chaves EI, Rusinol AE, Vance DE, Campenot RB & Vance JE (1997) Role of lipoproteins in the delivery of lipids to axons during axonal regeneration. J Biol Chem 272, 30766-30773.
    [68] Ullian EM, Christopherson KS & Barres BA (2004) Role for glia in synaptogenesis. Glia 47, 209-216.
    [69] Thiele C, Hannah MJ, Fahrenholz F & Huttner WB (2000) Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2, 42-49.
    [70] Koudinov AR & Koudinova NV (2001) Essential role for cholesterol in synaptic plasticity and neuronal degeneration. FASEB J 15, 1858-1860.
    [71] Rawlins FA, Villegas GM, Hedley-Whyte ET & Uzman BG (1972) Fine structural localization of cholesterol-1,2- 3 H in degenerating and regenerating mouse sciatic nerve. J Cell Biol 52, 615-625.
    [72] Poirier J, Hess M, May PC & Finch CE (1991) Astrocytic apolipoprotein E mRNA and GFAP mRNA in hippocampus after entorhinal cortex lesioning. Brain Res Mol Brain Res 11, 97-106.
    [73] Poirier J, Baccichet A, Dea D & Gauthier S (1993) Cholesterol synthesis and lipoprotein reuptake during synaptic remodelling in hippocampus in adult rats. Neuroscience 55, 81-90.
    [74] Boyles JK, Notterpek LM & Anderson LJ (1990) Accumulation of apolipoproteins in the regenerating and remyelinating mammalian peripheral nerve. Identification of apolipoprotein D, apolipoprotein A-IV, apolipoprotein E, and apolipoprotein A-I. J Biol Chem 265, 17805-17815.
    [75] Herz J (2009) Apolipoprotein E receptors in the nervous system. Curr Opin Lipidol 20, 190-196.
    [76] Bellosta S, Nathan BP, Orth M, Dong LM, Mahley RW & Pitas RE (1995) Stable expression and secretion of apolipoproteins E3 and E4 in mouse neuroblastoma cells producesdifferential effects on neurite outgrowth. J Biol Chem 270, 27063-27071.
    [77] Nathan BP, Jiang Y, Wong GK, Shen F, Brewer GJ & Struble RG (2002) Apolipoprotein E4 inhibits, and apolipoprotein E3 promotes neurite outgrowth in cultured adult mouse cortical neurons through the low-density lipoprotein receptor-related protein. Brain Res 928, 96-105.
    [78] Sun Y, Wu S, Bu G, Onifade MK, Patel SN, LaDu MJ, Fagan AM & Holtzman DM (1998) Glial fibrillary acidic protein-apolipoprotein E (apoE) transgenic mice: astrocyte-specific expression and differing biological effects of astrocyte-secreted apoE3 and apoE4 lipoproteins. J Neurosci 18, 3261-3272.
    [79] Nathan BP, Chang KC, Bellosta S, Brisch E, Ge N, Mahley RW & Pitas RE (1995) The inhibitory effect of apolipoprotein E4 on neurite outgrowth is associated with microtubule depolymerization. J Biol Chem 270, 19791-19799.
    [80] Masliah E, Samuel W, Veinbergs I, Mallory M, Mante M & Saitoh T (1997) Neurodegeneration and cognitive impairment in apoE-deficient mice is ameliorated by infusion of recombinant apoE. Brain Res 751, 307-314.
    [81] Buttini M, Orth M, Bellosta S, Akeefe H, Pitas RE, Wyss-Coray T, Mucke L & Mahley RW (1999) Expression of human apolipoprotein E3 or E4 in the brains of Apoe-/- mice: isoform-specific effects on neurodegeneration. J Neurosci 19, 4867-4880.
    [82] Wang C, Wilson WA, Moore SD, Mace BE, Maeda N, Schmechel DE & Sullivan PM (2005) Human apoE4-targeted replacement mice display synaptic deficits in the absence of neuropathology. Neurobiol Dis 18, 390-398.
    [83] Ji Y, Gong Y, Gan W, Beach T, Holtzman DM & Wisniewski T (2003) Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer's disease patients. Neuroscience 122, 305-315.
    [84] Sorbi S, Nacmias B, Piacentini S, Repice A, Latorraca S, Forleo P & Amaducci L (1995) ApoE as a prognostic factor for post-traumatic coma. Nat Med 1, 852.
    [85] Teasdale GM, Nicoll JA, Murray G & Fiddes M (1997) Association of apolipoprotein E polymorphism with outcome after head injury. Lancet 350, 1069-1071.
    [86] Sabo T, Lomnitski L, Nyska A, Beni S, Maronpot RR, Shohami E, Roses AD & Michaelson DM (2000) Susceptibility of transgenic mice expressing human apolipoprotein E to closed head injury: the allele E3 is neuroprotective whereas E4 increases fatalities. Neuroscience 101, 879-884.
    [87] Harris FM, Tesseur I, Brecht WJ, Xu Q, Mullendorff K, Chang S, Wyss-Coray T, Mahley RW & Huang Y (2004) Astroglial regulation of apolipoprotein E expression in neuronal cells. Implications for Alzheimer's disease. J Biol Chem 279, 3862-3868.
    [88] Xu Q, Bernardo A, Walker D, Kanegawa T, Mahley RW & Huang Y (2006) Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci 26, 4985-4994.
    [89] Buttini M, Masliah E, Yu GQ, Palop JJ, Chang S, Bernardo A, Lin C, Wyss-Coray T, Huang Y & Mucke L (2010) Cellular source of apolipoprotein E4 determines neuronal susceptibility to excitotoxic injury in transgenic mice. Am J Pathol 177, 563-569.
    [90] Veinbergs I, Mallory M, Mante M, Rockenstein E, Gilbert JR & Masliah E (1999) Differential neurotrophic effects of apolipoprotein E in aged transgenic mice. Neurosci Lett 265, 218-222.
    [91] Fagan AM, Murphy BA, Patel SN, Kilbridge JF, Mobley WC, Bu G & Holtzman DM (1998) Evidence for normal aging of the septo-hippocampal cholinergic system in apoE (-/-) mice but impaired clearance of axonal degeneration products following injury. Exp Neurol 151, 314-325.
    [92] Fullerton SM, Shirman GA, Strittmatter WJ & Matthew WD (2001) Impairment of the blood-nerve and blood-brain barriers in apolipoprotein e knockout mice. Exp Neurol 169, 13-22.
    [93] Methia N, Andre P, Hafezi-Moghadam A, Economopoulos M, Thomas KL & Wagner DD (2001) ApoE deficiency compromises the blood brain barrier especially after injury. Mol Med 7, 810-815.
    [94] Rensink AA, de Waal RM, Kremer B & Verbeek MM (2003) Pathogenesis of cerebral amyloid angiopathy. Brain Res Brain Res Rev 43, 207-223.
    [95] Nickerson DA, Taylor SL, Fullerton SM, Weiss KM, Clark AG, Stengard JH, Salomaa V, Boerwinkle E & Sing CF (2000) Sequence diversity and large-scale typing of SNPs in the human apolipoprotein E gene. Genome Res 10, 1532-1545.
    [96] Mahley RW, Weisgraber KH & Huang Y (2006) Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc Natl Acad Sci U S A 103, 5644-5651.
    [97] Namba Y, Tomonaga M, Kawasaki H, Otomo E & Ikeda K (1991) Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 541, 163-166.
    [98] Wisniewski T & Frangione B (1992) Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci Lett 135, 235-238.
    [99] Bertram L, McQueen MB, Mullin K, Blacker D & Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39, 17-23.
    [100] Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer's disease. Annu Rev Med 47, 387-400.
    [101] Gomez-Isla T, West HL, Rebeck GW, Harr SD, Growdon JH, Locascio JJ, Perls TT, Lipsitz LA & Hyman BT (1996) Clinical and pathological correlates of apolipoprotein E epsilon 4 in Alzheimer's disease. Ann Neurol 39, 62-70.
    [102] Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K, Luchsinger JA, Ogunniyi A, Perry EK, Potocnik F, Prince M, Stewart R, Wimo A, Zhang ZX & Antuono P (2008) Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol 7, 812-826.
    [103] Tang MX, Stern Y, Marder K, Bell K, Gurland B, Lantigua R, Andrews H, Feng L, Tycko B & Mayeux R (1998) The APOE-epsilon4 allele and the risk of Alzheimer disease among African Americans, whites, and Hispanics. JAMA 279, 751-755.
    [104] Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC, Jr., Rimmler JB, Locke PA, Conneally PM, Schmader KE & et al. (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7, 180-184.
    [105] Rebeck GW, Reiter JS, Strickland DK & Hyman BT (1993) Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions. Neuron 11, 575-580.
    [106] Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH, Pericak-Vance MA, Goldgaber D & Roses AD (1993) Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci U S A 90, 9649-9653.
    [107] Heinonen O, Lehtovirta M, Soininen H, Helisalmi S, Mannermaa A, Sorvari H, Kosunen O, Paljarvi L, Ryynanen M & Riekkinen PJ, Sr. (1995) Alzheimer pathology of patients carrying apolipoprotein E epsilon 4 allele. Neurobiol Aging 16, 505-513.
    [108] Itoh Y & Yamada M (1996) Apolipoprotein E and the neuropathology of dementia. N Engl J Med 334, 599-600.
    [109] Tiraboschi P, Hansen LA, Masliah E, Alford M, Thal LJ & Corey-Bloom J (2004) Impact of APOE genotype on neuropathologic and neurochemical markers of Alzheimer disease. Neurology 62, 1977-1983.
    [110] Sunderland T, Mirza N, Putnam KT, Linker G, Bhupali D, Durham R, Soares H, Kimmel L, Friedman D, Bergeson J, Csako G, Levy JA, Bartko JJ & Cohen RM (2004) Cerebrospinal fluid beta-amyloid1-42 and tau in control subjects at risk for Alzheimer's disease: the effect of APOE epsilon4 allele. Biol Psychiatry 56, 670-676.
    [111] Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, LaRossa GN,Spinner ML, Klunk WE, Mathis CA, DeKosky ST, Morris JC & Holtzman DM (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59, 512-519.
    [112] Reiman EM, Chen K, Liu X, Bandy D, Yu M, Lee W, Ayutyanont N, Keppler J, Reeder SA, Langbaum JB, Alexander GE, Klunk WE, Mathis CA, Price JC, Aizenstein HJ, DeKosky ST & Caselli RJ (2009) Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer's disease. Proc Natl Acad Sci U S A 106, 6820-6825.
    [113] Sanan DA, Weisgraber KH, Russell SJ, Mahley RW, Huang D, Saunders A, Schmechel D, Wisniewski T, Frangione B, Roses AD & et al. (1994) Apolipoprotein E associates with beta amyloid peptide of Alzheimer's disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J Clin Invest 94, 860-869.
    [114] Strittmatter WJ, Weisgraber KH, Huang DY, Dong LM, Salvesen GS, Pericak-Vance M, Schmechel D, Saunders AM, Goldgaber D & Roses AD (1993) Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci U S A 90, 8098-8102.
    [115] Aleshkov S, Abraham CR & Zannis VI (1997) Interaction of nascent ApoE2, ApoE3, and ApoE4 isoforms expressed in mammalian cells with amyloid peptide beta (1-40). Relevance to Alzheimer's disease. Biochemistry 36, 10571-10580.
    [116] Yang DS, Smith JD, Zhou Z, Gandy SE & Martins RN (1997) Characterization of the binding of amyloid-beta peptide to cell culture-derived native apolipoprotein E2, E3, and E4 isoforms and to isoforms from human plasma. J Neurochem 68, 721-725.
    [117] Tokuda T, Calero M, Matsubara E, Vidal R, Kumar A, Permanne B, Zlokovic B, Smith JD, Ladu MJ, Rostagno A, Frangione B & Ghiso J (2000) Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer's amyloid beta peptides. Biochem J 348 Pt 2, 359-365.
    [118] Sadowski MJ, Pankiewicz J, Scholtzova H, Mehta PD, Prelli F, Quartermain D & Wisniewski T (2006) Blocking the apolipoprotein E/amyloid-beta interaction as a potential therapeutic approach for Alzheimer's disease. Proc Natl Acad Sci U S A 103, 18787-18792.
    [119] Bales KR, Verina T, Dodel RC, Du Y, Altstiel L, Bender M, Hyslop P, Johnstone EM, Little SP, Cummins DJ, Piccardo P, Ghetti B & Paul SM (1997) Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat Genet 17, 263-264.
    [120] Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, McKeel D, Wozniak D & Paul SM (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer'sdisease. Proc Natl Acad Sci U S A 97, 2892-2897.
    [121] Raber J, Wong D, Buttini M, Orth M, Bellosta S, Pitas RE, Mahley RW & Mucke L (1998) Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: increased susceptibility of females. Proc Natl Acad Sci U S A 95, 10914-10919.
    [122] Xu PT, Schmechel D, Rothrock-Christian T, Burkhart DS, Qiu HL, Popko B, Sullivan P, Maeda N, Saunders AM, Roses AD & Gilbert JR (1996) Human apolipoprotein E2, E3, and E4 isoform-specific transgenic mice: human-like pattern of glial and neuronal immunoreactivity in central nervous system not observed in wild-type mice. Neurobiol Dis 3, 229-245.
    [123] Fagan AM, Watson M, Parsadanian M, Bales KR, Paul SM & Holtzman DM (2002) Human and murine ApoE markedly alters A beta metabolism before and after plaque formation in a mouse model of Alzheimer's disease. Neurobiol Dis 9, 305-318.
    [124] Hamanaka H, Katoh-Fukui Y, Suzuki K, Kobayashi M, Suzuki R, Motegi Y, Nakahara Y, Takeshita A, Kawai M, Ishiguro K, Yokoyama M & Fujita SC (2000) Altered cholesterol metabolism in human apolipoprotein E4 knock-in mice. Hum Mol Genet 9, 353-361.
    [125] Bales KR, Liu F, Wu S, Lin S, Koger D, DeLong C, Hansen JC, Sullivan PM & Paul SM (2009) Human APOE isoform-dependent effects on brain beta-amyloid levels in PDAPP transgenic mice. J Neurosci 29, 6771-6779.
    [126] He X, Cooley K, Chung CH, Dashti N & Tang J (2007) Apolipoprotein receptor 2 and X11 alpha/beta mediate apolipoprotein E-induced endocytosis of amyloid-beta precursor protein and beta-secretase, leading to amyloid-beta production. J Neurosci 27, 4052-4060.
    [127] Irizarry MC, Deng A, Lleo A, Berezovska O, Von Arnim CA, Martin-Rehrmann M, Manelli A, LaDu MJ, Hyman BT & Rebeck GW (2004) Apolipoprotein E modulates gamma-secretase cleavage of the amyloid precursor protein. J Neurochem 90, 1132-1143.
    [128] Cedazo-Minguez A, Wiehager B, Winblad B, Huttinger M & Cowburn RF (2001) Effects of apolipoprotein E (apoE) isoforms, beta-amyloid (Abeta) and apoE/Abeta complexes on protein kinase C-alpha (PKC-alpha) translocation and amyloid precursor protein (APP) processing in human SH-SY5Y neuroblastoma cells and fibroblasts. Neurochem Int 38, 615-625.
    [129] Beffert U, Aumont N, Dea D, Lussier-Cacan S, Davignon J & Poirier J (1998) Beta-amyloid peptides increase the binding and internalization of apolipoprotein E to hippocampal neurons. J Neurochem 70, 1458-1466.
    [130] Nielsen HM, Veerhuis R, Holmqvist B & Janciauskiene S (2009) Binding and uptake of A beta1-42 by primary human astrocytes in vitro. Glia 57, 978-988.
    [131] Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, Collins JL, Richardson JC, Smith JD, Comery TA, Riddell D, Holtzman DM,Tontonoz P & Landreth GE (2008) ApoE promotes the proteolytic degradation of Abeta. Neuron 58, 681-693.
    [132] Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J, Higgs R, Liu F, Malkani S, Bales KR & Paul SM (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 10, 719-726.
    [133] Kim J, Basak JM & Holtzman DM (2009) The role of apolipoprotein E in Alzheimer's disease. Neuron 63, 287-303.
    [134] Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ & Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model. Science 316, 750-754.
    [135] Tesseur I, Van Dorpe J, Spittaels K, Van den Haute C, Moechars D & Van Leuven F (2000) Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am J Pathol 156, 951-964.
    [136] Brecht WJ, Harris FM, Chang S, Tesseur I, Yu GQ, Xu Q, Dee Fish J, Wyss-Coray T, Buttini M, Mucke L, Mahley RW & Huang Y (2004) Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J Neurosci 24, 2527-2534.
    [137] Strittmatter WJ, Weisgraber KH, Goedert M, Saunders AM, Huang D, Corder EH, Dong LM, Jakes R, Alberts MJ, Gilbert JR & et al. (1994) Hypothesis: microtubule instability and paired helical filament formation in the Alzheimer disease brain are related to apolipoprotein E genotype. Exp Neurol 125, 163-171; discussion 172-164.
    [138] Chang S, ran Ma T, Miranda RD, Balestra ME, Mahley RW & Huang Y (2005) Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc Natl Acad Sci U S A 102, 18694-18699.
    [139] Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O & et al. (1993) The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 12, 1-51.
    [140] Nathan BP, Barsukova AG, Shen F, McAsey M & Struble RG (2004) Estrogen facilitates neurite extension via apolipoprotein E in cultured adult mouse cortical neurons. Endocrinology 145, 3065-3073.
    [141] Srivastava RA, Srivastava N, Averna M, Lin RC, Korach KS, Lubahn DB & Schonfeld G (1997) Estrogen up-regulates apolipoprotein E (ApoE) gene expression by increasing ApoE mRNA in the translating pool via the estrogen receptor alpha-mediated pathway. J Biol Chem 272,33360-33366.
    [142] Yaffe K, Haan M, Byers A, Tangen C & Kuller L (2000) Estrogen use, APOE, and cognitive decline: evidence of gene-environment interaction. Neurology 54, 1949-1954.
    [143] Heikkinen AM, Niskanen L, Ryynanen M, Komulainen MH, Tuppurainen MT, Parviainen M & Saarikoski S (1999) Is the response of serum lipids and lipoproteins to postmenopausal hormone replacement therapy modified by ApoE genotype? Arterioscler Thromb Vasc Biol 19, 402-407.
    [144] Kang JH & Grodstein F (2010) Postmenopausal hormone therapy, timing of initiation, APOE and cognitive decline. Neurobiol Aging.
    [145] Dyer CA & Curtiss LK (1988) Apoprotein E-rich high density lipoproteins inhibit ovarian androgen synthesis. J Biol Chem 263, 10965-10973.
    [146] Zerbinatti CV, Mayer LP, Audet RG & Dyer CA (2001) Apolipoprotein E is a putative autocrine regulator of the rat ovarian theca cell compartment. Biol Reprod 64, 1080-1089.
    [147] Zhang G, Curtiss LK, Wade RL & Dyer CA (1998) An apolipoprotein E synthetic peptide selectively modulates the transcription of the gene for rat ovarian theca and interstitial cell P450 17alpha-hydroxylase, C17-20 lyase. J Lipid Res 39, 2406-2414.
    [148] Zerbinatti CV & Dyer CA (1999) Apolipoprotein E peptide stimulation of rat ovarian theca cell androgen synthesis is mediated by members of the low density lipoprotein receptor superfamily. Biol Reprod 61, 665-672.
    [149] Rabins PV, Mace NL & Lucas MJ (1982) The impact of dementia on the family. JAMA 248, 333-335.
    [150] Gilley DW, Wilson RS, Bennett DA, Bernard BA & Fox JH (1991) Predictors of behavioral disturbance in Alzheimer's disease. J Gerontol 46, P362-371.
    [151] Morris CM, Massey HM, Benjamin R, Leake A, Broadbent C, Griffiths M, Lamb H, Brown A, Ince PG, Tyrer S, Thompson P, McKeith IG, Edwardson JA, Perry RH & Perry EK (1996) Molecular biology of APO E alleles in Alzheimer's and non-Alzheimer's dementias. J Neural Transm Suppl 47, 205-218.
    [152] Martin RJ, Gwyther LP & Whitehouse PJ (1994) Special care unit research: ethical issues. Alzheimer Dis Assoc Disord 8, S360-367.
    [153] Burvill PW, Hall WD, Stampfer HG & Emmerson JP (1991) The prognosis of depression in old age. Br J Psychiatry 158, 64-71.
    [154] Porter VR, Buxton WG, Fairbanks LA, Strickland T, O'Connor SM, Rosenberg-Thompson S & Cummings JL (2003) Frequency and characteristics of anxiety among patients with Alzheimer's disease and related dementias. J Neuropsychiatry Clin Neurosci 15,180-186.
    [155] Cummings JL & Masterman DL (1998) Assessment of treatment-associated changes in behavior and cholinergic therapy of neuropsychiatric symptoms in Alzheimer's disease. J Clin Psychiatry 59 Suppl 13, 23-30.
    [156] de Toledo M, Bermejo-Pareja F, Vega-Quiroga S & Munoz-Garcia D (2004) [Behavioural disorders in Alzheimer's disease. Data from a populational study]. Rev Neurol 38, 901-905.
    [157] McCurry SM, Gibbons LE, Logsdon RG & Teri L (2004) Anxiety and nighttime behavioral disturbances. Awakenings in patients with Alzheimer's disease. J Gerontol Nurs 30, 12-20.
    [158] Raber J, Akana SF, Bhatnagar S, Dallman MF, Wong D & Mucke L (2000) Hypothalamic-pituitary-adrenal dysfunction in Apoe(-/-) mice: possible role in behavioral and metabolic alterations. J Neurosci 20, 2064-2071.
    [159] Nicosia M, Prack MM & Williams DL (1992) Differential regulation of apolipoprotein-E messenger RNA in zona fasciculata cells of rat adrenal gland determined by in situ hybridization. Mol Endocrinol 6, 288-298.
    [1] de Toledo M, Bermejo‐Pareja F, Vega‐Quiroga S & Munoz‐Garcia D (2004) [Behavioural disordersin Alzheimer's disease. Data from a populational study]. Rev Neurol 38, 901‐905.
    [2] McCurry SM, Gibbons LE, Logsdon RG & Teri L (2004) Anxiety and nighttime behavioraldisturbances. Awakenings in patients with Alzheimer's disease. J Gerontol Nurs 30, 12‐20.
    [3] Porter VR, Buxton WG, Fairbanks LA, Strickland T, O'Connor SM, Rosenberg‐Thompson S &Cummings JL (2003) Frequency and characteristics of anxiety among patients with Alzheimer's diseaseand related dementias. J Neuropsychiatry Clin Neurosci 15, 180‐186.
    [4] Weisgraber KH (1994) Apolipoprotein E: structure‐function relationships. Adv Protein Chem 45,249‐302.
    [5] Strittmatter WJ, Saunders AM, Schmechel D, Pericak‐Vance M, Enghild J, Salvesen GS & Roses AD(1993) Apolipoprotein E: high‐avidity binding to beta‐amyloid and increased frequency of type 4 allelein late‐onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90, 1977‐1981.
    [6] Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, HainesJL & Pericak‐Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer'sdisease in late onset families. Science 261, 921‐923.
    [7] Scarmeas N, Brandt J, Albert M, Devanand DP, Marder K, Bell K, Ciappa A, Tycko B & Stern Y(2002) Association between the APOE genotype and psychopathologic symptoms in Alzheimer'sdisease. Neurology 58, 1182‐1188.
    [8] Robertson J, Curley J, Kaye J, Quinn J, Pfankuch T & Raber J (2005) apoE isoforms and measuresof anxiety in probable AD patients and Apoe‐/‐ mice. Neurobiol Aging 26, 637‐643.
    [9] Lupien SJ, Nair NP, Briere S, Maheu F, Tu MT, Lemay M, McEwen BS & Meaney MJ (1999)Increased cortisol levels and impaired cognition in human aging: implication for depression anddementia in later life. Rev Neurosci 10, 117‐139.
    [10] Kim JJ & Diamond DM (2002) The stressed hippocampus, synaptic plasticity and lost memories.Nat Rev Neurosci 3, 453‐462.
    [11] Raber J, Akana SF, Bhatnagar S, Dallman MF, Wong D & Mucke L (2000)Hypothalamic‐pituitary‐adrenal dysfunction in Apoe(‐/‐) mice: possible role in behavioral andmetabolic alterations. J Neurosci 20, 2064‐2071.
    [12] Vale W, Spiess J, Rivier C & Rivier J (1981) Characterization of a 41‐residue ovine hypothalamicpeptide that stimulates secretion of corticotropin and beta‐endorphin. Science 213, 1394‐1397.
    [13] Chrousos GP & Gold PW (1992) The concepts of stress and stress system disorders. Overview ofphysical and behavioral homeostasis. Jama 267, 1244‐1252.
    [14] Lightman SL & Young WS, 3rd (1989) Influence of steroids on the hypothalamiccorticotropin‐releasing factor and preproenkephalin mRNA responses to stress. Proc Natl Acad Sci U SA 86, 4306‐4310.
    [15] Orth DN (1992) Corticotropin‐releasing hormone in humans. Endocr Rev 13, 164‐191.
    [16] Swaab DF (2003) The human hypothalamus: Basic and Clinical Aspects. Vol. 79 Elsevier,Amsterdam.
    [17] Bissette G (1990) Central nervous system CRF in stress: radioimmunoassay studies. InCorticotropin‐releasing factor: basic and clinical studies of a neuropeptide (De Souza E N, CB,, ed, pp.21–28. CRC‐Press, Boca Raton, Fl, USA,.
    [18] Chen GH, Wang YJ, Zhang LQ & Zhou JN (2004) Age‐ and sex‐related disturbance in a battery ofsensorimotor and cognitive tasks in Kunming mice. Physiol Behav 83, 531‐541.
    [19] Walf AA & Frye CA (2007) The use of the elevated plus maze as an assay of anxiety‐relatedbehavior in rodents. Nat Protoc 2, 322‐328.
    [20] Ferretti L, McCurry SM, Logsdon R, Gibbons L & Teri L (2001) Anxiety and Alzheimer's disease. JGeriatr Psychiatry Neurol 14, 52‐58.
    [21] Teri L, Ferretti LE, Gibbons LE, Logsdon RG, McCurry SM, Kukull WA, McCormick WC, Bowen JD& Larson EB (1999) Anxiety of Alzheimer's disease: prevalence, and comorbidity. J Gerontol A Biol SciMed Sci 54, M348‐352.
    [1] Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H,Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E & Scazufca M (2005) Global prevalence ofdementia: a Delphi consensus study. Lancet 366, 2112‐2117.
    [2] Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, HennekensCH & Taylor JO (1989) Prevalence of Alzheimer's disease in a community population of older persons.Higher than previously reported. JAMA 262, 2551‐2556.
    [3] Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD,Haines JL & Pericak‐Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk ofAlzheimer's disease in late onset families. Science 261, 921‐923.
    [4] Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cellbiology. Science 240, 622‐630.
    [5] Poirier J (1994) Apolipoprotein E in animal models of CNS injury and in Alzheimer's disease.Trends Neurosci 17, 525‐530.
    [6] Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J,McKeel D, Wozniak D & Paul SM (2000) Apolipoprotein E isoform‐dependent amyloid deposition andneuritic degeneration in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 97,2892‐2897.
    [7] Tesseur I, Van Dorpe J, Spittaels K, Van den Haute C, Moechars D & Van Leuven F (2000)Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in thebrains of transgenic mice. Am J Pathol 156, 951‐964.
    [8] Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak‐Vance MA,Risch N & van Duijn CM (1997) Effects of age, sex, and ethnicity on the association betweenapolipoprotein E genotype and Alzheimer disease. A meta‐analysis. APOE and Alzheimer Disease MetaAnalysis Consortium. JAMA 278, 1349‐1356.
    [9] Moceri VM, Kukull WA, Emanual I, van Belle G, Starr JR, Schellenberg GD, McCormick WC,Bowen JD, Teri L & Larson EB (2001) Using census data and birth certificates to reconstruct theearly‐life socioeconomic environment and the relation to the development of Alzheimer's disease.Epidemiology 12, 383‐389.
    [10] Raiha I, Kaprio J, Koskenvuo M, Rajala T & Sourander L (1998) Environmental differences intwin pairs discordant for Alzheimer's disease. J Neurol Neurosurg Psychiatry 65, 785‐787.
    [11] Kim JJ & Diamond DM (2002) The stressed hippocampus, synaptic plasticity and lostmemories. Nat Rev Neurosci 3, 453‐462.
    [12] Gould E, Tanapat P, McEwen BS, Flugge G & Fuchs E (1998) Proliferation of granule cellprecursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A 95,3168‐3171.
    [13] Conrad CD (2010) A critical review of chronic stress effects on spatial learning and memory.Prog Neuropsychopharmacol Biol Psychiatry 34, 742‐755.
    [14] Chen GH, Wang YJ, Zhang LQ & Zhou JN (2004) Age‐ and sex‐related disturbance in a batteryof sensorimotor and cognitive tasks in Kunming mice. Physiol Behav 83, 531‐541.
    [15] Walf AA & Frye CA (2007) The use of the elevated plus maze as an assay of anxiety‐relatedbehavior in rodents. Nat Protoc 2, 322‐328.
    [16] Bevins RA & Besheer J (2006) Object recognition in rats and mice: a one‐trialnon‐matching‐to‐sample learning task to study 'recognition memory'. Nat Protoc 1, 1306‐1311.
    [17] Ladurelle N, Eychenne B, Denton D, Blair‐West J, Schumacher M, Robel P & Baulieu E (2000)Prolonged intracerebroventricular infusion of neurosteroids affects cognitive performances in themouse. Brain Res 858, 371‐379.
    [18] Siegel JA, Haley GE & Raber J (2010) Apolipoprotein E isoform‐dependent effects on anxietyand cognition in female TR mice. Neurobiol Aging.
    [19] Dik MG, Jonker C, Bouter LM, Geerlings MI, van Kamp GJ & Deeg DJ (2000) APOE‐epsilon4 isassociated with memory decline in cognitively impaired elderly. Neurology 54, 1492‐1497.
    [20] Raber J, Wong D, Yu GQ, Buttini M, Mahley RW, Pitas RE & Mucke L (2000) Apolipoprotein Eand cognitive performance. Nature 404, 352‐354.
    [21] Van Duijn CM, Clayton DG, Chandra V, Fratiglioni L, Graves AB, Heyman A, Jorm AF, Kokmen E,Kondo K, Mortimer JA & et al. (1994) Interaction between genetic and environmental risk factors forAlzheimer's disease: a reanalysis of case‐control studies. EURODEM Risk Factors Research Group.Genet Epidemiol 11, 539‐551.
    [1] Kjaer K, Hagen C, Sando SH & Eshoj O (1992) Epidemiology of menarche and menstrualdisturbances in an unselected group of women with insulin‐dependent diabetes mellitus compared tocontrols. J Clin Endocrinol Metab 75, 524‐529.
    [2] van der Schouw YT, van der Graaf Y, Steyerberg EW, Eijkemans JC & Banga JD (1996) Age atmenopause as a risk factor for cardiovascular mortality. Lancet 347, 714‐718.
    [3] Treloar SA, Do KA & Martin NG (1998) Genetic influences on the age at menopause. Lancet 352,1084‐1085.
    [4] Chie WC, Liu YH, Chi J, Wu V & Chen A (1997) Predictive factors for early menarche in Taiwan. JFormos Med Assoc 96, 446‐450.
    [5] Snieder H, MacGregor AJ & Spector TD (1998) Genes control the cessation of a woman'sreproductive life: a twin study of hysterectomy and age at menopause. J Clin Endocrinol Metab 83,1875‐1880.
    [6] Long JR, Xu H, Zhao LJ, Liu PY, Shen H, Liu YJ, Xiong DH, Xiao P, Liu YZ, Dvornyk V, Li JL, Recker RR& Deng HW (2005) The oestrogen receptor alpha gene is linked and/or associated with age ofmenarche in different ethnic groups. J Med Genet 42, 796‐800.
    [7] van Asselt KM, Kok HS, Putter H, Wijmenga C, Peeters PH, van der Schouw YT, Grobbee DE, teVelde ER, Mosselman S & Pearson PL (2004) Linkage analysis of extremely discordant and concordantsibling pairs identifies quantitative trait loci influencing variation in human menopausal age. Am J HumGenet 74, 444‐453.
    [8] Strittmatter WJ, Saunders AM, Schmechel D, Pericak‐Vance M, Enghild J, Salvesen GS & RosesAD (1993) Apolipoprotein E: high‐avidity binding to beta‐amyloid and increased frequency of type 4allele in late‐onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90, 1977‐1981.
    [9] Davignon J, Gregg RE & Sing CF (1988) Apolipoprotein E polymorphism and atherosclerosis.Arteriosclerosis 8, 1‐21.
    [10] Tempfer CB, Riener EK, Keck C, Grimm C, Heinze G, Huber JC, Gitsch G & Hefler LA (2005)Polymorphisms associated with thrombophilia and vascular homeostasis and the timing of menarcheand menopause in 728 white women. Menopause 12, 325‐330.
    [11] Utermann G, Hees M & Steinmetz A (1977) Polymorphism of apolipoprotein E and occurrenceof dysbetalipoproteinaemia in man. Nature 269, 604‐607.
    [12] Mahley RW & Rall SC, Jr. (2000) Apolipoprotein E: far more than a lipid transport protein.Annu Rev Genomics Hum Genet 1, 507‐537.
    [13] Finch CE & Sapolsky RM (1999) The evolution of Alzheimer disease, the reproductive schedule,and apoE isoforms. Neurobiol Aging 20, 407‐428.
    [14] Hixson JE & Vernier DT (1990) Restriction isotyping of human apolipoprotein E by geneamplification and cleavage with HhaI. J Lipid Res 31, 545‐548.
    [15] Wang QS, Tian L, Huang YL, Qin S, He LQ & Zhou JN (2002) Olfactory identification andapolipoprotein E epsilon 4 allele in mild cognitive impairment. Brain Res 951, 77‐81.
    [16] Fullerton SM, Clark AG, Weiss KM, Nickerson DA, Taylor SL, Stengard JH, Salomaa V, VartiainenE, Perola M, Boerwinkle E & Sing CF (2000) Apolipoprotein E variation at the sequence haplotype level:implications for the origin and maintenance of a major human polymorphism. Am J Hum Genet 67,881‐900.
    [17] Liu RY, Zhou JN, van Heerikhuize J, Hofman MA & Swaab DF (1999) Decreased melatonin levelsin postmortem cerebrospinal fluid in relation to aging, Alzheimer's disease, and apolipoproteinE‐epsilon4/4 genotype. J Clin Endocrinol Metab 84, 323‐327.
    [18] Finch CE (2007) The Biology of Human Longevity. Inflammation, Nutrition, and Aging in theEvolution of Lifespans. book (Academic, San Diego).
    [19] Mondadori CR, de Quervain DJ, Buchmann A, Mustovic H, Wollmer MA, Schmidt CF, Boesiger P,Hock C, Nitsch RM, Papassotiropoulos A & Henke K (2007) Better memory and neural efficiency inyoung apolipoprotein E epsilon4 carriers. Cereb Cortex 17, 1934‐1947.
    [20] Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, Matthews PM,Beckmann CF & Mackay CE (2009) Distinct patterns of brain activity in young carriers of theAPOE‐epsilon4 allele. Proc Natl Acad Sci U S A 106, 7209‐7214.
    [21] Marchant NL, King SL, Tabet N & Rusted JM (2010) Positive effects of cholinergic stimulationfavor young APOE epsilon4 carriers. Neuropsychopharmacology 35, 1090‐1096.
    [22] Hawkes K, O'Connell JF, Jones NG, Alvarez H & Charnov EL (1998) Grandmothering,menopause, and the evolution of human life histories. Proc Natl Acad Sci U S A 95, 1336‐1339.
    [23] Williams G (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11398‐411.
    [24] Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, Saunders AM & Hardy J(2004) Functional brain abnormalities in young adults at genetic risk for late‐onset Alzheimer'sdementia. Proc Natl Acad Sci U S A 101, 284‐289.
    [25] White F, Nicoll JA, Roses AD & Horsburgh K (2001) Impaired neuronal plasticity in transgenicmice expressing human apolipoprotein E4 compared to E3 in a model of entorhinal cortex lesion.Neurobiol Dis 8, 611‐625.
    [26] Cohen AA (2004) Female post‐reproductive lifespan: a general mammalian trait. Biol RevCamb Philos Soc 79, 733‐750.
    [27] He LN, Recker RR, Deng HW & Dvornyk V (2009) A polymorphism of apolipoprotein E (APOE)gene is associated with age at natural menopause in Caucasian females. Maturitas 62, 37‐41.
    [28] Gold EB, Bromberger J, Crawford S, Samuels S, Greendale GA, Harlow SD & Skurnick J (2001)Factors associated with age at natural menopause in a multiethnic sample of midlife women. Am JEpidemiol 153, 865‐874.
    [29] Dvornyk V, Long JR, Liu PY, Zhao LJ, Shen H, Recker RR & Deng HW (2006) Predictive factors forage at menopause in Caucasian females. Maturitas 54, 19‐26.
    [30] Casey VA, Dwyer JT, Coleman KA, Krall EA, Gardner J & Valadian I (1991) Accuracy of recall bymiddle‐aged participants in a longitudinal study of their body size and indices of maturation earlier inlife. Ann Hum Biol 18, 155‐166.
    [31] den Tonkelaar I (1997) Validity and reproducibility of self‐reported age at menopause inwomen participating in the DOM‐project. Maturitas 27, 117‐123.
    [32] Must A, Phillips SM, Naumova EN, Blum M, Harris S, Dawson‐Hughes B & Rand WM (2002)Recall of early menstrual history and menarcheal body size: after 30 years, how well do womenremember? Am J Epidemiol 155, 672‐679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700