Ⅲ-Ⅴ族含B、N半导体材料与GaAs纳米线的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究工作是围绕以下项目展开的:以任晓敏教授为首席科学家的国家重点基础研究发展计划(973计划)项目“新一代通信光电子集成器件及光纤的重要结构工艺创新与基础研究”(2003CB314900)中的课题一“单片集成光电子器件的异质兼容理论与重要结构工艺创新”(2003CB314901);国家973计划项目“新型光电子器件中的异质兼容问题与功能微结构体系基础研究”(2010CB327600)中的课题二“半导体异质兼容集成中的新型材料系探索与特殊超晶格结构”(2010CB327602);王琦副教授负责的国家863计划项目“面向单片集成的新型Ⅲ-Ⅴ族含硼光电子材料的创新性研究”(2009AA032417);以及国家“111”项目(B07005)。
     新一代光纤通信系统向大容量、高速、智能、集成化方向发展,对新型通信光电子器件提出了高速化、集成化的要求。而通信光电子器件在集成化的道路中面临最突出的问题就是半导体材料异质兼容问题。为了解决这个问题需要研究探寻新型微电子、光电子集成材料。含N半导体材料所表现出的奇特性质_已成为人们研究的热点,B原子具有与N相似的小原子半径,与其它Ⅲ-Ⅴ族元素所形成化合物的特性足本文关注得一个重点。鉴于实验室中新材料的合成需要一定的技术手段,而理论计算可以为新材料的性质提供前瞻性预测,为实验研制提供理论基础,因此本文采用精确性得到公认的第一性原理对新材料进行理论预测与计算。另外,半导体纳米线材料具有许多独特的优点,在新一代电子、光电子等领域有广阔的应用前景。纳米线直径小,晶格失配对其质量的影响远小于体材料,为克服异质兼容问题提供了另一条途径。
     基于以上两方面,本论文重点研究了含B、N的Ⅲ-Ⅴ族半导体材料和GaAs表面与纳米线的特性,取得的主要研究成果如下:
     1.含N的三元化合物GaNAs、GaNP研究。
     利用第一性原理计算了含N的三元化合物GaNP、GaNAs以及GaAsP的晶格常数与能带结构,得到了GaNAs与GaNP随组分变化的bowing参数,比较了LDA与GGA方法对该体系有效性。分析了GaNAs中原子内部弛豫效果对带隙与Bowing参数的影响,结果表明N原子在合金中的内部结构弛豫对带隙特征与Bowing参数的大小起决定性作用。同时分析了GaNP内部原子分布与能带的关系,内部N原子分布的团簇化造成了带隙的降低。
     2.含N四元化合物GaNAsP的研究。
     通过三元拟合的方法拟合出了与Si匹配的GaNAsP带隙随N含量变化的关系图。利用SQS(Special Quasirandom Structures)模型解决了四元掺杂超胞的选择难题,直接计算了与Si匹配的四元GaNAsP合金的结构与能带性质,计算分析了GaNAsP的光学性质,计算结果验证了三元拟合的带隙曲线的趋势。
     3.含B、N的三元与四元半导体化合物BGaNAs的研究。
     计算了三元材料BGaAs、BNAs、BGaN的结构与能带特性。BNAs的晶格常数跟Vegard定理有较大的偏离。利用三元拟合方法计算了与Si匹配的BGaNAs带隙随B含量的变化关系,并用四元掺杂SQS超胞方法直接计算了BGaNAs合金的结构与电子特性。分析了B、N原子在合金中的分布对稳定性和能带结构的影响,指出B、N均匀掺杂的合金将具备较低系统能量和直接带隙的特征。
     4.含B的Ⅲ-Ⅴ族四元化合物BGaInAs、BInPSb、BInAsP的理论研究。
     利用SQS模型研究了与GaAs匹配的BGaInAs的结构属性能、能带特征、光学性质等属性,得到了匹配条件下BGaInAs直接带隙发光波长范围,用三元拟合和直接四元计算两种方法比较分析了BInPSb、BInAsP分别与Si/GaAs匹配时的结构属性、能带特征和可能的带隙覆盖范围。
     5.BGaInAs的生长实验与特性表征。
     利用MOCVD生长出了BGaAs单晶外延层和相应的BGaAs/GaAs多量子阱结构(MQW)。分析了B的并入比例与生长温度(Tg)、输入Ⅲ族气相中TEB摩尔百分比(Xv)之间的关系。确定了BGaAs最优的温度生长窗口范围,合成得到B含量为5.5%的质量较高的BGaAs合金。在此基础上成功合成出了与GaAs晶格匹配的质量较高的BGaInAs合金。生长了10周期BGaInAs/GaAs MQW, XRD显示MQW的界面清晰,具有较高的晶体质量。
     6.闪锌矿。(ZB)和纤锌矿。(WZ)结构GaAs材料的表面特性研究
     利用第一性原理,分析计算了ZB结构GaAs材料的(110)、(112)、(111)表面及WZ结构GaAs材料的(1010)A、(1010)B的表面特征,得到了相应的表面能和弛豫能。分析结果表明:ZB(112)A比ZB(112)B面的弛豫能稍高,A、B表面分别形成了As-As、Ga-Ga二聚体重构;WZ(1010)A面只有简单的表面弛豫现象,B面的表面弛豫重构情况却相对较复杂;WZ(1010)A面表面能低于ZB(110)的表面能,这在一定程度上解释了实验上WZ结构的GaAs纳米线存在的合理性。
     7.不同结构的GaAs纳米线表面悬挂键与结合能研究。
     建立了六种ZB、WZ结构GaAs纳米线的模型,分析了悬挂键与纳米线直径的依赖关系。结果表明:当ZB1型、ZB2型纳米线直径超过20.6nm和21nm时,其表面悬挂键密度与体材料表面接近,而WZ1型、WZ2型纳米线直径则需超过130.9nm和41.9nm时,:悬挂键密度才接近于理想固体表面。利用第一性原理计算了五种六面体结构纳米线的结合能,分析表明:结合能随直径的增加而增加;WZ和ZB结构纳米线的结合能曲线存在交点,小直径下WZ结构的结合能较高。
The research work of this doctoral thesis is mainly supported by such projecets as listed below. Project One "Theory on heterogeneous materials compatibility and key structure&technology innovations for monolithic integrated optoelectronic devices "(Project No.2003CB314901), which belongs to the Major State Basic Research Development Program (973Program)(Project No.2003CB314900) that Professor Ren Xiaomin is responsible for as a chief scientist. Project Two "The exploration of novel materials and special superlattice structures for heterogeneous semiconductor compatibility"(Project No.2010CB327602), which belongs to Major State Basic Research Development Program (973Program)(Project No.2010CB327600) in Professor Ren Xiaomin's charge; National High-tech Research and Development Program of China (863Program)"The innovative researches of Ⅲ-Ⅴ optoelectronic materials with boron incorporated for monolithic integrated',(Project No.2009AA03Z417), and the "111" Program of China (No.B07005).
     This work is mainly focused on the novel optoelectronic semiconductor compounds containing nitrogen and/or boron for monolithic integration, and the properties of GaAs surface and nanowires. The research results, as listed below, have been achieved.
     1. Investigations of ternary semiconductor compounds with nitrogen incorporated.
     Using first-principles total energy calculations, we have studied the structural and electronic properties of GaNxAs1-x, GaNxP1-x, GaAsxP1-x alloys within density-functional theory (DFT) framework. The validity of local density approximation (LDA) and generalized gradient approximation (GGA) has been demonstrated by the calculations of lattice parameters and band-gap bowing. The lattice constants of GaNAs and GaNP are in line with Vegard's law, and the band-gap bowing parameters are relatively large. The relaxation effects of atoms and bonds have also been discussed. The relaxation contributes significantly to band-gap bowing. The influence of nitrogen atoms arrangements to band-gap of GaNP has been investigated, which indicate that N clusters decrease the band gap.
     2. Investigations of quaternary semiconductor compound GaNAsP
     According the band-gap bowing parameters of ternary alloys, we have depicted the band-gap evolution of quaternary GaNAsP alloy matched to Si. Furthermore, we overcome the difficulty of model-selection for quaternary alloys by Special Quasirandom Structures models (SQS), and calculate directly the structural, electronic and optical properties of GaNAsP matched to Si.
     3. Investigations of GaAs doping with Boron and Nitrogen.
     The electronic and structural properties of ternary alloys BGaAs, BNAs and BGaN have been calculated within DFT framework. The lattice constants of BGaAs and BGaN are in line with Vegard's law, but that of BNAs show a deviation to Vegard's Law. We have calculated the band-gap evolution curve of BGaNAs matched to Si by the band gap bowing parameters of relevant ternary alloys, and also get the electronic and structural properties by SQS method. The influence of distribution and arrangements of Boron and Nitrogen atoms has been analyzed; the configurations with uniform distribution of Boron and Nitrogen have relatively lower energy and higher stability.
     4. Investigations of III-V quaternary compounds with Boron incorporated.
     We also calculated the properties of quaternary compounds BGaInAs, BInPSb and BInAsP by first principles calculations on their SQS models. The results show that BGaInAs within the range B<30%matched to GaAs lattice is a direct band-gap material, whose band gap is0.45eV~1.516eV. The band-gap range of BInPSb and BInAsP matched to Si or GaAs has also been obtained.
     5. Single crystal zinc-blende BGaAs epilayers and ten periods of BGaAs/GaAs MQW have been successfully grown on GaAs (001) substrates by MOCVD. We have analyzed the influence of temperature and mole proportion on the ratio of B incorporation. The optimal growth temperature for BGaAs is580℃,and the maximum boron composition is up to5.5%. XRD test demonstrate that the quality of BGaAs epilayer is high. Furthermore, BGaInAs alloy matched to GaAs and BGaInAs/GaAs MQW have been grown on GaAs substrate successfully. XRD results show that both of them have high quality.
     6. We have investigated surface reconstruction of zincblende GaAs (112)A and GaAs(112)B surface using first-principles calculations. Ga-Ga and As-As dimmers are formed on GaAs (112)A and GaAs(112)B surface respectively. The results show that the surface free energy of relaxed GaAs (112)A is relatively lower. The surface relaxation mainly comes from the top two layers. The analysis of surface electronic properties also has been demonstrated. Surface reconstructions of wurtzite GaAs (1010)A and GaAs(1010)B surfaces have been investigated. The results show that Ga-Ga and As-As dimmers are formed on GaAs (1010)B surface while there are no reconstructions formed on GaAs (1010)A. The relaxed GaAs WZ(1010)A surface has lower surface free energy and higher stability.
     7. We have constructed six different types of GaAs nanowires with different diameters along GaAs(111) direction. The dangling bond densities of these structures with different diameter have been calculated. Results show that WZ2type has the lowest density of dangling bond. With the diameters increase, the sidewall of ZB type nanowires approach to ideal bulk surface more quickly than WZ type. The average cohesive energies of these nanowires with different diameters have been calculated by first-principles. We found that the cohesive energy increase with diameter, and cohesive energy of WZ type is higher than that of ZB type in the range of smaller diameter, while it becomes to be opposite in the range of lager diameter.
引文
[1]. Zh. I. Alferov and R. F. Kazarinov, Inventor's Certificate No.181737 (in Russian), Application No.950840, priority as of March 30,1963;
    [2]. Zh. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Yu. V. Zhilyaev, E. P.Morozov, E. L. Portnoi, and V. G. Trofim, Fiz. Tekh. Poluprovodn.4, 1826(1970), Sov. Phys. Semicond.4,1573 (1970).
    [3].任晓敏,因家重点基础研究发展(973)计划项目“新一代通信光电子集成器件及光纤的重要结构工艺创新与基础研究”申请书,2003.9
    [4].任晓敏,国家重点基础研究发展(973)计划项目“单片集成光电子器件的异质兼容理论与重要结构工艺创新”中期总结报告,2005.5
    [5].王琦,通信光电子集成器件前沿技术研究,[学位论文],北京邮电大学,2005
    [6].任爱光,单片集成通信光电子器件中异质兼容问题的理论与实验研究,[学位论文],北京邮电大学,2006
    [7]. Witze, WM, Rahman R, Carroll MS, PHY. REV. B v85,205312(2012)
    [8]. Kuryliuk V; Korotchenkov O; Cantarero A, PHY. REV. B v85, 075406(2012)
    [9]. Sprengel Stephan, Grasse Christian, Vizbaras Kristijonas, APPLIED PHYSICS LETTERS,v99,221109 (2011)
    [10]. Ishida Syuutarou; Miyamoto Tomoyuki; Koyama Fumio, JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, v45,723 (2006)
    [11]. Robb Paul D; Finnie Michael; Craven Alan J, Micron (Oxford, England: 1993),v43,1068-72(2012)
    [12]Huang YuYang; Li Wen; Ma WenQuan, CHINESE SCIENCE BULLETIN, v162,800(2012)
    [13]. Gudiksen Mark S; Lauhon Lincoln J; Wang Jianfang, Nature, v415, 617-20(2002)
    [14]. Harman T C; Taylor P J:Walsh M P; Science (New York, N.Y.), v297 2229-32(2002)
    [1]. M.C.Payne, M.P.Teter and D.C.Allan et al., Reviews of Modern Physics, Vol.64, No.4,1045-1096(1992)
    [2]. Born M, Huang K, Dynamical Theory of Crystal Lattices, Oxford University Press,1951.
    [3]. Attila Szabo, Neil S. Ostlund, Modern Quantum Chemistry:Introduction to Advanced Electronic Structure Theory (1989)
    [4]. Thomas, L. H., Proc. Cambridge Phil. Soc. (1927)23 (5):542-548
    [5]. Fermi, Enrico. Rend. Accad. Naz. Lincei (1927)6:602-607.
    [6]. P. Hohenberg and W. Kohn, Phys. Rev.136, B864-B871 (1964)
    [7]. Kohn,W. and Sham, L. J., Phys. Rev. A,140,1133-1167(1965)
    [8]. D. M. Ceperley, B. J. Alder, Phys. Rev. Lett.45,566-569 (1980)
    [9]. Perdew J. P and ZuAger A, Phys. Rev. B,23 (10),5048-5079(1981)
    [10].R. G. Parr and W. Yang, "Density Functional Theory of Atoms and Molecules" (1994), Oxford.
    [11].Perdew, J. P., Phys. Rev. B,33,8822-8824(1986)
    [12].Perdew J. P, Chevary J. A, Vosko S. H, et al., Phys. Rev. B,46 (11), 6671-6687(1992).
    [13]. A. D. Becke, Phys. Rev. A 38,3098-3100 (1988)
    [14]. John P. Perdew and Wang Yue, Phys. Rev. B 33,8800-8802 (1986)
    [15]. John P. Perdew and Yue Wang, Phys. Rev. B 45,13244-13249 (1992)
    [16].John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett.77, 3865-3868(1996)
    [17].Hammer B, Hansen L. B and Norskov J. K., Phys. Rev. B,59 (11), 7413-7421.(1999)
    [18].Yingkai Zhang, Weitao Yang, Phys. Rev. Lett.80,890-890 (1998)
    [19].Payne M.C, Teter M. P, Alan D. C, et al., Rev. Mod. Phys.64 (4), 1045-1097(1992).
    [20].N. Troullier, Jose Luriaas Martins, Phys Rev B,43:1993-2006(1991)
    [21].Vabderbilt D., Phys. Rev. B,41,7892-7895.(1990)
    [22].P. E. Blochl, Phys.Rev.B,50,17953(1994)
    [23].C. Herring, Phys. Rev.57,1169 (1940).
    [24].D. Singh, Plane waves, Kluwer Academic,1994.
    [25].M.D Segall, Philip J D Lindan, M.J Probert, C J Pickard, P J Hasnip, S J Clark and M C Payne, J. Phys.:Condens. Matter,2002,14(11):2717-2744
    [26].Voicu Popescu and Alex Zunger, Effective, Phys. Rev. Lett.104,236403 (2010).
    [27].A. Berghout, A. Zaoui, J. Hugel, and M. Ferhat, Physical Review B 75,205112 (2007).
    [28].Bellaiche, L.; Vanderbilt, D., Phys. Rev. B,61,7877-7782 (2000).
    [29].Iniguez, J.; Vanderbilt, D.; Bellaiche, L., Phys. Rev. B,67,224-107 (2003).
    [30].Winkler, B.; Pickard, C. J.; Milman, V., Chem. Phys. Lett.362,266-270 (2002).
    [31].Ramer, N. J.; Rappe, A. M., Phys. Rev. B,62,743-746 (2000).
    [32]. J-W.D. Connolly, A. R. Williams, Phys. Rev. B 34,1983,p.5169-5174.
    [33].B. L. Gyorffy, Phys. Rev. B,5 (1972) 2382-2384.
    [34].A. Zunger, S. H. Wei, L. G. Ferreira and J. E. Bernard, Phys. Rev. Lett.,65 (1990)353-356
    [35].S. H. Wei, L. G. Ferreira, J. E. Bernard and A. Zunger, Phys. Rev. B,42 (1990) 9622-9649.
    [36].Z. W. Lu, S. H. Wei and A. Zunger, Phys. Rev. B,45 (1992) 10314-10330.
    [37]. A. Zunger, "First Principles Statistical Mechanics of Semiconductor Alloys and Intermetallic Compounds," in NATO Advanced Study Institute on Statics and Dynamics of Alloy Phase Transformations, Plenum Press, New York,361-419 (1994)..
    [38].GLW. Hart, V. Blum, M.J. Walorski and A. Zunger, Nature Materials,4, 391-394(2005)
    [39].S.V.Barabash, V.Blum, S.Muller and A.Zunger, Phys. Rev. B 74,035108 (2006)
    [40].Ji Feng, Richard G. Hennig,N.W. Ashcroft & Roald Hoffmann, Nature, 451,445-448(2008)
    [41].Aleksey N. Kolmogorov, Stefano Curtarolo, Physical Review B, vol.73, Issue 18, id.180501
    [42]. K. C. Hass, L. C. Davis and A. Zunger, Phys. Rev. B,42 (1990) 3757-3760.
    [43].S. H. Wei, L. G. Ferreira, J. E. Bernard, and A. Zunger, Phys.Rev. B 42,9622 (1990).
    [44].C. Jiang, C. Wolverton, J. Sofo, L.-Q.Chen, and Z.-K. Liu, Phys.Rev. B 69, 214202(2004).
    [45].D. Shin, R. Arroyave, Z.-K. Liu, and A. Van de Walle, Phys. Rev.B 74,024204 (2006)
    [46].Yen-Kuang Kuo, Bo-Ting Liou, Sheng-Horng Yen, Han-Yi Chu, Optics Communications 237 (2004) 363-369
    [47].Bo-Ting Liou, Sheng-Horng Yen, Yen-Kuang Kuo, Semiconductor Lasers and Applications Ⅱ,edited by Jian-quan Yao, Yung Jui Chen, Seok Lee, Proceedings of SPIE Vol.5628 (SPIE, Bellingham, WA,2005)
    [48].A. Svane, N. E. Christensen, I. Gorczyca, M. van Schilfgaarde, A. N. Chantis, and T. Kotani. Phy. Rev.B 82,115102 (2010)
    [49].L. Hedin and S. Lundqvist, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull Academic, New York, Vol.23, p.1.(1969)
    [50].M. Marsman, J. Paier, A. Stroppa, and G. Kresse, J. Phys.:Con-dens. Matter 20, 064201 (2008).
    [51].V. I. Anisimov, F. Aryasetiawan and A. I. Lichtenstein, J. Phys.:Condens. Matter, vol 9, p.767,1997
    [52].Engel G E. Phys. Rev. Lett.,1997,78:3515
    [53].Asahi R, Mannstadt W, Freeman A J. Phys. Rev. B,1999,59:7486
    [54].Stoll H, Pavlidou C M E, Preuss H. Theor. Chim. Acta,1978,49:143
    [55].Runge E, Gross E K U. Phys. Rev. Lett.,1984,52:997.
    [56].Gross E K U, Kohn W. Phys. Rev. Lett.,1985,55:2850-2852.
    [57].Baraff and M. Schluter, Phys. Rev. B 30,3460 (1984)
    [58].R. Del Sole, Raffaello Girlanda, PHYSICAL REVIEW B, VOLUME 48, NUMBER 16(1993)
    [59].Cabuk Suleyman, INTERNATIONAL JOURNAL OF MODERN PHYSICS B, v24,6277(2010)
    [60]. Li GR, Qin ZX, Luo GF, Shen B, Zhang GY, SEMICONDUCTOR SCIENCE AND TECHNOLOGY, V25,115010(2010)
    [61].Yazyev Oleg V.; Kioupakis Emmanouil; Moore Joel E., PHYSICAL REVIEW B,V85,161101(2012)
    [62].Othman M.; Kasap E.; Korozlu N. PHYSICA B-CONDENSED MATTER V405,p2357-2361(2010)
    [63].Castleton CWM; Hoglund A; Mirbt S,PHYSICAL REVIEW B, V73,035215(2006)
    [64].Vincenzo Fiorentini, Alfonso Baldereschi, PHYSICAL REVIEW B VOLUME51, NUMBER23 (1995)
    [65]. Andrew R. Leach, Molecular Modeling:Principles and Applications (2th Edition) (April 9,2001)
    [66].I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys.,89,2001, p.5815-582O
    [67].周静,光电子集成中的异质外延与新材料研究,[学位论文],北京邮电大学,2008
    [68].于高,含硼光电子材料的第一性原理计算及实验研究,[学位论文],北京邮电大学,2009
    [69].熊德平,通信光电子半导体材料异质兼容的理论与实验研究,[学位论文],北京邮电大学,2007
    [70].黄昆,固体物理,高等教育出版社,北京,1988.
    [1]. I. Vurgaftman and J. R. Meyer L. R. Ram-Mohan. JOURNAL OF APPLIED PHYSICS VOLUME 89, NUMBER 111 JUNE 2001
    [2]. H. Naoi, Y. Naoi, and S. Sakai, Solid-State Electron.41,319(1997).
    [3]. B. N. Murdin, A. R. Adams, P. Murzyn, C. R. Pidgeon, I. V.Bradley, J.-P. R. Wells, Y. H. Matsuda, N. Miura, T. Burke, and A. D. Johnson, Appl. Phys. Lett.81,256(2002).
    [4]. T. Ashley, T. M. Burke, G. J. Pryce, et al., "InSbl-xNx growth and devices,' Solid-State Electronics, Vol.47, pp.387-394,2003
    [5]. W. G. Bi and C. W. Tu, Appl. Phys. Lett.70,1608 (1997).
    [6]. D. G. Thomas, J. J. Hopfield, and C. J. Frosch, Phys. Rev. Lett.15,857 (1965).
    [7]. D. G. Thomas and J. J. Hopfield, Phys. Rev.B.150,680 (1966).
    [8]. W. O. Groves, A. H. Herzog, and M. G. Craford, Appl. Phys. Lett.19,184 (1971).
    [9]. D. J. Wolford, B. G. Streetman, R. J. Nelson, and N. Hol-onyak, Jr., Appl. Phys. Lett.28,711 (1976).
    [10]. J.Furthmuller, P.Kachell F.Bechstedt, Phys. Rev. B 61 (2000) 4576.
    [11]. K.M.Yu, W.Walukiewicz, J.W.Ager Ⅲ, D.Bour, R. Farshchi, O.D.Dubon, S.X.Li, I.D.Sharp, E.E.Haller, Appl.Phys.Lett.88,092110(2006)
    [12]. C. Karcher, K. Jandieri, B. Kunert, R. Fritz, M. Zimprich, K. Volz, W. Stolz, F. Gebhard,S. D. Baranovskii, and W. Heimbrodt. PHYSICAL REVIEW B 82,245309(2010)
    [13]. K. Uesugi and I. Suemune, Jpn. J. Appl. Phys., Part 236, L1572(1997)
    [14]. S. Francoeur, G. Sivaraman, Y. Qiu, S. Nikishin, and H. Temkin,Appl. Phys. Lett.72,1857(1998).
    [15]. W. K. Hung, M. Y. Chern, and Y. F. Chen, PHYSICAL REVIEW B VOLUME 62, NUMBER 19(2000)
    [16]. C. Karcher, H. Gruning, M. Gungerich, P. J. Klar, B. Kunert, K. Volz, W. Stolz, and W. HeimbrodtPhys. Status Solidi C 6, No.12,2638-2643 (2009)
    [17]. B. Kunert, K. Volz, and W. Stolz. Phys. Stat. Sol. (b) 244, No.8, 2730-2739 (2007)
    [18]. S.-H.WeiandA.Zunger, Phys.Rev.B 37,8958 (1988).
    [19]. P. J. Klar, H. Gruning, W. Heimbrodt, J. Koch, F. Hohns-dorf, W. Stolz, P.M.A. Vincente, and J. Camassel, Appl. Phys. Lett.76,3439 (2000).
    [20]. W. Shan, W. Walukiewicz, E. E. Haller, J. F. Geisz, D. J.
    [21]. Friedmann, J. M. Olson, and S. R. Kurtz, Phys. Rev. Lett.82,1221 (1999).
    [22]. D. Schikora, M. Hankeln, D. J. As, K. Lischka, T. Litz, A. Waag, T.
    [23]. W. Shan, W. Walukiewicz,J.W.Ager, E.E.Haller, J.F.Geisz, D.J.Friedman, J.M.Olson, S.R.Kurtz, J.App.Phys.86,2349(1999)
    [24]. H.P.Xin, C.W.Tu, Y.Zhang, A.Macatenhas, Appl. Phys.Lett.76, 1267(2000)
    [25]. J.N.Baillargeon,K.Y.Cheng, G.E.Hofler, P.J.pearah, K.C.Hsieh Appl.phys.Lett.60:2540(1992)
    [26]. Bi WG, TuCW, Appl.Phys.Lett.,69:3710(1996)
    [27]. W. Shan, W. Walukiewicz, K. M. Yu, J. Wu, J. W. Ager III, E. E.Haller, H. P. Xin, and C. W. Tu, Appl. Phys. Lett.76,3251(2000).
    [28]. I. A. Buyanova, M. Izadifard, A. Kasic, H. Arwin, W. M. Chen,H. P. Xin, Y. G. Hong, and C. W. Tu, Phys. Rev. B 70,085209(2004).
    [29]. I. A. Buyanova, M. Izadifard, W. M. Chen, H. P. Xin, and C. W.Tu, Phys. Rev. B 69,201303 R(2004).
    [30]. L.Baellaiche,S.H.Wei,.A.zunger, Phys.Rev., B56:10233(1997)
    [31].高玉琳,GaPN混平光学性质及GalnP_AlGalnP合金瞬态发光性质的研究,[学位论文](2002)
    [32]. M. Bugajski, A. M. Kontkiewicz, and H. Mariette, Phys. Rev. B 28,7105-(1983)
    [33]. B. Kunert, D. Trusheim, V. VoBebiirger, K. Volz, and W. Stolz. phys. stat. sol. (a) 205, No.1,114-119(2008)
    [34]. M. A. Lorenz and A. Onton, "Proceedings of the 10th International Conference on Physics of Semiconductors".Cambridge University Press, Cambridge, (1970), p.444.
    [35]. S. S. Vishnubhatla, B. Eyglunent, and J. C. Woolley, Can. J. Phys.47,1661 (1969)
    [36]. W.G.Bi, C.W.Tu, J.Appl.Phys.80:1934(1996)
    [37]. X.Liu, S.G.Bishop, J.N.Baillargeon,etal, Appl.Phys.Lett.,1993,63:208
    [38]. H, J.Yaguch, Cryst.Growth 1998,189/190:500
    [39]. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Y.G. Hong, H. P. Xin, and C. W. Tu, Phys. Rev. B 65,241303 (R)(2002).
    [40]. P. R. C. Kent and A. Zunger, Phys. Rev. B 64,115208 (2001)
    [41]. M. Gungerich, P. J. Klar,1 W. Heimbrodt, G. Weiser, J. F. Geisz, C. Harris, A. Lindsay, and E. P. O'Reilly. PHY. REV. B 74,241202 (R)(2006)
    [42]. Buhrow, and F. Henneberger, Phys. Rev. B 54, R8381~1996
    [43]. H. Okumura, H. Hamaguchi, T. Koizumi, K. Balanishi, T. Nagatomo, and S. Yoshida, J. Cryst. Growth 189 O 190,390~1998.
    [44]. Angel Rubio, Marvin L.Cohen, PhysRev.B 51(1995)4343.
    [45]. Noureddine Mehnane, Fouzia Badi, Mohammed RedaAced, Hamza Abid, Nadir Sekkal, Physica B 403(2008)4281.
    [46]. K.Onabe, D.Aoki, J.Wu.H.Yaguchi, Y.Shiraki, Phys.Stat.Sol.A 176(1999)231
    [47]. A.Patane, J.Endicott, J.Ibanez,P.N.Brunkov, and L.Eaves, PhysRevB 71,195307(2005)
    [48]. K.A.MaderandA.Zunger,Phys.Rev.B 51 (1995)10462
    [49]. J. E. Bernard and A. Zunger, Phys. Rev. B 36,3199(1987)
    [50]. G. P.Srivastava, J. L. Martins, and A. Zunger, ibid.31,2561(1985)
    [51]. S. M. Sze, Physics of Semiconductor Devices,2nd ed.~Wiley, New York, 1981, Chap.12.3.
    [52]. J. L. Martins and A. Zunger, ibid.32,2689 (1985)
    [53]. A. Zunger and J. E. Jaffe, Phys. Rev. Lett.51,662(1983)
    [54]. J. E. Jaffe and A. Zunger, Phys. Rev. B 29,1882 (1984)
    [55]. J. A. Van Vechten and T. K. Bergstresser, Phys. Rev. B 1,3351(1970)
    [56]. R. Hill and D. Richardson, J. Phys. C 4, L289 (1971).
    [57]. J.L.Martins and A.Zunger, Phys.Rev.B 30,(1984)6217.
    [58]. Gus L. W. Hart and Alex Zunger, Phys. Rev. B,62,2000,13522-13537.
    [59]. Yen-Kuang Kuo, Bo-Ting Liou, Sheng-Horng Yen, et al, Optics Communications 234,2004,363-369.
    [60]. L. Hedin, Phys. Rev.139, A796~1965.
    [61]. M.S. Hybertsen and S.G. Louie, Phys. Rev. B 34,5390~1986
    [62]. R. Del Sole, R. Girlanda, Phys. Rev. B 48,11789(1993).
    [1]. J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz, R. C. Reedy, A. B. Swartzlander, B. M. Keyes, and A. G. Norman, Appl. Phys. Lett.76,1443 (2000).
    [2]. W. Shan1,W. Walukiewiczl,J. Wu1,K. M. Yul,J. W. Agerl, etc. J. Appl. Phys.93,2696 (2003)
    [3]. S.-H. Wei and A. Zunger, Phys. Rev. B 43,1662-1991
    [4]. S.-H. Wei and A. Zunger J. Appl.Phys.78,3846-1995
    [5]. S.-H. Wei and A. Zunger, Phys. Rev. Lett.76,664-1996.
    [6]. Wentzcovitch, R. M., Chang, K. J., Cohen, M. L., Phys. Rev B34 (1986) 1071.
    [7]. Surh, M. P., Louie, S. G., Cohen, M. L.:Phys. Rev B43 (1991) 9126.
    [8]. H. Bross, R. Bader, Phys. Stat. Sol. b 191 (1995) 369.
    [9]. D. J. Stukel, Phys. Rev. B 1,3458 (1970).
    [10]. C. Prasad and M. Sahay, phys. stat. sol. (b) 154,201 (1989).
    [11]. A. Ougazzadenl, S. Gautier2, T. Moudakir2, Z. Djebbour3, Z. Lochner4, S. Choi4, H. J. Kim4, J.-H. Ryou4, R. D. Dupuis4, and A. A. Sirenko5. Appl. Phys. Lett.93,083118 (2008);
    [12]. J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz, R. C. Reedy, A. B. Swartzlander, B. M. Keyes, and A. G. Norman, Appl. Phys. Lett.76,1443 (2000).
    [13]. A. Mokhari, H. Akbarzadeh, Physica B 324,305(2002)
    [14]. N. Chimot, J. Even, H. Folliot, Physica B 364,263(2005)
    [15]. G.L.W. Hart, A. Zunger, Phys. Rev. B 62,13522(2000)
    [16]. R. Hamilaa, F. Saidia, P.H. Rodriguezb, L. Auvrayb, Y. Monteilb, H. Maarefa. Journal of Alloys and Compounds. Volume 506, Issue 1,10-13.
    [17]. W. Shan, W. Walukiewicz, J. Wul, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, J. F. Geisz, D. J. Friedman, and Sarah R. Kurtz. J. Appl. Phys.93, 2696(2003)
    [18]. Rumyantsev S.L., Shur M.S., John Wiley & Sons, Inc., New York,2001, 67-92
    [19]. Chrenko, R.M. Solid State Commun.14,6 (1974),511-515
    [20]. Huang, M., Ching, W.Y. J. Phys. Chem. Solids 46 (1985) 977
    [21]. Prasad, C, Dubey, J.D.Phys. Status Solidi (b),125(1984) 625.
    [22]. Hoffmann, D.M., Doll, G.L., Ekiund, P.C., Phys. Rev. B 30,10 (1984), 6051-6056
    [23]. Rumyantsev S.L., Levinshtein M.E., Jackson A.D., Mohammmad S.N., Harris G.L., Spencer M.G., Shur M.S. Eds. Levinshtein M.E., Rumyantsev S.L., Shur M.S., John Wiley & Sons, Inc., New York,2001,67-92
    [24]. Carpenter, L.G, Kirby, P.J. J. Phys. D15 (1982) 1143.
    [25]. T. Honda, M. Shibata, M. Kurimoto, M. Tsubamoto, J. Yamamoto and H. Kawanishi, "Band-gap energy and effective mass of BGaN", Jpn. J. Appl. Phys.39(2000)2389-2393.
    [26]. M B Kanoun and S Goumri-Said. Semicond. Sci. Technol.23 125036(2008)
    [27].林文伟,“氮化硼锅镓烟能带结构特性之理论研究”,[学位论文],台湾
    [28]. R. Rianea, Z. Boussahla, A. Zaouia, L. Hammerelaineb, S.F. Matar. Solid.State.Sciences. V11.Issue 1:200-206(2009)
    [29]. Laurian Escalanti and Gus L. W. Hart. APPLIED PHYSICS LETTERS VOLUME 84, NUMBER 5(2004)
    [30]. Abdelhadi LACHEBI and Hamza ABID, Turk J Phys.32 (2008),157-166.
    [31]. F. El Haj Hassan, H. Akbarzadeh, Materials Science and Engineering B 121 (2005)170-177
    [32]. I. Vurgaftman and J. R. Meyer L. R. Ram-Mohan. JOURNAL OF APPLIED PHYSICS VOLUME 89, NUMBER 111 JUNE 2001
    [33]. J. Y. Duboz, Phys. Rev. B 75,045327 (2007).
    [34]. Y. N. Qiu, J. M. Rorison, H. D. Sun, S. Calvez, and M. D. Dawson, Appl. Phys. Lett.87,231112(2005).
    [35]. T. J. Bullough, S. Davies, S. Thomas, T. B. Joyce, and P. R. Chalker, Solid State Electron.47,407 (2003).
    [36]. M. Herrera, D. Gonzalez, M. Hopkinson, M. Gutierrez, P. Navaretti, H. Y. Liu, and R. Garcia, J. Appl. Phys.97,073705 (2005).
    [37]. S. Azzi, A. Zaoui, M. Ferhat, Solid State Communications 144 (2007) 245-248
    [38].任爱光,单片集通信光电子子器中异质兼容容问题的的理论与实验研究,[学位论文],北京邮电大学
    [39]. S. Azzi, A. Zaoui, M. Ferhat, Solid State Communications 144 (2007) 245-248
    [40].熊德平,通信光电子半导体材料异质兼容的理论与实验研究,[学位论文],北京邮电大学
    [1].N/A.J.Laser & Optoelectronics Progress,2009,46(12):8(in chinese)N/A.超结构扭结半导体纳米线J.激光与光电子学进展,2009,46(12):8
    [2].杨青,丁哗,戴威,姜校顺,郭欣,童利民.半导体纳米线和氧化硅微光纤环型结复合结构激光器J.激光与光电子学进展,2010,47(3):-1
    [3].王新,徐敏,李理,吴晓玲,彭奎庆,李述汤.郭欣,童利民.激光与光电子学进展,J.激光与光电子学进展,2009,46(2):41
    [4].李宝军J.Laser & Optoelectronics Progress,2010,47(3):-1(in chinese)
    [5].Jingtao Zhou,Huajun Shen,Huihui zhang,Xinyu Liu.J中国光学快报,2009,7(11):1041~1044(in chinese)
    [6]. S. O. Mariager,C. B. S(?)rensen, M. Aagesen, J. Nygard, and R.Feidenhans'l. Facet structure of GaAs nanowires grown by molecular beam epitaxyJ. Appl. Phys. Lett.,2007,91(08):083106
    [7]. D. Spirkoska,l J. Arbiol,2 A. Gustafsson,etc. Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures, J. Phys. Rev.B,2009,80(24):245325
    [8]. J. C. Harmand, G. Patriarche, N. Pere-Laperne, M.-N. Merat-Combes, L. Travers, and F. Glas. Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growthJ. Appl. Phys. Lett.,2005,87(20): 203101
    [9]. Wu, Z. H., Mei, X.; Kim, D., Blumin, M., Ruda, H. E., Liu, J. Q., Kavanagh, K. L. Growth, branching, and kinking of molecular-beam epitaxial <110> GaAs nanowiresJ. Appl. Phys. Lett.,2003,83(16):3368-3370
    [10].10 R. Leitsmann and F. Bechstedt. Surface influence on stability and structure of hexagon-shaped Ⅲ-Ⅴ semiconductor nanorodsJ. J. Appl. Phys., 2007,102(6):063528
    [11]. H.Farrell, C.J.Palmstrom, J.Vac.Sei.Technol.B8:903,1990
    [12]. C.B.Duke,Hand book of surface Science. Vol.1.
    [13]. W.W. Mullins J. Acta Metall,1958,6:414.
    [14]. Yeh, C.-Y., Lu, Z.W., Froyen, S., Zunger, Zinc-blende-wurtzite polytypism in semiconductors J. Phys. Rev. B,1992,46(16):10086-10097
    [15]. N.Moll, A.Kley, E.Pehlke, and M. Scheffler, GaAs equilibrium crystal shape from first principlesJ. Phys. Rev. B,1996,54(12):8844-8855
    [16]. W. Liu, W. T. Zheng, and Q. Jiang, First-principles study of the surface energy and work function of III-V semiconductor compoundsJ. Phys. Rev. B, 75(23):235322(2007)
    [17]. S. B. Zhang and Su-Huai Wei, Surface Energy and the Common Dangling Bond Rule for SemiconductorsJ. Phys. Rev. Lett.2004,92(8):086102
    [18]. S.J.White and D. P. Wnrodruff. Surf. Sci.64 (1977) 131.
    [19]. S.Y.Tong and A. L. Maldendo. Surf. Sci.78. (1978) 458.
    [20]. Q.-K. Xue, T. Hashizume, T. Sakurai, Prog.Surf. Sci.56 (1997).
    [21]. V.P. LaBella, M.R. Krause, Z. Ding, P.M. Thbado, Surf. Sci. Rep.60 (2005).
    [22]. Akihiro Ohtake. Surface Science Reports 63 (2008) 295-327
    [23]. J.E. Northrup, S. Froyen, Phys. Rev. B 50 (1994) 2015.
    [24]. S.B. Zhang, A. Zunger, Phys. Rev. B 53 (1996) 1343
    [25]. S.Y. Tong, G. Xu, W.N. Mei, Phys. Rev. Lett.52 (1984)1693
    [26]. A.R. Avery, H.T. Dobbs, D.M. Holems, B.A. Joyce, D.D. Vvdensky, Phys. Rev. Lett.79(1997)3938.
    [27]. K.W. Haberern, M.D. Pashley, Phys. Rev. B 41 (1990) 3226.
    [28]. J.M.C. Thornton, P. Unsworth, M.F. Jackson, P. Weightman,. D.A. Woolf, Surf. Sci.316(1994)231.
    [29].Akihito Taguchi, Kenji Shiraishi, Tomonori Ito. Applied Surface Science 162-163(2000)354-358
    [30]. K.Jacobi. et. al, Surface Science,439(1999),59-72
    [31]. L.Geelhaar et al, phys.rev.B,65(2002),155308
    [32]. S. L. Wright. M. Inada and H. Hroerner. J. Vac. Sci. Techn.21. (1982) 543
    [33]. Braun W, Kaganer V M, Trampert A, Schonherr H-P,Gong Q, Notzel R, D"aweritz L and Ploog K H "Diffusion and incorporation:shape evolution during overgrowth on structured substrates" J. Cryst. Growth 227-228 51-5(2001)
    [34]. Hiruma K, Yazawa M, Katsuyama T, Ogawa K, Haraguchi K, Koguchi M and Kakibayashi H J. Appl. Phys.77447-62(1995)
    [35]. Seth A Fortuna and Xiuling Li, Semicond. Sci. Technol.25 (2010) 024005
    [36]. Jaeobi, L.Geelhaar, J.henquez, J.Platen, C.Setzer. Appl.Surf.Sci. 16617(2000)
    [37]. B. A. Wacaser, K. Deppert, L. S. Karlsson, L. Samuelson, and W. Seifert,J. Cryst. Growth 287,504 (2006).
    [38]. Jin Zou et al, Small,3,389-393(2007)
    [39]. L. Geelhaar, J. Ma'rquez, K. Jacobi, A. Kley, P. Ruggerone, M. Scheffler. Microelectronics Journal 30,393-396(1999)
    [40]. D.A.Woolf, D.I.Westwood, R.H.Williams:Applied Physics Letters,6212, 1370-2(1993)
    [41]. P. Mohan, J. Motohisa, and T. Fukui, Nanotechnology 12,298 (2005).
    [42]. A. Mikkelsen, N. Skold, L. Quattara, M. Borgstrom, J. N. Anderssen, L.Samuelson, W. Seifert, and E. Lundgren, Nat. Mater.3,519 (2004).
    [43]. B. J. Ohlsson, M. T. Bjork, M. H. Magnusson, K. Deppert, and L. Samuelson, Appl. Phys. Lett.79,3335 (2001).
    [44]. J. Wang, M. S. Gudiksen. X. Duan, Y. Cui, and C. M. Lieber, Science 293,1455(2001)
    [45]. D. Spirkoska,1 J. Arbiol,2 A. Gustafsson,etc. Phy Rev.B 80,245325 (2009)
    [46]. K. Hiruma, M. Yazawa, K. Haraguchi, and K. Ogawa, J. Appl. Phys. 74,3162(1993).
    [47]. M.D Segall, Philip J D Lindan, M.J Probert, C J Pickard, P J Hasnip, S J Clark and M C Payne, First-principles simulation:ideas, illustrations and the CASTEP code J. J. Phys.:Condens. Matter,,14(11):2717~2744 (2002)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700