人乳铁蛋白和CD14蛋白在植物中的表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳铁蛋白可以抑制和杀死许多革兰氏阳性、阴性细菌及一些真菌,具有抗氧化、调节人体免疫反应等重要的生物学功能,可以作为高效补铁剂、防腐剂、抗氧化剂、抗肿瘤剂、潜在的饲用抗生素代替品等,具有广阔的应用前景。CD14是机体免疫反应过程中的关键分子,包括脂多糖(LPS)、肽聚糖(PGN)、磷壁酸(LTA)在内的多种细菌产物都通过CD14的途径激活单核细胞、巨噬细胞、内皮细胞等免疫细胞,释放细胞因子及其它炎症介质,介导一系列生理和病理反应。CD14分子以两种形式存在:膜结合型CD14(mCD14)和可溶性CD14(sCD14)。sCD14可以预防感染、提高机体免疫力并且对一些疾病具有一定的治疗作用。开发和研究乳铁蛋白和CD14已经引起了广泛关注。但目前乳铁蛋白工业化生产成本高,产量不理想,CD14在乳汁等中含量低,又存在其他大量存在的蛋白的影响,大量纯化也很难。所以,近年来注目的焦点是利用基因工程等技术来开发低成本的乳铁蛋白和CD14,期望这两种蛋白得到充分利用。
     植物作为生物反应器来生产重组蛋白已有许多成功的实例。在现存的各种重组蛋白表达系统中,植物生物反应器是最经济的一种表达系统。利用植物生物反应器生产外源蛋白具有一定的优势,它所表达的蛋白在折叠和组装上和动物细胞的更为相似,从而具有和高等动物细胞表达的产物基本一致的免疫原性和生物活性,并且不会存在被一些动物病毒、病原体污染的可能。但是,植物表达系统还处于发展阶段,存在着外源蛋白表达量低等问题。
     本工作拟为利用玉米作为生物反应器生产人乳铁蛋白和CD14的研究奠定基础。首先从人乳腺cDNA中克隆得到了乳铁蛋白和CD14的全长cDNA序列,为了提高重组蛋白在转基因植物中的积累量,又从玉米种子cDNA中克隆得到了玉米醇溶蛋白信号肽编码序列。然后,利用基因重组技术用玉米醇溶蛋白信号肽代替了乳铁蛋白和CD14基因原有的信号肽,构建融合基因和乳铁蛋白基因、CD14基因的植物表达载体,采用农杆菌介导法将乳铁蛋白基因、CD14基因转入烟草和玉米,获得了转基因植株。通过对转基因烟草植株进行Western Blot检测,肯定了乳铁蛋白和CD14在烟草中被成功表达。ELISA定量检测结果显示,转基因烟草植株表达的重组蛋白量分别为0.41%(转带有玉米醇溶蛋白信号肽乳铁蛋白基因)、0.46%(转带有玉米醇溶蛋白信号肽CD14基因)、0.17%(转带原有信号肽乳铁蛋白基因)和0.21%(转带原有信号肽CD14基因),更换有玉米醇溶蛋白信号肽序列的融合基因在转基因烟草植株中表达的重组蛋白量成倍高于带原有信号肽序列的乳铁蛋白基因和CD14基因的表达量,证明了玉米醇溶蛋白信号肽的引入确实增加了重组蛋白在转基因植株中的积累量。重组乳铁蛋白抑菌试验结果表明,更换有玉米醇溶蛋白信号肽和带原有信号肽的转基因烟草植株表达的重组乳铁蛋白具有相同的生物活性,说明玉米醇溶蛋白信号肽序列的引入不影响重组蛋白的生物活性。
     转基因烟草中的表达研究为这两个基因转入玉米中的研究提供了资料。在转基因玉米中,为了进一步提高重组蛋白的积累量,采用了玉米种子胚乳特异性启动子启动乳铁蛋白基因和CD14基因表达,拟将重组蛋白定位在玉米种子胚乳中。转基因玉米检测的工作正在进行中。
Human lactoferrin has some important physiological functions such as antimicrobial activities, antioxidant activity and immunomodulatory activity. To date, it has become evident that lactoferrin exerts various beneficial effects against diseases and is safe for health. This enlarges the application potential of lactoferrin. Human CD14 is involved in the innate immunity system and the inflammation reaction. As the receptor for the LPS of gram-negative bacteria or the peptidoglycan of gram-positive bacteria, CD14 elicits a series of physiological and pathological responses. Human CD14 exists either as a membrane-bound protein (mCD14) or as a soluble protein (sCD14). During the past twenty years, the ability of sCD14 to protect against infection and the potential of therapeutic had been described in numerous in vitro and in vivo studies. The research on lactoferrin and CD14 has been arousing more and more interest from the public. However, producing human lactoferrin on a factory scale has a high cost and a dissatisfactory yield. Low concentration of CD14 in milk and the presence of numerous other proteins make it a difficult task to purify a relatively large quantity of CD14. Therefore, to make best use of lactoferrin and CD14, more attention has been focused on using gene-engineering technology to produce low cost proteins.
     Plants are now considered as viable and competitive expression systems for the production of recombinant proteins. Some proteins have been successfully produced in plants. Compared to other organisms, plants offer several advantages for producing foreign proteins. They have eukaryotic post-translational modification machinery and the correct folding and assembling of protein in plants are very similar to the situation in mammalian cells. Furthermore, plant expression systems present no risk of product contamination by mammalian viruses, pathogens and oncogens, and present a potential for lower cost of production when using field crops. However, plant expression systems are developing, and there are some problems to solve such as low expression.
     The study was on a mission to lay a foundation for using maize to produce human lactoferrin and CD14. To increase the expression of recombinant proteins, the signal peptide from maize zein was used. We had engineered two constructs containing either the native signal peptide from human lactoferrin/CD14 or signal peptide from maize zein fused to human lactoferrin/CD14 encoding cDNA. The plant expression vectors contained human lactoferrin and CD14 gene were introduced into tobacco and maize by Agrobacterium-mediated. Western blot analysis showed human lactoferrin and CD14 had expressed in transgenic tobacco under the control of the CaMV-35S promoter. The concentration of recombinant protein in tobacco was assessed by ELISA. The result suggested that the use of signal peptide from maize zein increased the expression level of recombinant protein. The recombinant human lactoferrin expressed in tobacco had antibacterial ability for both constructs.
     The study in transgenic tobacco provided some important data for the expression study of human lactoferrin and CD14 in maize. Transgenic maize plants with expressing the two proteins under the maize seed endosperm specific promoter for increasing the expression level of recombinant proteins in endosperm of seed were just obtained, and the analyses of these maize plants are carring out.
引文
1. Franken E, Teuschel, Hain R (1997) Recombinant protein from transgenic plants[J]. Curr Opin Biotech, 8: 411-416.
    2. Hiatt A, Cafferkey R, Bowdish K, et al (1989) Production of antibodies in transgenic plants[J]. Nature, 342: 76-78.
    3. Ma J K, Hiatt A, Hein M, et al (1995) Generation and assembly of secretory antibodies in plants[J]. Science, 268(5): 716-719.
    4. Giddings G (2001) Transgenic plants as protein factories[J]. Curr Opin in Biotechnol, 12: 450-454.
    5. Stoger E, Vaquero C, Torres E, et al (2000) Cereal crops as viable production and story systems for pharmaceutical scFv antibodies[J]. Plant Mol Biol, 42: 583-590.
    6. Sandhu J S, Krasnyanski S F, Domier L L, et al (2000) Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response[J]. Transgenic Res, 9: 127-135.
    7. Jani D, Meena L S, Rizwan-ul-Haq Q M, et al (2002) Expression of cholera toxin B subunit in transgenic tomato plants [J]. Transgenic Res, 11(5): 447-454.
    8. Ma Y, Lin S Q, Gao Y, et al (2003) Expression of ORF2 partial gene of hepatitis E virus in tomatoes and immunoactivity of expression products[J]. World J. Gastroenteroll, 9(10): 2211-2215.
    9. Hiatt A, Ma J K (1993) Characterization and application of antibodies produced in phnts[J]. Int Res Immunol, 10: 139-152.
    10. Artsaenko O, Kettig B, Fiedler U, et al (1998) Potato tubers as a biofactory for recombinant antibodies. Molecular Breeding, 4: 313.
    11. Fischer R, Hoffmann K, Schillberg S, et al (2000) Antibody production by molecular farming in plant[J]. J Biol Regul Homeost Agents, 14(2): 83-92.
    12. Lavelle E C, Grant G, Pusztai A, et al (2001) The identification of plant lectins with mucosal adjuvant activity[J]. Immunology, 102(1): 77-86.
    13. Lavelle E C, Grant G, Pusztai A, et al (2001) The identification of plant lectins with mucosal adjuvant activity[J]. Immunology, 102(1): 77-86.
    14. Ma J K, Hikmat B Y, Wycoff K, Vine N D, Chargelegue D, Yu L (1998) Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med, 4: 601-606.
    15. Stoger E, Vaquero C, Torres E, et al (2000) Cereal crops as viable production and story systems for pharmaceutical scFv antibodies[J]. Plant Mol Biol, 42: 583
    16. Zeitlin L, Olmsted S S, Moench T R, co M S, Martinell B J, Paradkar V M (1998) A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol, 16: 1361-1364.
    17. McCormick A A, Kumagai M H, Hanley K, et al (1999) Rapid production of specific vaccine for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants[J]. Proc. Natl. Acad. Sci. USA, 96: 703-708.
    18. Curtiss R I, Cardineau C A (1990) Oral immunisation by transgenic plants. World Patent Application, WO 90/02484.
    19. Mason H S, Lam D M K, Arntzen C J (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc. Natl. Acad. Sci. USA, 89(24): 11745-11749.
    20. Thanavala Y, Yang Y F, Lyons P, Mason H S, Arntzen C (1995) Immunogenicity of transgenic plant-derived hepatitis B surface antigen. Proc. Natl. Acad. Sci. USA, 92(8): 3358-3361.
    21. Ehsani P, Khabiri A, Domansky N N, et al (1997) Polypeptide of hepatitis B surface antigen produced in transgenic potato[J]. Gene, 190: 107-111.
    22. Kapusta J, Modelska A, Figlerowicz M, et al (1999) A plant-derived edible vaccine against hepatitis B virus [J]. FASEB J, 13:1796-1799.
    23. McGarvey P B, Hammond J, Dienelt M M, Hooper D C, Fu Z F, Dietzschold B (1995) Expression of the rabies virus glycoprotein in transgenic tomatoes. Bio/ Technology, 13: 1484-1487.
    24. Arakawa T, Chong D K X, Langridge W H R, et al (1998) Efficacy of a food plant- based oral cholera toxin B subunit vaccine. Nat Biotechnol, 16: 292-297.
    25. Carrillo C, Wigdorovitz A, Oliveros J C, et al (1998) Protective immune response to foot and mouth disease virus with VP1 expressed in transgenic plants [J]. Journal of Virology,72(2):688-1690.
    26.Wigdorovitz A,Carrillo C,Maria J D,et al(1999)Induction of a protective antibody response to foot and mouth disease virus in mice following oral or parenteral immunization with alfalfa transgenic plants expressing the viral structural protein VP1[J].Virology,255:347-353.
    27.Tuboly T,Yu W,Bailey A,Degrandis S,Du S,Erickson L,Nagy E(2000)Immunogenicity of porcine transmissible gastroenteritis virus spike protein expressed in plants.Vaccine,18(19):2023-2028.
    28.曲志才,沈大棱(2002)利用植物生产异源蛋白的研究进展.生命科学,14(1):6-8.
    29.Fitchen J,Beachy R N,Hein M B,et al(1995)Plant s virus expressing hybrid coat protein with added murine epitope elicits autoantibody response[J].Vaccine,13(12):1051-1057.
    30.Tacket C O,Mason H S,Losonsky G,Clements J D,Levine M M,Arntzen C J (1998)Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato.Nat Med,4:607-609.
    31.Kapusta J,Modelska A,Figlerowicz M,et al(1999)A plant-derived edible vaccine against hepatitis B virus[J].FASEB J,13:1796-1799.
    32.Tacket C O,Mason H S,Losonsky G,et al(2000)Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes[J].J Infect Dis,182:302-305.
    33.Vandekerckhove J,Damme J V,Lijsebettens M V,et al(1989.)Enkephalins produced in transgenic plants using modified 2S seed storage proteins.Biotechnology,7(9):929.
    34.Cramer C L,Weissenbom D L,Oishi K K,Grabau E A,Bennett S,Ponce E,Grabowski G A,Radin D N(1996)Bioproduction of human enzymes in transgenic tobacco.Ann.N Y Acad.Sci,792:62-71.
    35.Ruggiero F,Exposito J Y,Bournat P,et al(2000)Triple helix assembly and processing of human collagen produced in transgenic tobacco plants.FEBS Lett,469(1):132-136.
    36. Mori M, Zhang G H, Kaido M, et al (1993) Efficient production of human gamma interferon in tobacco protoplasts by genetically engineered brome mosaic virus RNAs. Journal of General Virology, 74: 1255.
    37. Verwoerd T C, Paridon P A, Ooyen A J J, et al (1995) Stable accumulation of aspergillus niger phytase in transgenic tobacco leaves [J]. Plant Physiol, 109: 1199-1205.
    38. Matsumoto S, Ikura K, Ueda M (1995) Characterization of a human glycoprotein (erythropoietin, EPO) produced in cultured tobacco cells. Plant Molecular Biology, 27:1163.
    39. Salmanian A H, Gushchin A, Medvedeva T (1996) Synthesis and expression of the gene for human epidermal growth factor in transgenic potato plants. Biotechnology Letters, 18(9): 1095.
    40. Hood E, Witcher D, Maddock S, et al (1997) Commercial production of Avidin from transgenic maize: characterization of transformant, production, processing, extraction, and purification [J]. Mol Breed, 3: 291-306.
    41. Witcher D R, Hood E E, Peterson D, et al (1998) Commercial production of alpha-glucuronidase (GUS): a model system for the production of proteins in plants[J]. Mol Breed, 4: 301-312.
    42. Sorensen M, Sorensen S P L (1939). The proteins in whey. Compt. Rendus Laboratoire Carlsberg, 23: 55-99.
    43. Johansson B (1960). Isolation of an iron containing red protein from human milk. Acta Chemica Scandinavica, 14:510-512.
    44. Groves M L (1960). The isolation of a red protein from milk. Journal of the American Chemical Society, 82: 3345-3350.
    45. Masson P L, Heremans J F, Dive C (1966) An iron-binding protein common to many external secretions. Clinica Chimica Acta, 14: 735-739.
    46. Levay P F, Viljoen M (1995) Lactoferrin: a general review. Haematologica, 80: 252-267.
    47. van Berkel P H, van Veen H A, Geerts M E, et al(1996) Heterogeneity in utilization of N-glycosylation sites Asn624 and Asn138 in human lactoferrin: A study with glycosylation-site mutants.Biochem J,319:117-122.
    48.Anderson B F,Baker H M,et al(1987)Structure of human lactoferrin at 3.2-A resolution.Proc.Natl.Acad.Sci.USA,84:1769-1773.
    49.Anderson B F,Baker H M,Norris G E,Rice D W,Baker E N(1989)Structure of human lactoferrin:crystallographic structure analysis and refinement at 2.8 A resolution.J.Mol.Biol,209:711-734.
    50.Baker H M,Anderson B F,Baker E N(2003)Dealing with iron:common structural principles in proteins that transport iron and heme.Proc.Natl.Acad.Sci.USA,100:3579-3583.
    51.Metz-Boutigue M H,Jolles J,Mazurier J,Schoentgen F,Legrand D,Spik G,et al (1984)Human lactotransferrin:amino acid sequence and structural comparisons with other transferrins.Eur.J.Biochem,145:659-676.
    52.Baker E N(1994)Structure and reactivity of transferrins.Adv.lnorg.Chem,41:389-463.
    53.Ainscough E W,Brodie A M,Plowman J E(1979)The chromium,manganese,cobalt and copper complexes of human lactoferrin.Inorg.Chim.Acta,33:149-153.
    54.Smith C A,Ainscough E W,Baker H M,Brodie A M,Baker E N(1994)Specific binding of cerium by human lactoferrin stimulates the oxidation of Ce~(3+)to Ce~(4+).J.Am.Chem.Soc,116:7889-7890.
    55.Baker H M,Anderson B F,Brodie A M,Shongwe M S,Smith C A,Baker E N (1996)Anion binding by transferrins:the importance of second shell effects revealed by the crystal structure of oxalate-substituted diferric lactoferrin.Biochemistry,35:9007-9013.
    56.Sharma A K,Singh T P(1999)Structure of oxalate-substituted diferric mare lactoferrin at 2.7 A resolution.Acta Crystallogr,D55:1792-1798.
    57.Kawakami(1988)Effects of iron-saturated lactoferfin on iron absorption[J].Agric Bio Chem,52(2):903-908.
    58.Bullen J J,Rogers H J,Leigh L(1972)Iron binding proteins in milk and resistance to Escherichia coli infection in infants.Br Med J,1:68-75.
    59.Arnold R R,Cole R M,McGhee J R(1977)A bactericidal effect for human lactoferrin.Science(Washington,DC),197:263-265.
    60.Arnold R R,Brewer M,Gauthier J J(1980)Bactericidal activity of human lactoferrin:sensitivity of a variety of microorganisms.Infect.Immun,28:893-898.
    61.Kalmar J R,Arnold R R(1988)Killing of Actinobacillus actinomycetemcomitans by human lactoferrin.Infect.Immun,56:2552-2557.
    62.Yamauchi K,Tomita M,Giehl T J,Ellison Ⅲ R T(1993)Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment,Infect.Immun,61:719-728.
    63.Braun V,Killmann H(1999)Bacterial solutions to the iron supply problem.Trends Biochem Sci,24:104-109.
    64.Griffiths E,Williams P(1999)The iron-uptake systems of pathogenic bacteria,fungi and protozoa.In:Bullen JJ,Griffiths E,eds.Iron and Infection:Molecular,Physiological and Clinical Aspects.seconded.Wiley,Chichester,pp.87-212.
    65.Herrington D A,Sparling P E(1985)Haemophilus influenzea can use human transferrin as a sole source of required iron.Infect.Immun,48:248-251.
    66.Gonzales G C,Caamo D L,Schryvers A B(1990)Identification and characterisation of a porcine-specific transferring receptor in Actinobacillus pleuropneumoniae.Mol.Microbiol,4:1173-1179.
    67.Bortner C A,Arnold R R,Miller R D(1989)Bactericidal effect of lactoferrin on Legionella pneumophila:effect of the physiological state of the organism.Can.J.Microbiol,35:1048-1051.
    68.Appelmelk B J,An Y Q,Geerts M,Thijs B G,de Boer H A,MacLaren D M,de Graaff J,Nuijens J H(1994).Lactoferrin is a lipid A-binding protein.Infect.Immun,62:2628-2632.
    69.Arnold R R,Russell J E,Champion W J,Gautheir J J(1981)Bactericidal activity of human lactoferrin:influence of physical conditions and metabolic state of the target microorganism.Infect.Immun,32:655-660.
    70.Kirkpatrick C H,Green I,Rich R R,Schade A L(1971)Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin:relation to host-defense mechanisms in chronic mucocutaneous candidiasis.J.Infect.Dis,124:539-544.
    71.Valenti P,Visca P,Antonini G,Orsi N(1986)Interaction between lactoferrin and ovotransferrin and Candida cells.FEMS Microbiol Lett,33:271-275.
    72.Yamauchi K,Hiruma M,Yamazaki N,et al(2000)Oral administration of bovine lactoferrin for treatment of tinea pedis.A placebo-controlled,double-blind study.Mycoses,43:197-202.
    73.Hasegawa K,Motsuchi W,Tanaka S,Dosako S(1994)Inhibition with lactoferrin of in vitro infection with human herpes virus.Jpn JMed Sci Biol,47:73-85.
    74.Harmsen M C,Swart P J,de Bethune M P,et al(1995)Antiviral effects of plasma and milk proteins:lactoferrin shows potent activity against both human immunodeficiency virus and human cytomegalovirus replication in vitro.J Infect Dis,172:380-388.
    75.Hara K,Ikeda M,Saito S,et al(2002)Lactoferrin inhibits hepatitis B virus infection in cultured human hepatocytes.Hepatol Res,24:228.
    76.Ikeda M,Sugiyama K,Tanaka T,et al(1998)Lactoferrin markedly inhibits hepatitis C virus infection in cultured human hepatocytes.Biochem Biophys Res Commun,245:549-553.
    77.Superti F,Ammendolia M G,Valenti P,Seganti L(1997)Antirotaviral activity of milk proteins:lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT29.Med Microbiol Immunol,186:83-91.
    78.Marchetti M,Superti F,Ammendolia M G,Rossi O,Valenti P,Seganti L(1999)Inhibition of poliovirus type 1 infection by iron-,manganese- and zinc-saturated lactoferrin.Med Microbiol Imrnunol,187:199-204.
    79.Cintra W M,Silva-Filho F C,De Souza W(1986)The surface charge of Toxoplasma gondii:a cytochemical and electrophoretic study.J Submicrosc Cytol,18:773-781.
    80.Tanaka T,Omata Y,Narisawa M,et al(1997)Growth inhibitory effect of bovine lactoferrin on Toxoplasma gondii tachyzoites in murine macrophages:role of radical oxygen and inorganic nitrogen oxide in Toxoplasma growth-inhibitory activity. Vet Parasitol, 68: 27-33.
    81. Omata Y, Satake M, Maeda R, Saito A, Shimazaki K, Yamauchi K, Uzaka Y, Tanabe S, Sarashina T, Mikami T (2001) Reduction of the infectivity of toxiplasma gondii and Eimeria stedai sporozites by treatment with bovine lactoferricin. J. Vet. Med. Sci, 63:187-190.
    82. Shinmoto H, Dosako S, Nakajima I (1992) Anti-oxidant activity of bovine lactoferrin on iron/ascorbate induce lipid peroxidation. Biosci. Biotech. Biochem, 56:2079-2080.
    83. Edde L, Hipolito R B, Hwang F A Y, Headon D R, Shalwitz R A, Sherman M P (2001) Lactoferrin protects neonatal rats from gut-related systemic infection. American Journal of Physiology Gastroentestinal and Liver Physiology, 281: G1140-G1150.
    84. Dial E J, Romero J J, Headon D R, Lichtenberger L M (2000) Recombinant human lactoferrin is effective in the treatment of Helicobacter felis-infected mice. Journal of Pharmacy and Pharmacology, 52: 1541-1546.
    85. Norrby K (2004) Human apo-lactoferrin enhances angiogenesis mediated by vascular endothelial growth factor A in vivo. Journal of Vascular Research, 41: 293-304.
    86. Haversen L A, Baltzer L, Dolphin G, Hanson L A, Mattsby Baltzer I (2003) Anti-inflammatory activities of human lactoferrin in acute dextran sulphate-induced colitis in mice. Scandinavian Journal of Immunology, 57: 2-10.
    87. Dial E J, Dohrman A J, Romero J J, Lichtenberger L M (2005) Recombinant human lactoferrin prevents NSAID-induced intestinal bleeding in rodents. Journal of Pharmacy and Pharmacology, 57: 93-99.
    88. Varadhachary A, Wolf J S, Petrak K, O'Malley B W, Jr Spadaro M, Curcio C, et al. (2004) Oral lactoferrin inhibits growth of established tumors and potentiates conventional chemotherapy. International Journal of Cancer, 111: 398-403.
    89. Troost F J, Saris W H M, Brummer R-J M (2003) Recombinant human lactoferrin ingestion attenuates indomethacin-induced enteropathy in vivo in healthy volunteers. European Journal of Clinical Nutrition, 57: 1579-1585.
    90. Ellison III R T, Giehl T J (1991) Killing of Gram negative bacteria by lactoferin and lysozyme. J. Clin. Invest, 88:1080-1091.
    91. Naidu S S, Arnold R R (1994) Lactoferrin interaction with Salmonella potentiates antibiotic susceptibility in vitro. Diag. Microbiol. Infect. Dis, 20: 69-75.
    92. Kuipers M E, de Vries H G, Eikelboom M C, Meijer D K F, Swart P J (1999) Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob. Agents Chemother, 43: 2635-2641.
    93. Ward P P, Lo J-Y, Duke M, May G S, Headon D R, Conneely O M (1992) Production of biologically active recombinant human lactoferrin in Aspergillus oryzae. Biotechnology, 10: 784-789.
    94. Ward P P, Piddington C S, Cunningham G A, Zhou X, Wyatt R D, Conneely O M (1995) A system for production of commercial quantities of human lactoferrin: A broad spectrum natural antibiotic. Biotechnology, 13:498-503.
    95. Liang Q W, Richardson T (1993) Expression and characterization of human lactoferrin in yeast Saccharomyces cerevisiae. J Agric Food Chem, 41: 1800-1807.
    96. Stowell K M, Rodo T A, Funk W D, et al (1991) Expression of cloned human lactoferrin in baby-hamster kidney cells. Biochem J, 276: 349-355.
    97. Platenburg G J, Kootwijk E P A, Koolman P M, et al (1994) Expression of human lactoferrin in milk of transgenic mice. Transgenic Res, 3: 99-108.
    98. Nuijens J H, van Berkel P H C, Geerts R R P, et al (1997) Characterization of recombinant human lactoferrin secreted in milk of transgenic mice. J Biol Chem, 272: 8802-8807.
    99. van Berkel P H C, Welling M M, Geerts M, van Veen H A, Ravensbergen B, Salaheddine M, et al (2002) Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nature Biotechnology, 20: 484-487.
    100.Mitra A, Zhang Z (1994) Expression of a human lactoferrin cDNA in tobacco cells produces antibacterial protein(s). Plant Physiol, 106: 977-981.
    101.Salmon V, Legrand D, Slomianny M-C, El Yazidi I, Spik G, Gruber V, Bournat P, Olagnier B, Mison D, Theisen M, Merot B (1998) Production of human lactoferrin in transgenic tobacco plants. Protein Expr. Purif, 13: 127-135.
    102.G Spik, M. Theisen(2000) Characterization of the post-translational biochemical processing of human lactoferrin expressed in transgenic tobacco. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz, 43: 104-109.
    103.Sun-Mee Choi, Ok-Sun Lee, Suk-Yoon Kwon, Sang-Soo Kwak, Dae-Yeul Yu, Haeng-Soon Lee (2003) High expression of a human lactoferrin in transgenic tobacco cell cultures. Biotechnology Letters, 25:213-218.
    104.Kwon SY, Jo SH, Lee OS, Choi SM, Kwak SS, Lee HS (2003) Transgenic ginseng cell lines that produce high levels of a human lactoferrin. Planta Med, 69: 1005-8.
    105.Chong D K X, Langridge W H R (2000) Expression of full-length bioactive antimicrobial human lactoferrin in potato plants. Transgenic Res, 9: 71-78.
    106.Suzuki YA, Kelleher SL, Yalda D, Wu L, Huang J, Huang N, Lonnerdal B (2003) Expression, characterization, and biologic activity of recombinant human lactoferrin in rice. J Pedia.tr Gastroenterol Nutr, 36(2): 190-9.
    107.Fuiiyama K, Sakai Y, Misaki R, Yanagihara I, Honda T, Anzai H, Seki T (2004) N-linked glycan structures of human lactoferrin produced by transgenic rice. Biosci Biotechnol Bioche, 68(12): 2565-70.
    108.Takase K, Hagiwara K, Onodera H, Nishizawa Y, Ugaki M, Omura T, Numata S, Akutsu K, Kumura H, Shimazaki K (2005) Constitutive expression of human lactoferrin and its N-lobe in rice plants to confer disease resistance. Biochem Cell Biol, 83(2): 239-49.
    
    109.Somen Nandi, Dorice Yalda, Stephen Lu, Zivko Nikolov, Ryo Misaki, Kazuhito Fujiyama, Ning Huang (2005) Process development and economic evaluation of recombinant human lactoferrin expressed in rice grain. Transgenic Res, 14: 237-249.
    
    110.Samyn-Petit B, Gruber V, Flahaut C, Wajda-Dubos J-P, Fairer S, Pone A, Desmaizieres G, Slomianny M-C, Theisen M, Delannoy P (2001) N-Glycosy- lation potential of maize: the human lactoferrin used as a model. Glycoconjugate J, 18:519-527.
    111.Benedicte Samyn-Petit,Jean-Pierre Wajda Dubos,Frederic Chirat,Bernadette Coddeville,Gregory Demaizieres,Sybille Farrer,Marie-Christine Slomianny,Manfred Theisen,Philippe Delannoy(2003)Comparative analysis of the sitespecific N-glycosylation of human lactoferrin produced in maize and tobacco plants.European Journal of Biochemistry,270:3235-3242.
    112.张大兵,姜育蕾,吴祥甫,洪孟民(1998)人乳铁蛋白基因在昆虫细胞中的表达.生物化学与生物物理学报,30(6):575-578.
    113.张大兵,张景六,王宗阳,洪孟民(1999)人乳铁蛋白基因在烟草中的表达及抗细菌与病毒的能力.植物生理学报,25(3):234-243.
    114.郑回勇,郑金贵,黄碧芳(2002)人乳铁蛋白基因转化胡萝卜研究初报.福建农林大学学报(自然科学版),31(2):215-217.
    115.应革,吴淑华等(2004)重组巴氏毕赤酵母高密度发酵表达人乳铁蛋白的研究.中华实验和临床病毒学杂志,18(2):181-185.
    116.曹慧颖,郭三堆(2005)人乳铁蛋白基因在番茄中的优化表达.园艺学报,32(6):1030-1033.
    117.赵伊英,刘峰,郑回勇,卢勤,郑金贵(2006)转人乳铁蛋白基因番茄的表达及其生物活性.农业生物技术学报,14(2):299-300.
    118.Kielian TL,et al(1995)CD14 and other recognition molecules for lipopolysaccharide:a review.Immunopharmacology,29:187-205.
    119.Todd RT,Nadler LM,Schlossman SF(1981)Antigens on human monocytes identified by monoclonal antibodies.J Immunol,126:1435-1442.
    120.Maliszewski CR,Currier J,Fisher J,et al(1987)Monoclonal antibodies that bind to the My23 human myeloid cell surface molecule:Epitope analysis and antigen modulation studies[J].Mol Immunol,24(1):17.25.
    121.Wright SD,Ramos RA,Tobias PS,et al(1990)CD14,a receptor for complex of lipopolyaccharide and LPS binding protein[J].Science,249(4975):1431-1433.
    122.Landmann R,Zimmerli W,Sansano D,et al(1995)Increased circulation soluble CD14 is associated with high mortality in gram-negative shok[J].J Infect Dis,171(3):639-644.
    123.Schumann R R,Leong S R,Flaggs G W,et al(1990)Structure and function of lipopolysaccharide binding protein.Science,249(4975):1429-1431.
    124.Schletter J,et al(1995)Molecular mechanisms of endotoxin activity.Arch Microbiol,164:383-389.
    125.Hailman E,et al(1994)Lipopolysaccharide(LPS)-binding Protein Accelerates the Binding of LPS to CD14,J.Exp.Med,179(1):269-277.
    126.龚建平,韩本立(1999)CD14在LPS介导Kupffer细胞激活中的作用[J].世界华人消化杂志,7(10):875-877.
    127.Kiekland T N,Finley F,Leturoq D,et al(1993)Analysis of lipopolysaccharide binding by CD 14[J].J Bio Chem,268:24818.
    128.靖学芳(2004)LPS和抗LPS治疗的研究及应用进展.微生物学免疫学进展,32(2):53-57.
    129.Bazil V,Strominger J L(1991)Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes.J Immunol,147(5):1567-1574.
    130.Jin Y,Gupta D,Dziarski R(1998)Endothelial and epithelial cells do not respond to complexes of peptidoglycan with soluble CD14 but are activated indirectly by peptidoglycan induced TNF-α and IL-1 from monocytes[J].J Infect D is,177(6):1629-1638.
    131.方文慧(1997)可溶性脂多糖受体CD14研究进展.国外医学创伤与外科基本问题分册,18:196-200.
    132.宁铂涛,汤永民,沈红强等(2005)多参数流式细胞术观察251例白血病细胞CD14表达的意义[J].实用肿瘤杂志,18(2):101-105.
    133.Tobias P S,Soldau K,Ulevitch R J(1986)Isolation of a lipopolysaccharidebinding acute phase reactant from rabbit serum.J Exp Med,164(3):777-793.
    134.Haziot A,Rong G W,Lin X Y,et al(1995)Reombinant soluble CD14 prevents mortality in mice treated with endotoxin(lipopolysaccharide)[J].J lmmunol,154(12):6529-6532.
    135.Lee J W,Paape M J,Elsasser T H,Zhao X(2003)Recombinant soluble CD14reduces severity of intramammary infection by Escherichia coli.Infect Immun,71:4034-4039.
    136.Blais D R,Harrold J,Altosaar I(2006)Killing the messenger in the nick of time: persistence of breast milk sCD14 in the neonatal gastrointestinal tract.Pediatr Res,59:371-376.
    137.Blais D R,Vascotto S G,Griffith M,Altosaar I(2005)LBP and CD14 secreted in tears by the lacrimal glands modulate the LPS response of corneal epithelial cells.Invest Ophthalmol Vis Sci,46:4235-4244.
    138.Haziot A,Rong G W,Bazil V,Silver J,Goyert SM(1994)Recombinant soluble CD14 inhibits LPS-induced tumor necrosis factor-alpha production by cells in whole blood.J Immunol,152:5868-5876.
    139.Schutt C,Furll B,Stelter F,Jack RS and Witt S(1997)CHO transfectants produce large amounts of recombinant protein in suspension culture.J Immunol Meth,204:99-102.
    140.Majerle A,Kidric J and Jerala R(1999)Expression and refolding of functional fragments of the human lipopolysaccharide receptor CD14 in Escherichia coli and Pichia pastoris.Protein Expr Purif,17:96-104.
    141.Gysler C,van den Brock P,Duboc P,et al(2001)Expression of biologically active,human soluble CD14 in Yarrowia lipolytica.Poster of the 20th International Conference on Yeast Geneticsand Molecular Biology,26-31.
    142.Nomura S,Inamori K,Muta T,Yamazaki S,Sunakawa Y,Iwanaga S,et al(2003)Purification and characterization of human soluble CD14 expressed in Pichia pastoris.Protein Expr Purif,28:310-320.
    143.Girard L S,Bastin M,Courtois D(2004)Expression of the human milk protein sCD14 in tobacco plant cell culture.Plant Cell,Tissue Organ Cult,78:253-260.
    144.David R.Blais,limar Altosaar(2006)Human CD14 expressed in seeds of transgenie tobacco displays similar proteolytic resistance and bioactivity with its mammalian-produced counterpart.Transgenic Research 15:151-164.
    145.张杰,薛沿宁等(2001)重组人可溶性CD14在昆虫细胞表达系统中的表达.生物技术通讯,2(3):84-187.
    146.白洁,荫俊等(2001)人可溶性CD14基因的克隆表达及功能研究.生物工程学报,17(3):269-72.
    147.白洁,荫俊等(2001)人可溶性CD14基因在CHO细胞中的表达.白求恩医科大学学报,27(3).
    148.侯本祥,王慧等(2006)可溶性CD14在酵母细胞中的分泌表达与LPS结合活性分析.细胞与分子免疫学杂志,22(3):399-401.
    149.Bradford MM(1976)A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem,72:248-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700