葡萄糖酸改性碱性钙基膨润土的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱性钙基膨润土是近年开发出的第一种阴离子交换型膨润土,该膨润土层间钙离子带有活性氢氧根,为更多的有机物进入膨润土层间提供了可能,利用丰富的有机酸资源对碱性钙基膨润土进行有机改性可得到用途广泛的有机酸膨润土。葡萄糖酸是一种多羟基有机酸,用它改性碱性钙基膨润土后可得到一种多羟基有机膨润土,其亲水性好,与多羟基类高分子材料或大分子有着很好的相容性。
     本文以葡萄糖酸改性碱性钙基膨润土为出发点,一方面在温和的反应条件下进行表面改性,在保持其层状结构的前提下,增加其表面的羟基数量,得到脱水能力强、稳定性良好的葡萄糖酸改性膨润土脱水材料;另一方面使葡萄糖酸分子充分进入层间与OH~-发生酸碱中和反应,因激烈放热致使膨润土层板发生剥离,层片达到纳米尺度,制得粒子剥离型葡萄糖酸纳米蒙脱石(P-EGAM)。葡萄糖酸纳米蒙脱石作为一种无机/有机复合纳米材料,可以对天然高分子或已经聚合的亲水性高分子材料实现膨润土高度分散改性。
     本文通过单因素实验,分别探索出葡萄糖酸改性膨润土脱水材料和葡萄糖酸纳米蒙脱石制备的最佳工艺参数,并利用红外光谱、X射线衍射、差热分析和电子显微镜等手段对合成的产物进行结构表征。同时,对这两种材料的性能及应用作了初步研究。结构表征及应用结果表明,葡萄糖酸改性膨润土脱水材料仍保持碱性钙基膨润土的层状结构和层间距,表面粗糙多孔,热稳定性好,脱水再生温度低,在乙醇常压蒸汽脱水应用中,当乙醇进料质量浓度为95%时,每克吸附剂可生产99.5%乙醇0.706 g;表征结果表明葡萄糖酸纳米蒙脱石为葡萄糖酸表面修饰的蒙脱石粒子,热稳定性与葡萄糖酸钙相同,内部结构及形貌相对碱性钙基膨润土均已发生了明显的变化,粒子为厚度小于100 nm的纳米片。在淀粉糊添加P-EGAM制备P-EGAM/淀粉复合材料的应用实验中,P-EGAM能达到增粘的效果,并存在最佳添加量为2.5%。最后,综合对比两种材料的制备、表征、应用等结果,初步推测葡萄糖酸蒙脱石的剥离机理,并根据产品DSC的吸热焓变数据,定量计算了产品的剥离率。
     葡萄糖酸改性碱性钙其膨润土的研究与开发,可以将膨润土和木薯淀粉两种资源的开发与利用有机地结合起来,拓宽膨润土在有机溶剂脱水、亲水性高分子复合材料方面的应用。
Alkaline Ca-bentonite is the first anion exchange bentonite which has been developed in recent years. Because calcium ion in the bentonite layer with activity hydroxide, it make possibility to more organics intercalate into the bentonite layer. Using organic acids which is rich in nature, alkaline Ca-bentonite can be modified by a wide range of organic acid bentonite. Gluconic acid is a polyhydroxy organic acid, and it can modify alkaline Ca-bentonite make a polyhydroxy bentonite which is good hydrophilicity and good compatibility for polyhydroxy polymer or macromolecular.
     In this work, gluconic acid modified alkaline Ca-bentonite as the starting point, on the one hand, the bentonite modified reaction was carried on under mild conditions so as to maintain the layered structure, and the numbers of hydroxyl of bentonite surface were increased. Gluconic acid modified bentonite which is a good capacity and stability anhydrous material was prepared. On the other hand, let gluconic acid molecule fully enter the bentonite layer and occurre acid-base neutralization reaction with OH" in layer. Due to intense heat of the reaction, the bentonite layers were exfoliated into nano-piece. Then particle exfoliated gluconic acid nano-montmorillonite (P-EGAM) was prepared. As an inorganic/ organic composite nano-materials, gluconic acid nano-montmorillonite can modify the natural polymers or polymerized hydrophilicity macromolecular to a high degree decentralize.
     In this paper, optimum preparation conditions of gluconic acid modified bentonite anhydrous material and paticle exfoliated gluconic acid montmorillonite were obtained through single-factor experiment. Using IRD, XRD, DSC and SEM, structure of the products were characterized. At the same time, both the properties and application of this two materials were preliminary studied. Results of characterization and application showed that the new anhydrous material remains the layered structure and the layer spacing of alkaline Ca-bentonite. It also indicates that the new anhydrous material has porous and roughness surface, and is good thermostability and regeneration of low temperature. Result of application in normal pressure ethanol vapor dehydration showed, when ethanol concentration in the feed was 95% (mass), production capacity was 0.706 gram product·(gram adsorbent)~(-1). Results of characterization and application showed that the particle exfoliated gluconic acid montmorillonite was a montmorillonite particle modified by gluconic acid. Its thermostability was similarly to calcium gluconate. Its interior structure and surface were changed apparently. It was a nano-piece which thickness was smaller than 100 nm. The application result in cassava starch modification showed that the P-EGAM could increase the viscosity of P-EGAM/ starch composites, and the optimal proportion of P-EGAM addition is 2.5%. Finally, exfoliated mechanism was preliminary speculated by comprehensive comparison of preparation, characterization and application of the two materials. From data of endothermic enthalpy change of DSC, exfoliated rate of gluconic acid montmorillonite was calculated.
     Research and development of gluconic acid modified alkaline Ca-bentonite can combine organically with the development of bentonite and cassava starch. It also can broaden the application of bentonite in the field of dehydration of organic solvents and hydrophilic polymer composite material.
引文
[1]姜桂兰,张培萍.膨润土加工与应用[M].北京:化学工业出版社,2005.1-22,131.
    [2]王鸿禧.膨润土[M].北京:地质出版社,1980.18-35.
    [3]郭瓦力,张德金,于桂香.多功能原料.膨润土[J].辽宁化工,1999,28(4):191-193.
    [4]李凯,龚文琪.有机膨润土的制备及应用综述[J].科技创业月刊,2005,(2):149-151.
    [5]韦藤幼,童张法,吴璇.碱性钙基膨润土及其制备方法[P].中国:200510101332.X,2006.07.19.
    [6]韦藤幼,童张法,李琪琳,等.有机酸膨润土及其制备方法[P],中国:200710027154.X,2007.10.10.
    [7]王重,谢士光,陈德芳,等.有机膨润土的合成及应用综述[J].辽宁化工,2000,20:36-39.
    [8]葛忠华,蔡晔,周春晖.有机膨润土制备研究和应用[J].浙江化工,2001,32(3):3-7.
    [9]Smith C R,Base exchange reaction of bentonite and salts of organic bases[J].Journal of the American Chemical Society,1934,56(2):1561-1563.
    [10]Jordan J W.Organophilic bentonites,I.Swelling in organic liquids[J].Journal of Physical Chemistry,1949,53:294-306.
    [11]Zhang Z Z,Sparks D L.and Scrivner N.C.,Sorption and desorption of quaternary amine cations on clay[J].Environmental Science & Technology,1993,27(8):1625-1631.
    [12]Wolfe T A,Demirel T,Baymann E R.Interaction of aliphatic amine with montmorillonite to enhance adsorption of organic pollutants[J].Clay and Clay Minerals,1985,33(4):301-311.
    [13]韩丽荣,鲁安怀,陈从喜,等.有机膨润土制备条件对其吸附有机污染物性能的影响[J].岩石矿物学杂志,2001,20(4):445-448.
    [14]陈德芳,王重,李运康.有机膨润土的性能与结构关系的研究[J].西安交通大学学报,2000,34(8):92-95.
    [15]蒋月秀,黄大新,李仲民,等.广西宁明膨润土的钠化工艺研究[J].四川大学学报,2002,34(S):106-108.
    [16]黎铉海,黄祖强,潘柳萍,等.宁明膨润土湿法提纯的工艺研究[J].化工矿物与加工,2000,29(11):5-8.
    [17]黄慨,童张法.季铵型有机膨润土的制备与应用[J].化学与生物工程,2003,20(S): 70-73.
    [18]吕宪俊,周国华,崔学奇.陕北府谷膨润土矿及有机膨润土的研制[J].中国非金属矿工业导刊,1999(5):68-70.
    [19]张兰英,郑松志.山东钙基膨润土的开发应用-有机膨润土的合成方法研究[J].世界地质,1995,14(4):88-92.
    [20]李金娥,代斌,董正梅,等.利用德楞山钙基膨润土制备有机膨润土及其结构性能表征[J].非金属矿,2007,30(3):51-54.
    [21]王重.有机膨润土合成工艺及性能的研究[D].西安交通大学,1997.
    [22]刘福生,彭同江,陈取锋.四川三台有机膨润土制备实验研究[J].矿产综合利用,2002,(1):8-12.
    [23]孙红娟,彭同江,刘福生,等.新疆某地钠蒙脱石的季铵盐处理与插层复合物制备[J].非金属矿,2002,25(3):10-13.
    [24]Chen B L,Zhu L Z.Chemical behavior of organic compounds in the interface of water/dual-cation organobentonite[J].Journal of Environmental Sciences,2002,14(1):12-19.
    [25]杨维,杨军锋,王立东,等.阴-阳离子有机膨润土制备及其吸附Cr(Ⅵ)的影响因素研究[J].水文地质工程地质,2007,34(5):102-106.
    [26]Shen Y H,Preparations of organobentonite using nonionic surfactants[J].Chemosphere,2001,44(5):989-995.
    [27]Breen C,Waston R.Acid-activated organochays:preparation,characterization and catalytic activity of polycation-treated bentonites[J].Applied Clay Science,1998,6(12):479-494.
    [28]韦藤幼,李琪琳,吴璇,等.碱性钙基膨润土的制备及其表征[C].化工/生化技术与生物质能源,2006.455459.
    [29]吴璇.碱性钙基膨润土的制备及其应用研究[D].广西大学,2005.
    [30]李琪琳.碱性钙基膨润土的制备机理探索及其应用研究[D].广西大学,2007.
    [31]Ladisch M R,Dyck K.Dehydration of ethanol:new approach gives positive energy blance[J].Science,1979,(205):898-900.
    [32]Al-Asheh S,Banat F,Al-Lagtah N.Separation of ethanol-water mixtures using molecular sieves and biobased adsorbents[J].Chemical Engineering Research and Design,2004,82(7):855-864.
    [33]Beery K E,Ladisch M R.Chemistry and properties of starch based dessicants[J].Enzyme and Microbial Technology,2001,28:573-581.
    [34]Westgate P,Ladisch M R.Sorption of organics and water on starch[J].Industrial &Engineering Chemistry Research,1993,32(8):1676-1680.
    [35]Westgate P J,Lee J Y,Ladisch M R.Modeling of equilibrium sorption of water vapor on starch materials[J].Transactions ASAE,1992,35(1):213-219.
    [36]Hu X,Xie W.Fixed-bed adsorption and fluidized-bed regeneration for breaking the azeotrope of ethanol and water[J].Separation Science and Technology,2001,36(1):125-136.
    [37]王秀道,尹卓容.分子筛吸附生产无水酒精[J].酿酒科技,2002,109(1):24-26.
    [38]Hassaballah A A,Hills J H.Drying of ethanol vapors by adsorption on corn meal[J].Biotechnology and Bioengineering,1990,35(6):598-608.
    [39]邱竹,韦藤幼,李琪琳,等.碱性钙基膨润土脱水材料的制备和表征[J].过程工程学报,2007,7(4):822-826.
    [40]Furzer I A,Duffy G J.Mass transfer on sieve plates without downcomers[J].Journal of Chemical Engineering,1997,14(3):217-224.
    [41]Garg D R,Ausikaitis J P Molecular sieve dehydration cycle for high water content streams[J].Chemical Engineering Progress,1983,79(4):6011.
    [42]Fawzi A,Banat,Fahmi A,et al.Analysis of vaporliquid equilibrium of ethanol-water system via headspace gas chromatography:effect of moleculcular sieves[J].Separation and Purification Technology,2000,18(2,6):111-118.
    [43]Abu A1-Rub F A,Banat F A,Jumah R.Vapor-liquid equilibrium of ethanol-water system in the presence of molecular sieves[J].Separation Science and Technology,1999,34(12):2355-2368.
    [44]张光旭.用玉米淀粉作吸附剂制取无水酒精的研究进展[J].食品与发酵工业,1997,23(1):66-68,72.
    [45]张久恺,刘大中.玉米淀粉脱水剂制备无水乙醇研究进展[J].山东轻工业学院学报,1998,12(3):1-3.
    [46]Beery K E,Ladisch M R.Adsorption of water from liquid-phase ethanol-water mixtures at room temperature using starch-based adsorbents[J].Industrial and Engineering Chemistry Research,2001,40(9):2112-2115.
    [47]Vareli G,Demertzis P G;et al.Effect of regeneration thermal treatment of cellulosic and starchy materials on their capacity to separate water and ethanol[J].Journal of Cereal Science,2000,31(2):147-154.
    [48]吴乃登.玉米粉吸附乙醇蒸气中的水[J].化学工程师,1993,13(4):9-11.
    [49]田玉新,王世铭.玉米粉为吸附剂制取无水乙醇的试验研究[J].天津化工,1996,10(2):20-23.
    [50]马晓建,吴勇,赵银峰,等.含水乙醇蒸汽脱水的生物质吸附性能研究[J].酿酒科技,2006,139(1):39-42.
    [51]常华,袁希钢,曾爱武.用于乙醇脱水的生物质吸附性能[J].化工学报,2004,55(2):309-312.
    [52]邱竹.碱性钙基膨润土脱水材料的制备及在乙醇脱水中的应用[D].广西大学,2007.
    [53]张秀英.聚丙烯/蒙脱石纳米复合材料的制备[J].金属矿山,2006,(12):37-39.
    [54]李桂英,张其震,等.聚酰亚胺/蒙脱石纳米复合材料研究进展[J].化学通报,2002,65(11):742-747.
    [55]孙红娟,彭同江,邓建国.聚苯胺/蒙脱石纳米复合材料的实验制备研究[J].岩石矿物学杂志,2005,24(1):73-78.
    [56]Kawasumi M,Hasegawa N,Kato M,et al.Preparation and methanicalproperties of polypropylene-clay hybrids[J].Macromolecules,1997,30(20):6333-6338.
    [57]张径,杨玉昆.插层法悬浮聚合制PMMA/蒙脱土纳米复合材料[J].高分子学报,2001,(1):79-83.
    [58]Lee D C,Jang L W.Characterization of epoxy-clay hybrid composite prepared by emulsion polymerization[J].Journal of Applied Polymer Science,1998,68(12):1997-2005.
    [59]Huang J,Zhu Z,Yin J,et al.Poly(etherimide)/montmorillonite nanocomposites prepared by melt intercalation:morphology,solventresistance properties and properties[J].Polymer,2001,42(3):873-877.
    [60]Zhu Z K,Yang Y,Yin J,et al.Preparation and properties of organosoluble montmorillonite/polyimide hybrid materials[J].Journal of Applied Polymer Science,1999,73(11):2063-2068.
    [61]吴秋菊,薛志坚,漆宗能,等.具有伸展链构象聚苯胺/蒙脱土混杂纳米复合材料的合成与表征[J].高分子学报,1999,(5):551-556.
    [62]张立群,孙朝晖,王一中,等.粘土/丁腈橡胶(NBR)纳米复合材料的性能研究[J].橡胶工业,1999,46(4):213-216.
    [63]Wang S,Long C,Wang X,et al.Synthesis and properties of silicone rubber/organomontmorillonite hybrid nanocomposites[J].Journal of Applied Polymer Science,1998,69(8):1557-1561.
    [64]Laus M,Francescangeli O,Sandrolini F.New hybrid nanocomposites based on an organophilic clay and poly(styrene-b-butadiene)copolymers[J].Journal of Materials Research,1997,12(11):3134-3139.
    [65]Huang X Y,Stewart L,Williamf B,et al.Synthesis of polycarbonatelayered silicate nanocomposites via cyclic oligomers[J].Macromolecules,2000,33(6):2000-2004.
    [66]戈明亮,徐卫兵.聚氯乙烯/蒙脱土纳米复合材料的研究[J].塑料工业,2005,33(5):96-98,102.
    [67]漆宗能,尚文字.聚合物/层状硅酸盐纳米复合材料理论与实践[M].北京:化学工业出版社,2002.4-10.
    [68]Majeti N V,Ravi Kumar.A review of chitin and chitosan applications[J].Reactive and Functional Polymers,2000,46:1-27.
    [69]Struszczyk,Marcin H.Chitin and chitosan:Part Ⅱ,Applications of chitosan[J].Polymer,2002,47(6):396-403.
    [70]Singh Dinesh K,Ray Alok R.Biomedical applications of chitin,chitosan,and their derivatives[J].Journal of Macromolecular Science,Part C:Polymer Reviews,2000,40(1):69-83.
    [71]Mao Chun,Qiu Yongzhi,Sang Haibo,et al.Various approaches to modify biomaterial surfaces for improving hemocompatibility[J].Advances in Colloid and Interface Science,2004,110(1-2):5-17.
    [72]朱爱萍,严忻,张灿,等.溶胶-凝胶法制备壳聚糖/SiO_2杂化材料[J].高等化学学报,2001,22(12):2113-2116.
    [73]Darder M,Colilla M,Ruiz-Hitzky E.Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite[J].Chemical Material,2003,15(20):3774-3780.
    [74]闻燕,杜予民,李湛.壳聚糖/纳米TiO_2复合膜的制备和性能[J].武汉大学学报(理学版).2002,48(6):701-704.
    [75]陈光明,李强,漆宗能.聚合物/层状硅酸盐纳米复合材料研究进展[J].高分子通报,1999,(4):1-10.
    [76]Alexandre M,Dubois E Polymer-layered silicate nanocomposites:preparation,properties and uses of a new class of materials[J].Materials Science and Engineering,2000,28(1-2):1-63.
    [77]Giannelis E P.Polymer layered silicate nanocomposites[J].Advanced materials,1996,8(1):29-35.
    [78]郑俊萍.明胶/蒙脱土纳米复合材料的制备及性能[D].天津大学,2001.
    [79]邱海霞.多糖与蒙脱土的纳米插层及其在吸水性树脂中的应用[D].天津大学,2004:26-49.
    [80]郑俊萍,奚利飞,杨学稳.不同交联方式的明胶及明胶/蒙脱土纳米复合材料的力学性能[J].材料工程,2003,(9):26-29.
    [81]Darder M,Colilla M,Ruiz-Hitzky E.Chitosan-clay nanocomposites:application as electrochemical sensors[J].Applied Clay Science,2005,28(1-4):199-208.
    [82]徐云龙,肖宏,钱秀珍.壳聚糖/蒙脱土纳米复合材料的结构与性能研究[J].功能高分子学报,2005,18(3):383-386.
    [83]王丽,王爱勤.壳聚糖/蒙脱土纳米复合材料的制备及对染料的吸附性能[J].高分子材料科学与工程,2007,23(5):104-107.
    [84]Oya A.Kurokawa Y,Yasuda H.Factors controlling mechanical properties of clay mineral/polypropylene nanocomposites[J].Journal of Materials Science,2000,35(5):1045-1050.
    [85]杨晋辉,于九皋,马骁飞.热塑性淀粉的制备、性质及应用研究进展[J].高分子通报,2006,11:78-84.
    [86]De Carvalho A J F,Curvelo A A S,Agnelli J A M.A first insight on composite of thermoplastic starch and kaolin[J].Carbohydrate Polymers,2001,45(2):189-194.
    [87]Park H M,Lee W K,Cho W J,et al.Environmentally friendly polymer hybrids[J].Journal of Materials Science,2003,38(5):909-915.
    [88]黄明福,于九皋,马骁飞.蒙脱土增强热塑性淀粉性能的研究[J].石油化工,2004,33(7):662-665.
    [89]李本红,张玉清,姚大虎,等.蒙脱土/淀粉基纳米复合材料研究[J].塑料工业,2004,32(1):17-19.
    [90]曹福禄.分子筛法无水酒精生产工艺探讨[J].酿酒,2006,33(5):60-63.
    [91]金其荣,张继民,徐勤.有机酸发酵工艺学[M].中国轻工业出版社,1989.465-467.
    [92]张燕萍.变性淀粉制造与应用[M].化学工业出版社,2001.312-313.
    [93]黄祖强,童张法,黎铉海,等.机械活化对木薯淀粉的溶解度及流变学特性的影响[J].高校化学工程学报,2006,20(3):449-454.
    [94]侯文艳,刘宗怀,张国春.无机层状化合物的剥离技术及应用研究[J].材料导报,2007,21(1):110-113.
    [95]萧耀南,李春成,张栋,等.聚酰胺共聚物/粘土纳米复合材料及其制备方法和用途[P].中国,CN200610007296.5,2007.08.29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700