AgSbTe_2化合物的机械合金化制备与热电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AgSbTe2化合物作为(PbTe)x(AgSbTe2)1-x (LAST)和(GeTe)x(AgSbTe2)1-x (TAGS)两类高性能热电材料的共有组分,其低热导率及可预期的优良热电传输性能吸引了各国学者的关注与研究。目前该化合物的研究包括其晶体结构类型分析、能带结构的理论计算、制备工艺以及热电性能等方面,而且报道的性能结果也相对较高。因此,优化制备方法进一步提升该化合物的热电性能成为当前热电领域一大研究热点。
     本文系统研究了机械合金化制备AgSbTe2化合物各工艺参数对产物相组成、粉体形貌与颗粒尺寸的影响,同时采用放电等离子烧结(SPS)技术对所得机械合金化粉体进行了烧结致密化处理,研究了球磨、退火等工艺参数对最终块体微结构及热电性能的影响,得到以下主要结论:
     采用机械合金化制备了AgSbTe2单相化合物,研究了球磨主要工艺参数(球磨转速、球磨时间、球料比)对产物粉体相组成、微结构及颗粒尺寸的影响。结果表明,球料比固定于20:1,球磨转速为400rpm、600rpm和800rpm时,得到AgSbTe2化合物单相所需最短时间分别为15h、12h和6h。这说明增大球磨转速可以提高球磨效率,缩短耗时。在相同球料比和球磨时间下,粉体平均颗粒尺寸随球磨转速增加而减小,其中的小颗粒数目也增多。固定球料比20:1和球磨转速600rpm,增加球磨时间(12h-48h),产物相组成仍保持为单相AgSbTe2,但平均颗粒尺寸减小,粉体颗粒均匀性提高,小尺寸颗粒明显增多。其中球磨48h后粉体平均颗粒尺寸为370nm,其中小尺寸的一次颗粒仅为30~100nm。改变球料比(10:1,20:1,30:1),发现球料比30:1时,相组成不为单相,其中有Ag5-xTe3杂相出现。这说明球料比的增加会因为改变磨球在球磨罐中的运动轨迹、有效碰撞而影响球磨效率。
     采用SPS技术对典型工艺粉体(600rpm,20:1,24h)进行烧结探索,确定一最佳工艺后对不同球磨条件下粉体进行了烧结,并研究了球磨工艺参数以及退火等工艺对所得块体热电性能及微结构的影响。结果表明,SPS400℃对于球料比为20:1,球磨转速为600rpm,球磨24h制备的AgSbTe2粉体烧结最适宜,且得到的块体在498K时ZT值达到1.1。采用此烧结工艺对其余粉体烧结块体的研究表明,随着球磨转速增加,由于粉体颗粒尺寸显著细化,粉体吸附气体量增加导致烧结过程中发生喷样、分层等现象,导致烧结难度增大。故而800rpm样品因难于烧结而采用二次烧结,出现性能劣化,最终600rpm样品获得最大ZT值1.0。不同球料比对AgSbTe2块体性能影响结果表明,球料比10:1样品比20:1样品的电导率要高,但Seebeck系数变化不大,最终由于前者的高温热导率下降更多而热电性能更好,在550K时ZT值达到1.25。随着球磨时间增加(12h-36h),所对应样品的Seebeck系数减小,电导率增加,热导率也随之有所增加, ZT值总体上随球磨时间增加而增大,36h样品获得最大ZT值1.03。48h球磨粉体由于颗粒细小难于SPS烧结成功,采用高温高压(450℃,2.5/3.5GPa)方式获得块体,其中压力2.5GPa所得样品的热电性能随温度增加变化较快,于500K时ZT值即达到1.14,而3.5GPa样品在575K时达到1.03。对粉体进行预退火后再进行SPS烧结的研究表明,预退火确实有利于烧结过程中块体致密度的提升,但是也会导致AgSbTe2分相,最终使其性能劣化。
     为了使AgSbTe2制备工艺简化,缩短制备周期,减少合成能耗,进行了单质元素结合SPS技术一步合成烧结制备AgSbTe2的探索,最终发现这种方法可以获得AgSbTe2化合物。同时对不同SPS温度工艺研究对比表明,460℃烧结最优。对420℃、440℃和460℃烧结样品的对比研究表明,随着烧结温度增加,三者的Seebeck系数变化不大,但电导率随之增大,且热导率相差不大,最终使得460℃样品的ZT值最高,在470K左右达到0.97。虽然与机械合金化后烧结块体最佳性能相比有一定的差距,但是其过程的简化,样品致密度的提升,以及进一步优化可能带来的更好结果,都说明这是一种有潜力的合成AgSbTe2的方法。
AgSbTe2 compound as the mutual composition of the two kinds of high performance thermoelectric materials, LAST and TAGS, which possesses extremely low thermal conductivity and foreseeable good thermoelectric transport properties, has been investigated extensively. At present, the research of this compound is mainly focused on its crystal structural analysis, theoretical calculation on its band structure, preparation techniques and its thermoelectric properties, which has been reported relatively high. Hence, optimizing the processing methods so as to promote the thermoelectric properties of AgSbTe2 further becomes a hot spot.
     AgSbTe2 compound has been synthesized by mechanical alloying method and the impacts of the mechanical alloying parameters on the phase composition, powder morphology and particle size have been investigated systematically. At the same time, spark plasma sintering (SPS) technique has been used to get bulk materials from the as-got ball milling powders, and the influence of ball milling technical parameters and annealing process on the microstructure and thermoelectric properties of the bulk has been studied and summarized as follows:
     Single phase AgSbTe2 compound has been prepared via mechanical alloying, and the effects of the main ball milling parameters, such as ball milling rotation speed, milling time, and charge ratio, on phase composition, microstructure, and particle size of the resulting powders have been investigated. The results suggested that the shortest time to get single phase AgSbTe2 compound was 15 hours,12 hours and 6 hours, respectively, when charge ratio was 20:1, and the rotation speed was 400rpm, 600rpm, and 800rpm, accordingly. This suggests that increasing the ball milling rotation speed can promote the alloying efficiency and decrease the consumption of time. When charge ratio and milling time were constant, the average particle size of the powder decreased with the increase of rotation speed, while the amount of small size particles increased. When charge ratio was 20:1, rotation speed was 600rpm, and the milling time as a variable changed from 12 hours to 48 hours, the phase composition of the powders still retained as single phase AgSbTe2, but their average particle size decreased, the homogeneity of particles rose, as well as the small size particles increased. The average particle size of the powder after 48hs'milling was 370nm, and the small size of the primary particles ranged from 30nm to 100nm. When the charge ratio varied from 10:1 to 20:1, then 30:1, and other conditions kept constant, it was only to find that the phase composition became impure with Ag5-xTe3. It suggests that the increase of charge ratio causes the change of the milling balls' movement trail and collision efficiency, thereby reduces the ball milling efficiency.
     SPS technique has been explored to get bulk materials from the typical processing powder (20:1,600rpm,24h), and an optimized technique was ascertained from the sintering experiment above, then the microstructures and thermoelectric properties of the bulks from the powders obtained by different ball milling conditions have been investigated. It shows that the 400℃SPS technique has been proved to be the most suitable, and the ZT value of the bulk from the typical processing powder achieves 1.1 at 498K. The SPS technique mentioned above has been used for the sintering of other powders, and the results suggest that the higher the rotation speed is, the more difficult the sintering of the according powder is, for the case that the particle size of the powders decreases with the increase of the rotation speed, and the amount of the air absorbtion by the powders increases, which results in the spray or delamination of the sample during SPS process. If the same sintering process was used repeatedly so as to get the bulk, there would be only to find that the performance of the bulk degraded. So compared with 400rpm and 600rpm samples, the 800rpm one haven't got the highest ZT for the sake of twice sintering. The study about the effects of different charge ratio on the properties of AgSbTe2 bulks suggests the 10:1 sample got a higher ZT of 1.25 at 550K, because it possessed higher electrical conductivity and a steep reduce of thermal conductivity during the high temperature range, compared with the 20:1 one. With the ball milling time increasing from 12h to 36h, the according bulk samples have such properties as the decrease of Seebeck coefficient, the increase of electrical conductivity, and a low increase of thermal conductivity, which finally makes the 36h sample get the highest ZT value of 1.03. As the powder obtained by 48hs'ball milling is hard to be sintered by SPS, a high temperature high press(450℃,2.5/3.5GPa) approach was applied to get it into bulk material. The properties which the samples exhibit show that the thermoelectric properties of the 2.5GPa sample varies with the increase of temperature quickly, and gets the ZT value of 1.14 at 500K, while the 3.5GPa sample changes gently, and has the ZT value of 1.03 at 575K. The annealing process towards the mechanical alloying powders makes the sintering process easier, but it also causes the phase decomposition and the performance degradation of the bulk from the powders after annealing.
     In order to simplify the preparation process of AgSbTe2, cut down the preparation period, and reduce the reaction energy consumption, a directly SPS synthesis after a simple blend of the elementary powders (Ag, Sb, Te) approach was explored to get AgSbTe2 bulk material, and finally it works well. In this research, it is proved that SPS 460℃is the best sintering temperature. And according to comparison of the samples from the three different sintering temperature 420℃,440℃,460℃, it suggests that with the increase of sintering temperature, the Seebeck coefficient and thermal conductivity of them didn't vary so much, but the electrical conductivity rose. This makes the ZT value of the 460℃sample be the highest, and achieve 0.973 at 470K. Although its property still is lower, compared with the samples obtained by the mechanical alloying powders after SPS, the simplification of process, the promotion of the relative density of the samples, and a probable better result after further optimization, all suggest that it is a potential and competitive way to synthesize AgSbTe2 compound.
引文
[1]Disalvo F. J., Thermoelectric cooling and power generation, Science,285(1999):703.
    [2]Service R. F., Semiconductor advance may help reclaim energy from'lost'heat, Science,311(2006):1860.
    [3]Tritt T. M.; Subramanian M. A., Thermoelectric Materials, Phenomena, and Applications:A Bird's Eye View, MRS Bulletin,31(2006):188.
    [4]Matthew Thorum, Recent advances in thermoelectric materials, Literature Seminar, 2006.
    [5]张建中,任保国,王泽深,空间应用放射性同位素温差发电器的发展趋势,电源技术,30(2006):525.
    [6]Abelson R. D., Section Space Missions and Applications, Thermoelectrics Handbook, ed. Rowe D. M., CRC, Boca Raton, USA,2005:Chap56.
    [7]Ota T., Kouichi F., Tokura S., et al., Development of Thermoelectric Power Generation System for Industrial Furnaces,25th International Conference on Thermoelectric,2006: 349.
    [8]张国威,权五云,刘晓为,理峰等,Bi2Te3-Bi2Se3-Sb2Te3赝三元热电材料红外热堆探测器的研制,哈尔滨大学学报,28(1996):64.
    [9]Haruyama T., Performance of Peltier elements as a cryogenic heat flux sensor at temperature down to 60K, Cryogenics,41(2001):335.
    [10]LaGrandeur J., Crane D., Hung S., et al., High efficiency waste energy recovery system for vehicle applications,25th International Conference on Thermoelectric,2006:349.
    [11]John C.Bass, Daniel T. Allen, Saeid Ghamaty, and Norbert B. Elsner, New Technology for Thermoelectric Cooling,20th IEEE SEMI-THERM Symposium, 2004:18.
    [12]Highgate D. J., Probert S. D., High energy-efficiency, readily transportable incubators, Applied Energy,35(1990):135.
    [13]徐桂英,葛昌纯,热电材料的研究和发展方向,材料导报,11(2000):38.
    [14]刘宏,王继扬,半导体热电材料研究进展,功能材料,31(2002):116.
    [15]Hugh W. H., Mark T. T., Modeling the thermoelectric transport properties of nanowires embedded in oriented microporous and mesoporous films, Microporous and Mesoporous Materials,47(2001):39.
    [16]Holman M. R., Rowland S. J., Design and development of a new cryosurgical instrument utilizing the Peltier thermoelectric effect, Journal of Medical Engineering & Technology,21(1997):106.
    [17]Richmond P. E., The Peltier effect, Physics Education,1(1966):145.
    [18]Thomson W., On a mechanical theory of thermoelectric currents, Proc. Roy. Soc., (1851):91.
    [19]吴丽清,陈金灿,严子浚,汤姆孙效应对半导体制冷器性能的影响,半导体学,18(1997):148.
    [20]刘恩科,朱秉升,罗晋生等,半导体物理学,国防工业出版社,1997,pp286.
    [21]Vedernikov M. V. and Iordanishvili E. K., A.F.Ioffe and Origin of Modern Semiconductor Thermoelectric Energy Conversion,17th International Conference on Thermoelectrics, Preceedings ICT(1998):37.
    [22]Hicks L. D., Harman T. C., Sun X., et al., Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B,53(1996): R10493.
    [23]Mahan G. D., Bartkowiak M. M., Widemann-Franz Law at Boundaries, Appl. Phys. Lett.,74(1999):953.
    [24]李红星,赵新兵,李伟文,新型热电材料研究进展,材料导报,16(2002):20.
    [25]Bao Y., Thermoelectric Technology Assessment, ARTI report No.10120-01,2007:p107.
    [26]Nolas G.S., Sharp J., Goldsmid H.J., Thermoelectrics—Basic Principals and New Materials Development, Springer, Berlin,2001:Chapter 5.
    [27]Lenoir B., Dauscher A., Cassart M., Ravich Yu.I., Scherrer H., EFFECT OF ANTIMONY CONTENT ON THE THERMOELECTRIC FIGURE OF MERIT OF Bi1-xSbx ALLOYS, J. Phy. Chem. Solid.59(1998):129.
    [28]Zemskov V. S., Belaya A. D., Beluy U. S., Kozhemyakin G N., Growth and investigation of thermoelectric properties of Bi-Sb alloy single crystals, J. Crys. Growth, 212(2000):161.
    [29]Osamu Y., Shoichi T., Ken M., Bismuth telluride compounds with high thermoelectric figures of merit, J. Appl. Phys.,93(2003):368.
    [30]Venkatasubramanian R., Siivola E., Colpitts T., and O'Quinn B., Thin-film thermoelectric devices with high room-temperature figures of merit, Nature,413(2001): 597.
    [31]Bed Poudel, et al., High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys, Science,320(2008):634.
    [32]Xie W. J., Tang X. F., Yan Y. G., Zhang Q. J., and Terry M. T., Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys, Appl. Phys. Lett., 94(2009):102111.
    [33]Sales B. C., Mandrus D., Williams R. K, Filled skutterudite antimonides:a new class of thermoelectric materials, Science,272(1996):1325.
    [34]唐新峰,陈立东,后藤孝,平井敏雄,袁润章,n型BayNixCo4-xSb12化合物的热电性能,物理学报,51(2002):2823.
    [35]Tang X. F., Li H., Zhang Q. J., et al., Synthesis and thermoelectric properties of double-atom-filled skutterudite compounds CamCenFexCo4-xSb12, J. Appl. Phys., 100(2006):123702.
    [36]He T., Chen J. Z., Rosenfeld H. D., and Subramanian M. A., Thermoelectric Properties of Indium-Filled Skutterudites, Chem. Mater.18(2006):759.
    [37]Li H., Tang X. F., Zhang Q. J., and Uher C., High performance InxCeyCo4Sb12 thermoelectric materials with in-situ forming nanostructured InSb phase, Appl. Phys. Lett.,94(2009):102114.
    [38]Xiong Z., Chen X., Huang X., Bai S., Chen L., High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy, Acta Materialia,2010.
    [39]Benneu G.L., in:Rowe D.M. (Ed.), CRC Handbook of Thermoelectrics, CRC Press, 1995:p515.
    [40]Harman T. C., Taylor P. J., Walsh M. P., LaForge B. E., Quantum dot superlattice thermoelectric materials and devices, Science 297(2002):2229.
    [41]Harman T. C., Walsh M. P., Laforge B. E., Turner G. W., Nanostructured thermoelectric materials, J. Electron. Mater.34(2005):L19.
    [42]Yonenaga I., Akshi T., Goto T., Thermal and electrical properties of Czochralski grown GeSi single crystals, J. Phys. Chem. Solid.,62(2001):1313.
    [43]Giri Joshi, Hohyun Lee, Yucheng Lan, et al., Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys, Nano Lett.8(2008):4670.
    [44]Wang X. W., Lee H., Lan Y. C., Zhu G. H., et al., Enhanced Thermoelectric Figure of Merit in Nanostructured n-type Silicon Germanium Bulk Alloy, Appl. Phys. Lett., 93(2008):193121.
    [45]Palmqvist A. E. C., Iversen B. B., Furenlid L. R., et al., Charge Transfer and Local Structure in Thermoelectric Germanium Clathrates, Mater. Research Society,2000.
    [46]Meng J. F., Shekar N. V. C., Badding J. V., et al., Threefold enhancement of the thermoelectric figure of merit for pressure tuned Sr8Ga16Ge30, J. Appl. Phys.89(2001): 1730.
    [47]Blake N. P., Latturner S., Bryan J. D., et al., Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge3o, Sr8Ga16Ge3o, Ba8Ga16Si30, and Ba8In16Sn30, J. Chem. Phys.,115(2001):8060.
    [48]Saramat A., Svensson G., Palmqvist A. E. C., et al., Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge3o, J. Appl. Phys., 99(2006):023708.
    [49]Tang X. F., Li P., Deng S. K., et al., High temperature thermoelectric transport properties of double-atom-filled clathrate compounds YbxBa8-xGa16Ge30, J. Appl. Phys., 104(2008):013706.
    [50]Mastronardi K., Young D., and Wang C. C., et al., Antimonides with the half-Heusler structure:New thermoelectric materials. Appl. Phys. Lett.,74(1999):1415.
    [51]Larson P., Mahanti S. D., and Kanztzidis M. G, Structure stability if Ni-containing half-Heusler compounds, Phys. Rev. B,62(2000):12754.
    [52]Shen Q., Chen L., et al., Effects of partial substitution of Ni by Pd on thermoelectric properties of ZrNiSn-based compounds, Proceedings ICT 2001.
    [53]Xia Y., Bhattacharya S., Pope A. L., Thermoelectric properties of Semimetallic (Zr,Hf)CoSb Half-Heusler Phases, J. Appl. Phys.,88(2000):1952.
    [54]Ulrich Miiller, Inorganic Structural Chemistry, Second edition 1992, p116-120.
    [55]Brown S. R., Kauzlarich S. Gascoin M., F. and Snyder G. J., Yb14MnSb11, New high efficiency thermoelectric material for power generation, Chem. Mater.,18(2006):1873.
    [56]Mayer H. W., Mikhail I., and Schubert K., Phases of ZnSbN and CdSbN mixtures, J. Less Common Metals,59(1978):43.
    [57]Tapiero M., Tarabichi S., Gies J. G., Noguet C., Zielinger J. P., Joucla M., Loison J., Robino M., Herion J., Preparation and characterization of Zn4Sb3,12(1985):257.
    [58]Caillat T., Fleurial J. P., and Borshchevsky A., Preparation and thermoelectric properties of semiconducting Zn4Sb3, J. Phys. Chem. Solid.,58(1997):1119-25.
    [59]Zaitsev V. K., Fedorov M. I., Gurieva E. A., et al., Highly effective Mg2Si1-xSnx thermoelectrics, Phys. Rev. B,74(2006):045207.
    [60]Masayasu Akasaka, Tsutomu Iida, Keishi Nishio, Yoshifumi Takanashi, Composition dependent thermoelectric properties of sintered Mg2Si1-xGex(x=0 to 1) initiated from a melt-grown polycrystalline source, Thin solid Films,2007:p5.
    [61]Zhu T. J., Cao Y. Q., Zhang Q., Zhao X. B., Bulk Nanostructured Thermoelectric Materials:Preparation, Structure and Properties, J. Elec. Mater.,2009.
    [62]Gottlieb U., Sulpice A., Lambert-Andron B. and Laborde O., Magnetic properties of single crystalline Mn4Si7, J. Alloy. Comp.,361(2003):13.
    [63]Tritt T. M., Wilson M. L., Johnson A. L., et al., Potential of quasicrystals and quasicrystal approximants for new and improved thermoelectric materials,16th International Conference on Thermoelectric, Germany,1997:454.
    [64]Terasaki I., Sasago Y., Uchinokura K., Large thermoelectric power in NaCo2O4 single crystals, Phys. Rev. B,56(1977):685.
    [65]Hicks L. D., Dresselhaus M. S., Effect of Quantum-well Structures on the Thermoelectric Figure of Merit, Phys. Rev. B,47(1993):12727.
    [66]Malshukov A. G., Ma Z. S., Antonyuk V. B., et al., Multilayer Thermionic Transport in Semiconductor Supperlattices, Solid. Stat. Comm.,119(2001):563.
    [67]Hirai T., Chen L., Recent and Prospective Development of Functionally Graded Materials in Japan, Material Science,308(1999):509.
    [68]Wang Y. C., Disalvo F. J., Exploring Complex Chalcogenides for Thermoelectric Applications, Mater. Res. Soc. Symp. Proc.,626(2001):Z7.6/1.
    [69]Melnyk G, Bauer E., Rogl P., et al., Thermoelectric properties of ternary transition metal antimonides, J Alloys Comp.,296(2000):235.
    [70]黄培云,粉末冶金原理,北京:冶金工业出版社,1982:116.
    [71]陈振华,陈鼎,机械合金化与固相反应球磨,化学工业出版社,2005:1.
    [72]Suryanarayana C., Nanocrystalline materials, Intern. Mater. Rev.,40(1995):41.
    [73]Gerasimov K. B., Gusev A. A., Ivanov E. Y., et al., Tribochemical equilibrium in mechanical alloying of metals, J. Mater. Sci.,26(1996):2495.
    [74]Liu L., Casadio S., Magini M., et al., Solid state reactions of V75Si25 driven by mechanical alloying, Mater. Sci. Forum,235~238(1997):163.
    [75]Gaffet E., Harmelin M., Faudot F., Far-from-equilibrium phase transition induced by mechanical alloying in the Cu-Fe system, J. Alloy. Comp.,194(1993):23.
    [76]Ivison P. K., Soletta I., Cowlan N., et al., The effect of absorbed hydrogen on the amorphization of CuTi alloys, J Phys.:Cond. Matt.,4(1992):5239.
    [77]Joshua D. S., and Douglas L. M., Precipitation of Ag2Te in the thermoelectric material AgSbTe2, J. Alloy. Comp.,478(2009):75.
    [78]Wernick J. H., and Benson K. E., New semiconducting ternary compounds, Letters to the Editors,1957:157.
    [79]Zhuse V. P., Sergeeva V. M., Shtrum E. L., Sov. Phys. Tech. Phys.,3(1958):1925.
    [80]Geller S. Wernick J. H., Ternary Semiconducting Compounds with Sodium Chloride structure:AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2, Acta Crys.,12(1959):46.
    [81]Armstrong R. W., Faust J. W., JR., and Tiller W. A., A Structural Study of the compound AgSbTe2, J Appl. Phys.,31(1960):1954.
    [82]Hockings E. F., The thermal conductivity of silver antimony telluride, Letters to the Editors,1959:341.
    [83]Taizo IRIE, Thermoelectric properties of the single-phase of AgSbTe2, J. Phys. Soc. Jap. 17(1962):1810.
    [84]Shay J.L., Wernick J.H., Ternary Chalcopyrite Semiconductors:Growth, Electronic Properties, and Applications, Pergamon Press, New York,1975.
    [85]Gaber A. M., Tuttle J. R., Albin D. S., Gaber A.M., Tuttle J.R., Albin D.S., Tenant A.L. and Contreras M.A., ALP Conf. Proc.306(1994):59.
    [86]Tominaga J., Takahashi M., Phillips RT., Kikukawa T., Structure of the optical phase change memory alloy, Ag-V-In-Sb-Te, determined by optical spectroscopy and electron diffraction, J. Appl. Phys.,82(1997):3214.
    [87]Njoroge W. K., and Wuttig M., Crystallization kinetics of sputter-deposited amorphous AgInSbTe films, J. Appl. Phys.,90(2001):3816.
    [88]ROSE-MARIE M., GERARD B., JEAN-CLAUDE T., Phase equilibria in Sb2Te3-Ag2Te system, J. Mater. Sci.,20(1985):730.
    [89]Quarez E, Hsu K F, Pcionek R, et al. Nanostructuring, compositional fluctuations, and atomic ording in the thermoelectric materials:AgPbmSbTem+2, The myth of solid solution. J Am. Chem. Soc.,127(2005):9177.
    [90]Khang Hoang, Mahanti S. D., James R. S., and Mercouri G. K., Atomic Ordering and Gap Formation in Ag-Sb-Based Ternary Chalcogenides, Phys. Rev. Lett.,99(2007): 156403.
    [91]Wojciechowski K., Tobola J., Schmidt M., Zybala R., Crystal structure, electronic and transport properties of AgSbSe2 and AgSbTe2, J. Phys. Chem. Solid.,69(2008):2748.
    [92]Lin-Hui Ye, Khang Hoang, A. J. Freeman, S. D. Mahanti, et al., First-principles study of the electronic, optical, and lattice vibrational properties of AgSbTe2, Phys. Rev. B,77(2008):245203.
    [93]Noda Y., Nishida I. A., Kang Y. S., and Niino M., Preparation and Thermoelectric Properties of AgSbTe2,17th Intern. Conf. on Thermoelectric.,1998:350.
    [94]Yoneda S., Ohno Y., Ohtaz E., Yuhashi N., Shiota I., Shinohwas Y., Kaibe H. T., and Nishida I. A., Temperature dependence of the figure-of-merit of Ag0.208Sb0.275Te0.517, 21st Intern. Conf. on Thermoelectric.,2002:177.
    [95]MATSUSHITA H., HAGIWARA E., KATSUI A., Phase diagram and thermoelectric properties of Ag3-xSb1+xTe2, J. Mater. Sci.,39(2004):6299.
    [96]Hongan Ma, Taichao Su, Pinwen Zhu, Jiangang Guo, Xiaopeng Jia, Preparation and transport properties of AgSbTe2 by high-pressure and high-temperature, J. Alloy. Comp.,454(2008):415.
    [97]Taichao Su, Xiaopeng Jia, Hongan Ma, Lin Zhou, Jiangang Guo, Nan Dong, Enhanced power factor of Ag0.208Sb0.275Te0.517 prepared by HPHT, Phys. Lett. A,372(2008):515.
    [98]Taichao Su, Xiaopeng Jia, Hongan Ma, et al., Enhanced thermoelectric performance of AgSbTe2 by high pressure and high temperature, J. Appl. Phys.,105(2009):073713.
    [99]Heng Wang, Jing-Feng Li, Minmin Zou, and Tao Sui, Synthesis and transport properties of AgSbTe2 as a promising thermoelectric compound, Appl. Phys. Lett.,93(2008): 202106.
    [100]Izard V., Record M.C., Tedenac J.C., Mechanical alloying of a new promising thermoelectric material, Sb3Zn4, J. Alloy. Comp.345(2002):257.
    [101]Zakeria M., Allahkaramia M., Kavei Gh., Khanmohammadian A., Rahimipour M.R., Synthesis of nanocrystalline Bi2Te3 via mechanical alloying, J. Mater. Proc. Tech., 209(2009):96.
    [102]Weider H. H.李达汉译,半导体材料电磁性能参数的测量计量出版社,北京,1986:156.
    [103]Thompson J. R., Politis C., Formation of amorphous Ti-Pd alloys by mechanical alloying methods. Europhysics Lett.,3(1987):199.
    [104]F.H. Froes, J. of Metals,41(1989) 26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700