辉光放电电解等离子体引发制备凹凸棒高分子材料及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辉光放电电解是一种新型的电化学过程,属于非法拉第电解过程,其中等离子体由电极和电解质液面之间的直流辉光放电来维持。当两极间的电压足够高时,常规电解自动转化为辉光放电电解,从而产生等离子体。等离子体中的某些高活性组分如H·,·OH,H_2O_2,e~-_(aq),HO_2·为各种类型的溶液化学反应提供了高能活性粒子。本文研究了辉光放电电解等离子体技术在制备高分子材料方面的应用,主要内容如下:
     第一章简单介绍了等离子体的特征,低温等离子体的产生方法和主要应用领域,并综述了辉光放电电解等离子体在废水处理、化学合成以及高分子材料方面的应用和研究进展。
     第二章以丙烯酸和凹凸棒土为原料,N,N’-亚甲基双丙烯酰胺为交联剂,采用辉光放电等离子体引发聚合法在水溶液中一步制得凹凸棒/聚丙烯酸高吸水性复合材料。考查了放电电压、交联剂用量、单体浓度及凹凸棒土含量对树脂吸水率的影响,并用红外光谱(FTIR)、扫描电子显微镜(SEM)和热重分析(TGA)表征了复合材料的结构、形态和性能。结果表明:在最佳条件下,复合材料性能良好,吸水率为1281 g/g,对0.9% NaCl水溶液的吸附率为111 g/g。
     第三章研究了制备的聚丙烯酸/凹凸棒复合材料对Cu~(2+)吸附行为。考查了放电电压、交联剂用量、单体浓度及凹凸棒土含量对吸附率的影响,结果表明:该吸附剂对水溶液中的铜离子具有较高的去除率。吸附过程动力学符合假二级速率方程。在所研究的浓度范围内,铜离子的吸附符合Langmuir吸附。
     第四章以丙烯酸、丙烯酰胺和凹凸棒土为原料,N,N’-亚甲基双丙烯酰胺为交联剂,采用辉光放电电解等离子体引发聚合法在水溶液中一步制得凹凸棒/聚丙烯酸高吸水性复合材料。考查了放电电压、交联剂用量、单体浓度及凹凸棒土含量对树脂吸水率的影响,并用红外光谱(FTIR)、扫描电镜(SEM)和热重分析(TGA)表征了复合材料的结构、形态和性能。结果表明:在最佳条件下,复合材料性能良好,吸水率为1350 g/g。第五章研究了制备的聚丙烯酸/丙烯酰胺/凹凸棒复合材料对水溶液中Cu~(2+),Pb~(2+)的吸附行为,考查了放电电压、交联剂用量、单体质量比及凹凸棒土含量等对复合材料吸附量的影响,从动力学和热力学角度分别分析了该吸附剂对Cu~(2+)和Pb~(2+)的吸附过程。结果表明该吸附剂对铜离子、铅离子有较高的去除率。吸附过程动力学符合假二级速率方程Langmuir吸附模型。
Glow discharge electrolysis is a kind of novel electrochemical process and non-Faraday electrolysis process. The plasma is sustained by a direct current (DC) glow discharge between an electrode and the surface of electrolyte. The conventional electrolysis turned into glow discharge electrolysis when the applied voltage is high enough in aqueous media. There are a lot of energetic species to produce by glow discharge electrolysis, such as H_2O_2,·OH,·H, e~-_(aq), HO_2·and so on, and these energetic species can diffuse into the solution around the anode. Therefore, glow discharge plasma can provide rich active intermediates for many kinds of chemical reactions in aqueous solution under ordinary conditions. In this work, glow discharge plasma technology is employed to synthesize polymer materials.
     This main conclusions are summaried as below:
     (1) The characteristics of plasma were described. Methods to produce cold plasma and their applications in wastewater treatment, chemical synthesis and polymer materials were also discussed in brief.
     (2) Amounts of graft polymerization of acrylic acid on attapulgite substrate was carried out and a novel polyacrylic acid/attapulgite composite superabsorbent was prepared by using glow discharge electrolysis plasma initiating, in which acrylic acid and attapulgite were used as raw materials and N,N’-methylenebisacrylamide as the crosslinking agent. Effects of the experimental conditions such as discharge voltage, amounts of crosslinking agent, attapulgite and acrylic acid on the absorbency was discussed in detail and the resulting product was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The resulting superabsorbent has higher water absorbency which reaches 1281g/g for distilled water and 111g/g for 0.9% NaCl solution, respectively.
     (3) Adsorption of synthesized polyacrylic/attapulgite composite adsorbent to Cu~(2+) was Investigated. It was found that the adsorbent had higher removal effenciey for Cu~(2+) and the adsorption process obeyed pseudo-second-order dynamic equation and Langmuir model.
     (4) Polyacrylic/acrylamide/attapulgite composite superabsorbent was synthesized through a graft polymerization initiated by glow discharge electrolysis plasma, where acrylic acid and attapulgite were used as raw materials and N, N’-methylenebisacrylamide as the crosslinking agent. Effects of the discharge voltage, amounts of crosslinking agent, attapulgite, the ratio of amounts of acrylic acid to acryylamide and neutralization on the absorbency were discussed in detail. The resulting product was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The prepared superabsorbent has very high water absorbency of 1350g/g for distilled water.
     (5) Adsorption behavbious of synthesized poly acrylic/acrylamide/attapulgite composite adsorbent were studied to Cu(II) and Pb(II). The adsorption process obeyed pseudo-second-order dynamic equation and Langmuir model.
引文
[1]赵化侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社, 1993, 1-60.
    [2]陈杰瑢.低温等离子体化学及其应用[M].北京:科学出版社, 2001:7.
    [3]赵化侨.等离子体化学及其应用[M].大学化学, 1994, (4): 1-8.
    [4]白希尧,张芝涛,白敏冬,韩慧.非平衡等离子体化学研究现状与进展[J].科学通报, 2002, 47(5): 321-322.
    [5]杨栋梁.低温等离子体在染整清洁生产中的应用[J].印染, 2000,9:33-37.
    [6]孙亚兵,任兆杏,何于江.低温等离子体技术在三废处理中的应用与研究[J].环境保护学, 1997, 23(5):45-48.
    [7]吴向阳,仰榴青,储金宇,等.低温等离子体处理废液技术[J].化工环保, 2002, 22(2):111-114.
    [8]聂建新.认识物质的第四态—等离子体[J].化学教学, 2006, 5: 29-30.
    [9] Sengupta S. K., Wilson W. H. The anodic decomposition of hydrogen peroxide [J]. J. Electrochem. Soc., 1951, 98: 425-433.
    [10] Sengupta S. K., Singh O. P. Contact glow discharge electrolysis: A study of its chemical yields in aqueous inert-type electrolyte [J]. J. Electroanal. Chem., 1994, 369: 113-120.
    [11] Davies R. A., Hickling A. Glow-discharge electrolysis. PartⅠ. The anodic formation of hydrogen peroxide in inert electrolytes [J]. J. Chem. Soc., 1952: 3595-3602.
    [12] Glassone S., Hickling A. Studies in electrolytic oxidation. PartⅤ. The formation of hydrogen peroxide by electrolysis with a glow-discharge anode [J]. J.Chem. Soc., 1934: 1772-1773.
    [13] Gai K., Dong Y. J. Plasma induced degradation of azobenzene in water [J]. J. Chi. Chem. Soc., 2005, 52(2): 273-276.
    [14] Wang L., Jiang X. Z., Liu Y. J. Efficient degradation of nitrobenzene induced by glow discharge plasma in aqueous solution [J]. Plasma Chem.Plasma Proc., 2007, 27: 504-515.
    [15] Hickling A., Newns G. R. Glow-discharge electrolysis: Part V the contact glow discharge electrolysis of liquid ammonia [J]. J. Chem. Soc., 1961, 5: 186-190.
    [16] Sengupta S. K., Singh R., Srivastva A. K. A study on the origin of nonfaradaic behavior ofanodic contact glow discharge electrolysis [J]. J. Electrochem. Soc., 1998, 145: 2209-2213.
    [17] Sengupta S. K., Sfivastava A. K., Singh R. Contact glow discharge electrolysis: a study on its origin in the fight of the theory of hydrodynamic instabilities in local solvent vaporisation by Joule heating during electrolysis [J]. J. Electroanal.l Chem., 1997, 427: 23-27.
    [18] Sengupta S. K., Singh O. P. Contact glow discharge electrolysis: a study of its onset and location [J]. J. Electroanal. Chem., 1991, 301: 189-197.
    [19]Hase H., Harada K. ESR Detection of OH and H Radicals Generated by Contact Glow Discharge in Aqueous Solution [J]. Viva Origino, 2001, 29(2):61-62.
    [20] Anthony T., David L. G., Malcolm D. I. Electron spin resonance detection of spin-trapped radicals formed during the glow-discharge electrolysis of aqueous solution [J]. J Chem. Soc, Faraday I, 1980, 76: 648-653.
    [21] Sengupta S. K., Paulit S. R. Studies in Galvano1uminescence: Part 2 chemical effects of cathode glow [J]. J. Indian. Chem. Soc., 1975, 52: 91-97.
    [22] Sengupta S. K., Paulit S. R. Studies in galvanoluminescence: Part 3 production and chemical effects of anode glow [J]. J. Indian Chem. Soc., 1976, 53: 472-475.
    [23] Malik M. A., Ghaffar A., Malik S. A. Water purification by electricaldischarges [J]. Plasma Sources Sci. Technol., 2001, 10: 82-91.
    [24] Kokufuta E., Shibasaki T., Nakamura I., et al. Degradation of polyethyleneglycol in a localized reaction zone during glow discharge electrolysis [J]. Chem. Soc. Chem. Commun., 1985:100-102.
    [25] Tezuka M., Iwasaki M. Plasma-induced degradation of aniline inaqueous solution [J]. Thin Solid Films, 2001, 386: 204-207.
    [26] Tezuka M., Iwasaki M. Oxidative degradation of phenols by contactglow discharge electrolysis [J]. J. Denki Kagaku, 1997, 65: 1057-1060.
    [27] Tezuka M., Iwasaki M. Plasma induced degradation of chlorophenolsin an aqueous solution [J]. Thin Solid Films, 1998, 316: 123-127.
    [28] Tezuka M., Iwasaki M. Liquid-phase reactions induced by gaseousplasma decomposition of benzoic acids in aqueous solution [J]. Plasmas & Ions, 1999, (1): 23-26.
    [29] Gao J. Z., Liu Y. J., Yang W., et al. Oxidative degradation of phenol in aqueous induced by plasma from a direct glow discharge [J]. Plasma Sour Scie Tech, 2003, 12: 533-537.
    [30] Gao J. Z., Pu L. M., Yang W., et al. Oxidative degradation of nitrophenols in aqueoussolution induced by plasma with submersed glow discharge electrolysis [J]. Plasma Proc. Polym., 2004, 1: 171-176.
    [31]陆泉芳,俞洁,刘永军,等.接触辉光放电等离子体降解水体中的对氯硝基苯[J].西北师范大学(自然科学版), 2003, 39(1): 49-53.
    [32]高锦章,陆泉芳,俞洁,等.接触辉光放电等离子体降解水体中的硝基苯[J].甘肃科学学报, 2003, 15(1): 30-34.
    [33] Gao J. Z., Gai K., Lu Q. F., et al. Plasma induced degradation of aniline in aqueous solution [J]. Plasma Sci Technol, 2002, 4(2): 1243-1251.
    [34] Gao J. Z., Hu Z. A., Wang X. Y., et al. Degradation ofα-naphthol by plasma in aqueous solution [J]. Plasma Sci Technol, 2001, 3(1): 641-646.
    [35]刘永军.辉光放电等离子体在水处理中的应用,西北师范大学硕士学位论文, 2004年.
    [36] Gao J. Z. A novel technique for wastewater treatment by contact glow-discharge electrolysis [J]. Pakistan J. Biolog.l Sci., 2006, 9(2): 323-329.
    [37] Gao J. Z., Wang A. X., Fu Y., Wu J. L., Ma D. P., Guo X., Li Y., Yang W. Analysis of energetic species caused by contact glow discharge electrolysis in aqueous solution [J]. Plasma Sci. Technol., 2008, 10(1): 30-38.
    [38] Gao J. Z., Ma D. P., Guo X., Wang A. X., Fu Y., Wu J. L., Yang W. Degradation of anionic dye eosin by using glow discharge electrolysis plasma [J]. Plasma Sci. Technol., 2008, 10(2): 422-427.
    [39]高锦章,马东平,郭晓,李岩,杨武.辉光放电等离子体处理阳离子染料结晶紫废水[J].应用化学, 2007, 24(5): 534-539.
    [40] Gao J. Z., Guo X., Ma D. P., Yang W. An effect of Fenton-like reagent on the contact glow discharge electrolysis [J]. Plasma Sci. Technol., 2007, 9(4): 431-435.
    [41]高锦章,蒲陆梅,杨志明,杨武,俞洁,李岩,甘振业,黄冬玲.等离子体饮用水净化装置[P]. ZL200420086147.9, 2005-11-2.
    [42] Harada K., Iwasaki T. Syntheses of amino acids from aliphatic carboxylic acid by glow discharge electrolysis [J]. Nature, 1974, 250: 426-428.
    [43] Harada K., Suzuki S. Formation of amino acids from elemental carbon by glow discharge electrolysis [J]. Nature, 1977, 266: 275-276.
    [44] Harada K., Igarii S., Takasaki M., Shimoyama A. Reductive fixation of molecular nitrogen by glow discharge electrolysis [J]. J. Chem. Soc., Chem. Commun., 1986: 1384-1385.
    [45] Harada K., Iwasaki T. Synthesis of Amino Acids from Aliphatic Amines by contact glow discharge electrolysis [J]. Chem. Lett., 1975, (2):185-188.
    [46] Sengupta S. K., Singh R., Shvastava A.K. Chemical effects of anodic contact glow discharge electrolysis in aqueous formic acid solutions: Formation of oxalic acid [J]. Indian J.Chem., 1995, 34A: 459-461.
    [47] Btown E.H., Wilhide W.D., E1more K.L. A new method for the preparation of oxamide [J]. J. Org. Chem., 1962, 27: 3698-3699.
    [48] Tezuka M., Iwasaki M. Aromatic cyanation in contact glow discharge electrolysis of acetonitrile [J]. Thin Solid Films, 2002, 407: 169-173.
    [49] Kokufuta E., Shibasaki T., Sodeyama T., Harada K. Simultaneously Occurring Hydroxylation,Hydration, and Hydrogenation of the C=C Bond of Aliphatic Carboxylic Acids in Aqueous Solution by Glow Discharge Electrolysis [J]. Chem. Lett. 1985, 10: 1569-1572.
    [50] Gao J.Z., Fu Y., Wang A.X., Wu J.L., Li Y., Yang W. A New Approach to Synthesize Oxalic Acid from Formic Acid by Contact Glow Discharge Plasma [J]. Chem. J. Int., 2008, 10(8): 41-45.
    [51] Denaro A.R., Hough K.O. Polymerization by glow discharge electrolysis [J]. Electrochim. Acta, 1973, 18: 863-868.
    [52] Sengupta S.K., Sandhir U., Misra N. A study on acrylamide polymerization by anodic contact glow-discharge electrolysis: A novel tool [J]. J.Polym. Sci. A: Polym. Chem., 2001, 39: 1584-1588.
    [53] Gao J.Z., Wang A.X., Li Y., Fu Y., Wu J.L., Wang Y.D., Wang Y.J. Synthesis and characterization of superabsorbent composite by using glow discharge electrolysis plasma [J]. React. Funct. Polym., 2008, 68:1377–1383.
    [54] Wang A. X., Gao J. Z., Li Y., et al. Synthesis and characterization of polymehtylmethacrylate by using glow discharge electrolysis plasma [J]. Plasma Chem Plas proc, 2009, 29: 387-398.
    [55]王爱香,接触辉光放电电解等离子体的产生及其在聚合中的应用,西北师范大学博士学位论文, 2008年.
    [56]高锦章,王友娣,王爱香,王宇晶,李岩,付燕,吴建林.接触辉光放电等离子体引发合成淀粉接枝丙烯酸超强吸水树脂[J].应用化学, 2009, 26(3): 282-286.
    [57]郭洪.凹凸棒土的提纯研究[J].安徽化工, 2005, 31(6): 5-6.
    [58] Tian M.,Qu C.,Feng Y.et al.Structure and properties of fibrillar silicate/SBR composites by direct blend process [J]. J.Mater. Sci., 2003, 38(24): 4917-4924.
    [59]仰榴青.国产凹凸棒土的研究[J].江苏理工大学学报(自然科学版), 1995, 16(1): 55-60.
    [60] Lapparent D. J. Defense de attapulgite [J]. Bull. Soc. France Miner., 1938, 61: 253-283.
    [61] Bradley W. F. The structural scheme of attapulgite [J]. Amer.Min., 1940, 25, 405-410.
    [62]徐国永,王平华.凹凸棒石土在高分子材料领域中的应用[J].现代塑料加工应用, 2002, 15(4):36~38.
    [63]周杰,刘宁,李云,马毅杰.凹凸棒石的显微结构[J].硅酸盐通报, 1999, 6:50-55.
    [64]王平华,宋功品.两种黏土与PVC复合材料的热性能及微结构分析[J].高分子材料科学与工程, 2006, 22(1): 138-141.
    [65]张启卫,章永化,周文富,侯全福,熊红兵,陈守明,龚克成.改性凹凸棒石土填充硬质PVC的制备与性能研究[J].中国塑料, 2002, 16(9): 49-52.
    [66]王平华,宋功品.凹凸棒石土改性PVC/HDPE合金研究[J].现代塑料加工应用, 2005, 17(3): 12-14.
    [67] Johannes Heinemann,Peter Reichert,et al. Polyolefin nanocomposites formed by melt compounding and transition metal catalyzed ethene homo- and copolymerization in the presence of layered silicates [J]. Maeeomol. Rapid Commun., 1999, 20: 423-430.
    [68]田明,曲盛东,刘力,等.凹凸棒石/茂金属聚烯烃热塑性弹性体负荷材料的结构和性能研究[J].中国塑料, 2003, 6(3): 26-28.
    [69]荣俊峰,景振华,洪晓宇,等,聚乙烯/凹凸棒石纳米复合材料的研究[J].乙烯工业, 2005, 17(1): 26-29.
    [70]盛森,杜中杰,荣峻峰,等.聚乙烯/凹凸棒石纳米复合材料的微观结构与力学性能[J].高分子材料科学与工程, 2005, 19(2): 115-118.
    [71] Rong J. F., Li H. Q., Jing Z. H., et al. Novel organic/inorganic nanocomposite of polyethylene. I. preparation via in situ polymerization approach [J]. J. Appl. Polym. Sci., 2001, 82(8): 1829-1837.
    [72]钱运华,金叶玲,吴洁.凹凸棒石粘土填充聚丙烯的研究[J].非金属矿, 1998, 122(2): 23-24.
    [73]戴兰宏.凹凸棒土增强聚丙烯负荷材料冲击断裂韧性的研究[J].高压物理学报, 1996,10(l): 63-68
    [74] Shi Q. L., Li T. S.,Liu X. J., et al. A study on the friction and wear behavior of PTFE filledwith acid treated nano-attapulgite [J]. Macromol.Mater. Eng., 2004, 289: 916-922.
    [75] Wang L. H., Sheng J. Preparation and properties of polypropylene/org-attapulgite nanocomposites [J]. Polymer,2005:46: 6243-6249.
    [76].舒安,崔鹏,魏凤玉.凹凸棒粘土作为聚丙烯塑料成核剂的应用研究[J].安徽化工, 1997, 87(2): 34-37.
    [77].高翔,毛立新,马军朋,等.凹凸棒土表面改性及其对聚丙烯力学性能的影响[J].塑料,2004, 33(3): 34-39.
    [78] Ming Tian,Chengdong Qu,Yuxing Feng,Liqun Zhang. Structure andproperties of fibrillar silicate/SBR composites by direct blend process [J]. Journal of materials science,2003, 38:4917-4924.
    [79]程丽君,田明,张利群.针状硅酸盐/SBR复合材料的性能研究[J].橡胶工业, 2006, 52(10): 581-586.
    [80]王益庆,张立群,张慧峰,等.凹凸棒土/橡胶纳米复合材料结构和性能研究[J].北京化工大学学报, 1999, 26(3): 25-29.
    [81] Zhang L. Q.,Wang Y. Z.,Wang Y. Q.,et al. Morphology and mechanical properties of clay/styrene-butadiene rubber nanocomposites [J]. J. Appl. Polym. Sci., 2000, 78(11): 1873-1878.
    [82]王萍.凹凸棒石/丁苯橡胶纳米复合材料制备及其性能[J].非金属矿, 2004, 27(6): 8-10.
    [83] Tian M., Qu C. D., Feng Y. X., et al. Structure and properties of fibrillar silicate/SBR composites by direct blend process [J]. J. Mater. Sci., 2003, (2): 4917-4924.
    [84]金叶玲,钱运华,贾泽才,严国顺.黏土填充剂在汽车轮胎垫带中的应用[J].适用技术市场, 1998, 2: 1-2.
    [85]张智宏,沈钟,邵长生.无机粉体的有机化改性及在橡胶中的应用[J].石油化工高等学校学报, 1999, 12(2): 27-31.
    [86]郑自立,易发成,李虎杰,等.中国坡缕石[M].北京:地质出版社, 1997.11.(第一版).
    [87]金叶玲,钱运华,陈静,胡涛,吴彩霞.凹凸棒石在双组分聚氨酯涂料中的应用[J].应用化工, 2005, 34(10): 601-603.
    [88]郭洪,胡源,宋磊,陈祖耀.聚酰亚胺/凹凸棒石土纳米复合物制备与表征[J].中国科学技术大学学报, 2006, 36(1): 122-124.
    [89]金叶玲,陈静,钱运华.硬脂酸改性凹土增强聚氨酯革的分析表征[J].武汉理工大学学报, 2005, 27(12): 5-9.
    [90]王一中,董华,余鼎声.尼龙6/凹凸棒石粘土纳米复合材料的合成[J].合成树脂及塑料. 1997, 14(2):16-18
    [91]周仕林,陶红,周传庭,等.硅藻土一聚丙烯酞胺系高吸水性复合材料的研制[J].上海理工大学学报, 2004, 26(2): 151-154.
    [92] Li A., Wang A. Q., Synthesis and properties of clay-based superabsorbent composite [J]. Eur. Polym. J., 2005, 41:1630-1637.
    [93] Wu L.,Liu M. Z. Preparation and charaeterization of cellulose acetate-coated compound fertilizer with controlled-release and water-retention [J]. Polym. Adv. Technol., 2008, 19(7): 785-792.
    [94] Liu M.Z., Liang R., Zhan F. L., Liu Z, Niu A.Z.Synthesis of a slow-release and superabsorbent nitrogen fertilizer and its properties [J]. Polym. Adv. Technol., 2006, 17(6): 430-438.
    [95] QiX.H., Liu M.Z., Chen Z. B., Liang R.Preparation and properties of diatomite composite superabsorbent [J]. Polym. Adv. Technol., 2007, 18(3): l84-193.
    [96] Liu P., Guo J. S. Polyacrylamide grafted attapulgite(PAM-ATP) via surface-initiated atom transfer radical polymerization(SI-ATRP) for removal of Hg(Ⅱ) ion and dyes [J]. Colloids Surf. A:Physicochem.Eng. Aspects, 2006, 282: 498-503.
    [97] Liu P., Hyperbranched aliphatic polyester grafted attapulgite via a melt polycondensation process [J]. Appl. Clay Sci., 2007, 35(2): 11-16
    [98] Huang J. H.,Liu Y. F., Wang X. G. Selective adsorption of tannin from flavonoids by organically modified attapulgite clay [J]. J.Hazardous Mater., 2008, 160(2): 382-387.
    [99] Fan Q. H., Shao D. D., Hu J., Wu W. S., Wang X. K. Comparison of Ni2+ sorption to bare and ACT-graft attapulgites:Effect of pH,temperature and foreign ions [J]. Surf. Sci.,2008, 602(3): 778-785.
    [100] Lei X. P.,Liu Y. S., Su Z.X. Synthesis and characterization of organo- attapulgite/ polyaniline- dodecyl benzene sulfonie acid based on emulsion [J]. Polym. Method: Polym. Composites, 2008, 29(3): 239-244.
    [101] Qiu J. H., Feng H. X. Preparation and properties of PAN/ATTP/PE conductive composites [J]. Trans Nonferrous Metals Soc. China, 2006, 16(2): 444-448.
    [102] Xu J. M., Li W., Yin Q. F., Zhong H., Zhu Y. L., Jin L. T. Direct electron transfer and bioelectrocatalysis of hemoglobin on nano-structural attapulgite clay-modified glassy carbonelectrode [J]. J. Colloid Interf. Sci., 2007, 315(1): 170-176.
    [103] Ji M. X.,Li W.,Yin Q. F.,Zhu Y. L. Direct electrochemist of Cytochrome c on natural nano-attapulgite clay modified electrode and its electrocatalytic reduction for H2O2 [J]. Electrochim. Acta, 2007, 52(11): 3601-3606.
    [104] James W., MeGinity Jone. A Hill influence of monovalent and divalent electrotes on sorption of neomycin sulfate to attapulgite and montmorillonite clays [J]. J. Pharmaceutical Sci. 1975, 64(9): 1566-1568.
    [1] Wu L., Liu M. Z. Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention [J]. Carbohydrate polym., 2008, 72: 240-247.
    [2] Chen J., Rong L., Lin H., et al. Radiation synthesis of pH-sensitive hydrogels fromβ-cyclodextrin-grafted PEG and acrylic acid for drug delivery [J]. Mater. Chem. Physics, 2009, 116: 148-152.
    [3] Phothitontimongkol T., Siebers N., Sukpirom N., et al. Preparation and characterization of novel organo-clay minerals for Hg(II) ions adsorption from aqueous solution [J]. Appl. Clay Sci., 2009, 43(3-4): 343-349.
    [4] Wu J. H., Wei Y. L., Lin J. M., et al. Study on starch-graft-acrylamide/mineral powder superabsorbent composite [J]. Polymer, 2003, 44: 6513-6520.
    [5] Zhang J. P., Li A., Wang A. Q. Study on superabsorbent composite. VI. Preparation, characterization and swelling behaviors of starch phosphate-graft-acrylamide/attapulgite superabsorbent composite [J]. Carbohydrate Polym., 2006, 65: 150-158.
    [6] Wu J. H., Lin J. M., Zhong M., et al. Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite [J]. Macromol. Rapid Commun., 2000, 21(15): 1032-1034.
    [7] Gao J. Z., Wang A. X., Li Y., et al. Synthesis and characterization of superabsorbent composite by using glow discharge electrolysis plasma [J]. React. Funct. Polym., 2008, 68(9): 1377-1383.
    [8]高锦章,王友娣,王爱香,等.接触辉光放电等离子体引发合成淀粉接枝丙烯酸超强吸水树脂[J].应用化学, 2009, 26(3): 282-286.
    [9]李安,王爱勤,陈建敏.聚丙烯酸(钾)/凹凸棒吸水剂的制备及性能研究[J].功能高分子学报, 2004,17(2): 200-205.
    [10] Liu Z. S., Remple G. L. Preparation of superabsorbent polymers by crosslinking acrylic acid and acrylamide copolymers [J]. J. Appl. Polym. Sci., 1997, 64: 1345-1353.
    [11] Lin J. M., Wu J. H., Yang Z. F., et al. Synthesis and properties of poly (acrylic acid)/micasperabsorbent nanocomposite [J]. Macromol. Rapid Commun., 2001, 22: 422-424.
    [12] Li A., Wang A. Q., Chen J. M. Studies on poly(acrylic acid)/Attapulgite superabsorbent composite.I.synthesis and characterization [J]. J. App. Polym. Sci., 2004, 92: 1596-1603.
    [1]刘玉琳,张友义,妙凌云,等.甘肃含碘凹凸棒石矿的发现及其应用前景初探[J].岩石矿物学杂志, 2001, 20(4): 504-506.
    [2]张婷,俞树荣,冯辉霞,等.新型复合吸附剂的制备及性能研究[J].中国非金属矿工业导刊, 2007, 59(1): 32-34.
    [3]魏荣道,崔峤.甘肃临泽凹凸棒石粘土矿开发应用研究[J].甘肃科学学报, 2005, 17(3): 43-45.
    [4] Perderiset M., Baillif P., Jaurand M. C. Chemical analysis and photoelectron spectroscopy of the adsorption of macromolecules on the surface of attapulgite [J]. J. Colloid and Interface Sci., 1988, 121(2): 381-391.
    [5] Cao E., Bryant R., Williams D. J. A. Electrochemical properties of Na-Attapulgite [J]. J. Colloid and Interface Sci., 1996, 179(1): 143-150.
    [6] Ray L. F., Grea A. C., Kloprogge J. T. 'Rocky Mountain leather', sepiolite and attapulgite--an infrared emission spectroscopic study [J]. Vib. Spectrosc., 1998, 16(2): 173-184.
    [7] Zhang J., Chen H., Wang A. Study on superabsorbent composite. III. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite [J]. Euro. Polym. J., 2005, 41(10): 2434-2442.
    [8] Wang S., Li H. Kinetic modelling and mechanism of dye adsorption on unburned carbon [J]. Dyes and Pigments, 2007, 72(3): 308-314.
    [9] Lorenc-Grabowska E., Gryglewicz G. Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon [J]. Dyes and Pigments, 2007, 74(1): 34-40.
    [10] Wang L., Sheng J. Preparation and properties of polypropylene/org-attapulgite nanocomposites [J]. Polymer, 2005, 46(16): 6243-6249.
    [11] Goyal N., Jain S. C., Banerjee U. C. Comparative studies on the microbial adsorption of heavy metals [J], Adv. Environ. Rese., 2003, 7(2):311–319.
    [12] Al-Faqih L., Johnson P. D., Allen S. J. Evaluation of a new peat-based sorbent for metals capture [J]. Bioresource Technol., 2008, 99 (5): 1394–1402.
    [13] Li Y. H., Di Z. C., Ding J., Wu D. H., Luan Z. K., Zhu Y. Q. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes [J]. Water Res., 2005, 39(4): 605-609.
    [14] Chen A. H., Liu S. C., Chen C. Y., Chen C. Y. Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin [J]. J. Hazard. Mater., 2008, 154(1-3): 184-191.
    [1] Lvarez-Ayuso E. A., Garc′?a-Sa′nchez A. Removal of cadmium from aqueous solutions by palygorskite [J]. J. Hazard. Mater., 2007, 147: 594-600.
    [2] Wang W., et al. Adsorption characteristics of Cd(II) from aqueous solution onto activated palygorskite [J]. Sep. Purif. Technol., 2007, 55: 157-164.
    [3] Potgieter J. H., et al. Heavy metals removal from solution by palygorskite clay [J]. Miner.Eng., 2006, 19: 463-470.
    [4] Huang J., et al. Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactant-modified attapulgite clay [J]. J. Hazard. Mater., 2007, 143: 541-548.
    [5]包军杰,等.改性凹凸棒石对模拟含酚废水处理机制的研究[J].环境化学, 2006, 25(1):37-40.
    [6] Chang M. Y., Juang R. S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay [J]. J. Colloid and Interface Sci., 2004, 278: 18-25.
    [7] Petzold G., et al. Higher efficiency in the flocculation of clay suspensions by using combinations of oppositely charged polyelectrolytes [J]. Colloids and Surf. A: Physicochem. Eng. Aspects, 2003, 218: 47-57.
    [8] Mekhamer W. K., Assaad F. F. Flocculation and coagulation of Ca- and K-saturated montmorillonite in the presence of polyethylene oxide [J]. J. Appl. Polym. Sci., 1999, 73: 659-662.
    [9] Ratanarat K., et al. Polymerlayer silicate nanocomposites: linear PEO and highly branched dendrimer for organic wastewater treatment [J]. Rev. Adv. Mater. Sci. 2003, 5: 187-192.
    [10] Liu P., Guo J. Polyacrylamide grafted attapulgite (PAM-ATP) via surface-initiated atom transfer radical polymerization (SI-ATRP) for removal of Hg(II) ion and dyes [J]. Colloids and Surf. A: Physicochem. Eng. Aspects, 2006, (282-283): 498-503.
    [11] Santiago F., Mucientes A. E., Osorio M., Rivera C. Preparation of composites and nanocomposites based on bentonite and poly(sodium acrylate): Effect of amount of bentonite on the swelling behaviour [J]. Euro. Polym. J., 2007, 43: 1-9.
    [12] Lanthong P., Nuisin R., Kiatkamjornwong S. Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents [J]. Carbohydrate Polym., 2006, 66: 229-245.
    [13] Lokhande H. T., Gotmare V. D. Utilization of textile loomwaste as a highly absorbent polymer through graft co-polymerization [J]. Bioresource Technol., 1999, 68: 283-286.
    [1]吴宏海,吴大清,彭金莲.溶液介质条件对重金属离子与石英表面反应的影响[J].地球化学, 2000, 29(1): 62-66.
    [2] Madejova J., Bujdak J., Gates W. P., et al. Preparation and infrared spectroscopic characterization of reduced-charge montmorillonite with various Li contents [J]. Clay Miner., 1996, 31: 233-241.
    [3] Stadler M., Schindler P. W. Modeling of H+ and Cu2+ adsorption on calcium-montmorillonite [J]. Clays Clay Miner., 1993, 41: 288-296.
    [4] Bahranowski K., Dula R., Labanowska M., et al. ESR study of Cu centers supported on Al-, Ti- and Zr-pillared montmorillonite clays [J]. Appl Spectrosco, 1996, 50: 1439-1445.
    [5] Mosser C., Michot L. J., Villieras F., et al. Migration of cations in copper (Ⅱ)–exchanged montmorillonite and laponite upon heating [J]. Clays Clay Miner., 1997, 45: 789-802.
    [6] Heller-Kallai L., Mosser C. Migration of Cu ions in Cu montmorillonite heated with and without alkali halides [J]. Clays Clay Miner., 1995, 43: 738-743.
    [7] Potgieter J. H., Potgeter-Vermaak S. S., Kaliban-Tonga P. D. Heavy metals removal f rom solution by palygorskite clay [J]. Miner. Eng., 2006, 19: 463-470.
    [8] Adebowale K. O., Unuabonah I. E., Oluowlabi B. I. Adsorption of some heavy metal ions on sulfate- and phosphatemodified kaolin [J]. Appl. Clay Sci., 2005 , 29: 145-148.
    [9] Gupta S. S., Bhattacharyya K. G. Removal of Cd ( II) from aqueous solution by kaolinite , montmorillonite and t heir poly (oxo zirconium) and tet rabutylammonium derivatives [J]. J. Hazard. Mater., 2006 , 128(2-3): 247-257.
    [10] Goyal N., Jain S. C., Banerjee U. C. Comparative studies on the microbial adsorption of heavy metals [J]. Adv. Environ. Res., 2003, 7(2): 311-319.
    [11] Sheng P. X., Ting Y. P., Chen J. P., Hong L. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms [J]. J. Colloid and Interface Sci., 2004, 275(1): 131-141.
    [12] Aksu Z., G?nen F., Demircan Z. Biosorption of chromium (VI) ions by Mowital (R) B3OH resin immobilized activated sludge in a packed bed: comparison with granular activated carbon [J]. Process Biochem., 2002, 38(2): 175-186.
    [13] Altin O., Ozbelge O. H., Dogu T. Effect of pH, flow rate and concentration on the sorption ofPb and Cd on montmorillonite [J]. J. Chem. Technol. Biotechnol., 1999, 74 (12): 1131-1138.
    [14] Chen A. H., Liu S. C., Chen C. Y., Chen C. Y. Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin [J]. J. Hazard. Mater., 2008, 154(1-3): 184-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700