异体反应性NK细胞诱导移植后供者免疫耐受形成和抑制肺癌复发的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立供者异体反应性NK细胞(Allo-NK)为预处理的非清髓性单倍相合造血干细胞移植(haplo-HSCT)的动物模型,探讨Allo-NK诱导移植早期供者免疫耐受和抑制移植后肺癌复发的作用机制。方法:以近交系C57BL/6J(H-2D~b)雌鼠为受鼠,以C57BL/6J×BALB/c杂交F1代(H-2D~(b/d))雌鼠为供鼠,以氟达拉宾与环磷酰胺联合供者来源Allo-NK作为移植前的非清髓预处理方案,建立小鼠单倍相合造血干细胞移植模型。利用高强度磁珠分选系统纯化Allo-NK细胞亚群,流式细胞仪检测其中Ly49C~+、Ly49A~+细胞的比例,LDH法检测其对供者淋巴细胞的异体反应性和对Yac-1淋巴瘤和LLC肺癌细胞的杀伤活性。比较清髓性方案(9gyTBI)、各种非清髓性方案(6.5gyTBI,化疗组,Auto-NK+化疗组及Allo-NK+化疗组)的体内清髓效果,移植后不同时间点骨髓和脾脏的供者嵌合率,GVHD的发生率及严重程度。建立小鼠移植后肺癌复发模型,采用放射性标记法追踪DLI的体内分布。比较不同处理组小鼠的肿瘤大小,淋巴细胞浸润程度,采用RayBio~(?)小鼠细胞因子芯片检测血清中22种细胞因子的变化。MTT法检测化疗组和Allo-NK+化疗组移植后不同时间点供受者混合淋巴细胞增殖反应(MLR)。并以灭活的供者淋巴细胞作为刺激细胞,正常C57BL/6小鼠和F1免疫C57BL/6小鼠的淋巴细胞作为效应细胞,分别加入不同浓度化疗组和Allo-NK+化疗组移植后23d的CD4~+T细胞、CD8~+T细胞、CD4~+CD25~+ T细胞和CD4~+CD25~-T细胞行单向混合淋巴细胞培养,MTT法检测MLR强度,EHSA法检测培养上清中供者特异性IFN-γ的分泌量。流式细胞法比较化疗组和Allo-NK+化疗组移植后23d的脾脏CD4~+CD25~+CD127~-调节性T细胞(Treg)比例;用荧光定量PCR法检测两组脾脏和胸腺CD4~+CD25~+T细胞和CD4~+CD25~-T细胞中IL-2、IL-4、IL-10、TGF-β、IFN-γ、FoxP3的mRNA表达水平。分选化疗组和Allo-NK+化疗组移植后14d的胸腺CD11c~+DC细胞,流式细胞法检测其成熟度,将其与正常C57BL/6小鼠的脾脏纯化CD3~+T细胞体外共孵育5d,收集细胞,流式细胞法检测CD4~+CD25~+ CD127~- Treg比例,ELISA法检测其对供者特异性IFN-γ释放的影响,荧光定量PCR法和RayBio~(?)小鼠细胞因子芯片检测Foxp3和多种细胞因子表达。结果:经过磁珠分选后,Allo-NK细胞纯度从(19.85±4.27)%上升至(74.63±5.49)%,活率超过95%,其中特异性识别并杀伤C57BL/6细胞的Ly49A~+细胞占(22.24±2.95)%。效靶比为20:1时,Allo-NK对Yac-1、LLC和C57B L/6小鼠细胞的杀伤率分别为(62.27±7.36)%,(59.86±6.24)%和(54.83±5.26)%。与其他非清髓性预处理方案,如6.5GyTBI组、化疗组和Auto-NK+化疗组相比,Allo-NK+化疗组不仅对骨髓毒性小,骨髓和脾脏的有核细胞在7-10天迅速恢复至正常水平;而且可显著提高移植后的供者嵌合率,移植后+21天后逐渐稳定在骨髓(28.70±5.90)%,脾脏(46.40±5.00)%,显著高于6.5GyTBI组的(6.08±0.46)%、化疗组的(10.2±2.40)%和Auto-NK+化疗组的(8.01±2.12)%,并持续3个月(P<0.05)。与化疗组相比,Allo-NK+化疗组出现的GVHD反应轻微,仅有50%(5/10)受鼠出现体重减轻,Allo-NK+化疗组的肝脏、小肠、肾脏及皮肤的病理切片均未见明显的组织损伤。Allo-NK+化疗组接受DLI的小鼠,回输后8h~24h供者淋巴细胞在受者肺脏、脾脏、肾脏中明显蓄积,且浓度最高,时间最长。利用重复测量法发现,Allo-NK+化疗组复发肿瘤明显小于化疗组(P<0.01)。至实验结束时Allo-NK+DLI组肿瘤明显小于不给治疗的Allo-NK+PBS组和化疗+DLI组,肿瘤抑制率分别为(70.62±3.75)%,(50.87±6.07)%和(55.94±3.98)%(P<0.05),且镜下可观察到肿瘤局部有较多的淋巴细胞浸润。Allo-NK+DLI组中MCP-1、IL-17、IL-12、和MCP-5较对照组分别升高1.56倍、1.36倍、1.20倍和1.17倍;而IL-10降低1.75倍。MLR结果显示,与正常C57小鼠相比,化疗组和Allo-NK+化疗组的增殖指数(SI)降低,而Allo-NK+化疗组降低程度尤甚(P<0.05),其中增殖抑制作用主要来源于CD4~+T细胞中的CD4~+CD25~+T细胞,并呈剂量效应依赖关系。ELISA法检测发现,Allo-NK+化疗组的CD4~+T细胞和CD4~+CD25~+T细胞可以显著抑制供者特异性IFN-γ分泌。流式细胞仪检测结果示Allo-NK+化疗组在移植后23d脾脏中出现一群新生的CD4~+CD25~+CD127~-Treg细胞,而化疗组组未见。荧光定量PCR扩增结果显示Allo-NK+化疗组CD4~+CD25~+ T细胞中Foxp3表达显著升高,高于化疗组(P<0.05),而IL-2、IFN-γ和IL-4的表达低于化疗组(P<0.05)。流式细胞仪检测表明Allo-NK+化疗组移植后14d的胸腺CD11c~+DC细胞成熟度明显低于化疗组,与正常C57BL/6小鼠CD3~+T细胞共孵育5d后可诱导出(25.58±6.21)%的CD4~+CD25~+CD127~-Treg细胞,加入供受者MLR反应体系可显著抑制供者特异性IFN-γ释放。荧光定量PCR扩增显示诱导后的CD3~+T细胞高表达FoxP3,与正常C57BL/6相比IL-2、IL-4、IL-10和TGF-β表达量升高,而IFN-γ表达量下降。RayBio~(?)小鼠细胞因子芯片检测显示IL-4,IL-6,IL-17,MCP-1分别升高1.42,3.57,1.87,1.57倍;而GM-CSF,IL-12p40,IFN-γ,RANTES,sTNFRI,VEGF分别降低1.49,1.52,1.61,1.56,2.76倍。结论:Allo-NK预处理可减少GVHD强度,并通过诱导移植早期供者特异性免疫耐受促进供者造血干细胞植入,延长供者淋巴细胞在受者体内停留时间,抑制移植后肿瘤复发。移植早期供者免疫耐受可能是通过胸腺中不成熟的供者DC细胞诱导生成的供者特异性CD4~+CD25~+CDl27~-Treg细胞介导的。
Objective:To construct a nonmyeloablative haploidentical allogeneic hemopoietic stem cell transplantation(haplo-HSCT)mouse model with a novel conditioning regimen composed of donor derived alloreactive NK cells(Allo-NKs) and low dose of fludarabine.To study the effects and underlying machenism of Allo-NKs in inducing donor immunotolerance and inhibiting cancer relapse after haplo-HSCT.Methods:The C57BL/6J(H-2D~b)female mice were used as recipients and C57BL/6J×BALB/c F1(H-2D~(b/d))female mice as donors.A haploidentical allogeneic hemotopoietic stem cell transplantation(Haplo-HSCT) mouse model was constructed and donor-derived Allo-NK combined with fludarabine and cyclophosphamide was used as the nonmyeloablative conditioning regimen.The Allo-NK cells subset was isolated by magnetic beads separation columns,in which the proportions of the Ly49C~+ and Ly49A~+ cells were detected by flowcytometry,the alloreactivity against donor lymphocytes and the antitumor cytotoxicity against Yac-1 and LLC cell lines were measured by LDH method.The myeloablativity in vivo,donor engraftment after Haplo-HSCT and intensity of GVHD were compared among different conditioning regimens, including myeloablative(9Gy TBI)and some nonmyeloablative regimens:such as 6.5Gy TBI,low dose of chemotherapy,Auto-NK combined with chemotherapy and Allo-NK combined with chemotherapy.The relapse model of lung cancer after Haplo-HSCT was constructed.The distribution kinetic of infused donor lymphocytes in vivo was analyzed.The inhibition of relapse tumor,infiltration of lymphocytes in situ and fluctuation of 22 kinds of cytokines in serum were compared among different groups.The conventional donor-recipient mixed lymphocyte proliferation responses(MLRs)were compared between chemotherapy group and All-NK+chemotherapy group at different time points after Haplo-HSCT using MTT method.The one-way MLRs composed of inactivated F1-derived stimulators and C57BL/6-derived effectors were conducted to compare the regulatory effects of the different subsets by adding various numbers of CD4~+ T cells,CD8~+ T cells,CD4~+CD25~+ T cells and CD4~+CD25~- T cells.Donor-specific IFN-γsecretion was measured by ELISA method.The proportions of CD4~+CD25~+ CD127~- regulatory T cells in different groups were analyzed using flowcytometry.The RNA expression of IL-2,IL-4,IL-10,TGF-β, IFN-γ,and FoxP3 of CD4~+CD25~+ and CD4~+CD25~- T cells in different groups were detected using real time quantitative RT-PCR amplification.The CD11c~+DC cells in thymus of different groups were purified and the phenotypes were analyzed using flowcytometry.Then the thymus CD11c~+DC cells were cocultured with purified CD3~+ T cells from normal C57BL/6 mice to induce Tregs.The proportions of CD4~+CD25~+ CD127~- Treg,the donor-specific IFN-γsecretion and expression of Foxp3 and variable cytokines were compared between different groups.Results:The purity of Allo-NK cells increased from(19.85±4.27)%to (74.63±5.49)%after magnetic separation with validity higher than 95%,in which Ly49A~+ cells occupied(22.24±2.95)%.At E/T ratio of 20:1,the cytotoxicity of Allo-NK cells against Yac-1 cells,LLC cells and C57B L/6-derived lymphocytes were(62.27±7.36)%,(59.86±6.24)%and(54.83±5.26)%,respectively.Compared with other nonmyeloablative conditioning regimens,Allo-NK+ chemotherapy groups showed lower toxicity to bone marrow,higher rate of donor engraftment and little GVHD.The number of karyocytes in spleen and BM recovered 7-10 days later.The rates of donor chimerism reached(28.70±5.90)%in BM, (46.40±5.00)%in spleen on 21d after Haplo-HSCT and steady stayed at a higher level for about 3 months compared with 6.5GyTBI group,chemotherapy group and Auto-NK+ chemotherapy group(P<0.05).The intensity of GVHD was slight in the Allo-NK+ chemotherapy group compared with the chemotherapy group,in which only half of C57BL/6 recipient experienced weight loss,and no distinct pathological damages observed in the liver,intestine,kidney and skin samples. The infused donor cells of Allo-NK+ chemotherapy group were mostly accumulated in lung,spleen and kidney which reached peak 8-24h after infusion with a considerable higher level and longer time than other groups according to the distribution kinetic curve.The sizes of relapse tumors were smaller in Allo-NK+PBS group compared with chemotherapy+PBS group(P<0.01).At the end of test,the relapse tumors were the smallest in Allo-NK+ DLI group among all groups with inhibitory rate of(70.62±3.75)%,which is significantly smaller than(50.87±6.07)%in Allo-NK +PBS group and(55.94±3.98)%in chemotherapy+DLI group(P<0.05),together with increased infiltration of lymphocytes in situ.The levels of multiple cytokines in serum of Allo-NK+DLI group ascended compared with the control group,such as MCP-1,IL-17,IL-12 and MCP-5,though the level of IL-10 descended simultaneously.The MLRs demonstrated that the stimulatory index(SI)in both Allo-NK+ chemotherapy group and chemotherapy group decreased,and especially lower in Allo-NK+ chemotherapy group(P<0.05).The inhibitory function mainly derived from the CD4~+CD25~+ T cells subset which showed a distinct dose-effect relationship.The inhibition of donor specific IFN-γsecretion by either CD4~+ T cells or CD4~+CD25~+ T cells subset from Allo-NK+ chemotherapy group was identified using ELISA method.The newly emerged CD4~+CD25~+ CD127~- Treg cells were detected only in Allo-NK+ chemotherapy group on 23d after Haplo-HSCT.Significantly increased mRNA expression of Foxp3 and decreased expression of IL-2,IFN-γand IL-4 were identified in the CD4~+CD25~+ T cells subset from Allo-NK+ chemotherapy group(P<0.05).The immature phenotypes were observed in thymus CD11c~+DCs from Allo-NK+ chemotherapy group.After coculturing with C57BL/6 derived CD3~+T cells for 5 days,(25.58±6.21)%CD4~+CD25~+CD127~-Treg were induced which inhibited the donor specific IFN-γsecretion in donor-recipient MLR system significantly.Higher mRNA expression of Foxp3,IL-2,IL-4,IL-10 and TGF-β, lower expression of IFN-γwere detected using real time quantitative RT-PCR amplification.The results of RayBio~(?)cytokine microarray demonstrated considerable increase of IL-4,IL-6,IL-17 and MCP-1,decrease of GM-CSF, IL-12p40,IFN-γ,RANTES,sTNFRI and VEGF at protein level.Conclusion: Donor derived- alloreactive NK cells will reduce the intensity of GVHD and facilitate engraftment of the haploidentical allogeneic hemopoietic stem cell by inducing donor specific immonotolerance,which will prolong the half-life of infused donor lymphocytes in vivo and inhibit cancer relapse after transplantation. The donor specific immonotoelerance is mediated by newly generated CD4~+CD25~+CD127~-Tregs early after transplantation that induced by immature thymus donor-derived DCs.
引文
1. Mapara MY, Sykes M. Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance[J].J Clin Oncol. 2004;22(6): 1136-51.
    2. Staveley-O'Carroll K, Sotomayor E, Montgomery J, et al. Induction of antigen-specific T cell anergy: An early event in the course of tumor progression[J].Proc Natl Acad Sci U S A. 1998;95(3):1178-83.
    3. Freytes CO, Loberiza FR, Rizzo JD,et al. Myeloablative allogeneic hematopoietic stem cell transplantation in patients who experience relapse after autologous stem cell transplantation for lymphoma: a report of the International Bone Marrow Transplant Registry [J].Blood. 2004; 104(12):3797-803.
    4. Kater AP, van Oers MH, Kipps TJ. Cellular immune therapy for chronic lymphocytic leukemia[J].Blood. 2007;110(8):2811-8.
    5. Ren XB, Yu JP, Cao S, et al. Antitumor effect of large doses IL-2-activated HLA haploidentical peripheral blood stem cells on refractory metastatic solid tumor treatment[J].Cancer Biother Radiopharm. 2007;22(2):223-34.
    6. Ueno NT, Rondon G, Mirza NQ, et al. Allogeneic peripheral-blood progenitor-cell transplantation for poor-risk patients with metastatic breast cancer[J].J Clin Oncol. 1998;16(3):986-93.
    7. Bay JO, Fleury J, Choufi B, et al. Allogeneic hematopoietic stem cell transplantation in ovarian carcinoma: results of five patients [J]. Bone Marrow Transplant. 2002;30(2):95-102.
    8. Kami M, Makimoto A, Heike Y, et al. Reduced-intensity hematopoietic stem cell transplantation (RIST) for solid malignancies[J].Jpn J Clin Oncol. 2004;34(12):707-16.
    9. Carella AM, Champlin R, Slavin S, et al. Mini-allografts: ongoing trials in humans [J].Bone Marrow Transplant. 2000;25(4):345-50.
    10. Gilleece MH, Dazzi F. Donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukaemia[J]. Leuk Lymphoma. 2003;44(1):23-8.
    11. Higman MA, Vogelsang GB. Chronic graft versus host disease[J]. Br J Haematol. 2004;125(4):435-54.
    12. Pui CH, Campana D, Evans WE. Childhood acute lymphoblastic leukaemia- current status and future perspectives[J].Lancet Oncol. 2001;2(10):597- 607.
    13. Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation[J] .Blood. 1999;94(1):333-9.
    14. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants[J]. Science.2002; 295(5562): 2097-100.
    15.Ruggeri L, Aversa F, Martelli MF,et al. Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self[J] .Immunol Rev. 2006 ;214:202-18.
    16.Giebel S, Locatelli F, Lamparelli T, et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell, transplantation from unrelated donors[J]. Blood.2003; 102(3):814-9.
    17.Koh CY, Raziuddin A, Welniak LA,et al.NK inhibitory-receptor blockade for purging of leukemia: effects on hematopoietic reconstitution[J].Biol Blood Marrow Transplant. 2002;8(1): 17-25.
    18.Lundqvist A, McCoy JP, Samsel L,et al.Reduction of GVHD and enhanced antitumor effects after adoptive infusion of alloreactive Ly49-mismatched NK cells from MHC-matched donors[J].Blood. 2007 Apr 15;109(8):3603-6.
    19. Ruggeri L, Capanni M, Mancusi A, et al. The impact of donor natural killer cell alloreactivity on allogeneic hematopoietic transplantation[J]. Transpl Immunol. 2005;14(3-4):203-6.
    20. Falda M, Busca A, Baldi I,et al.Nonmyeloablative allogeneic stem cell transplantation in elderly patients with hematological malignancies: results from the GITMO (Gruppo Italiano Trapianto Midollo Osseo) multicenter prospective clinical trial[J]. Am J Hematol. 2007 ;82(10):863-6.
    21. Hoffmann P, Edinger M.CD4+CD25+ regulatory T cells and graft-versus-host disease[J].Semin Hematol. 2006 Jan;43(1):62-9.
    22. Hoffmann P, Ermann J, Edinger M, et al. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation[J]. J Exp Med. 2002;196(3):389-99.
    23. Trenado A, Charlotte F, Fisson S, et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia[J]. J Clin Invest. 2003;112(11):1688-96.
    24. McCurry KR, Colvin BL, Zahorchak AF,et al. Regulatory dendritic cell therapy in organ transplantation[J].Transpl Int. 2006;19(7):525-538.
    25. DePaz HA, Oluwole OO, Adeyeri AO,et al. Immature rat myeloid dendritic cells generated in low-dose granulocyte macrophage-colony stimulating factor prolong donor-specific rat cardiac allograft survival [J]. Transplantation. 2003;75(4):521-528.
    26.Mellor AL, Munn DH.IDO expression by dendritic cells: tolerance and tryptophan catabolism[J].Nat Rev Immunol. 2004;4(10):762-774.
    27. Slavin S. Reduced intensity versus truly nonmyeloablative conditioning for stem-cell transplant recipients[J].Transplantation.2004;78(7):964-5.
    28. Slavin S, Nagler A, Naparstek E, et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the: treatment of malignant and nonmalignant hematologic diseases[J].Blood.1998;91(3): 756-63.
    29. Le Blanc K, Remberger M, Uzunel M, et al. A comparison of nonmyeloablative and reduced-intensity conditioning for allogeneic stem-cell transplantation[J].Transplantation. 2004; 78(7):1014-20.
    30. Fehr T, Sykes M. Tolerance induction in clinical transplantation[J].Transpl Immunol. 2004; 13(2): 117-30.
    31. Smith SM. Reduced-intensity transplantation for lymphoma[J].Curr Treat Options Oncol. 2006;7(4):295-305.
    32. Carella AM. Treatment of hematological malignancies with allogeneic nonmyeloablative stem cell transplantation: conditioning regimens with fludarabine[J].Hematol J. 2004; 5 suppl l:S68-75.
    33. Aversa F, Tabilio A, Terenzi A, et al. Successful engraftment of T-cell-depleted haploidentical "three-loci" incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum[J].Blood.1994;84(11):3948-55.
    34. Petrus MJ, Williams JF, Eckhaus MA, et al. Biol Blood Marrow Transplant. An immunoablative regimen of fludarabine and cyclophosphamide prevents fully MHC-mismatched murine marrow graft rejection independent of GVHD[J]. Semin Cancer Biol .2000;6(2A): 182-9.
    35. Aversa F, Tabilio A, Velardi A, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLAhaplotype[J].N Engl J Med. 1998;339(17): 1186-93.
    36. Plunkett W, Saunders PP. Metabolism and action of purine nucleoside analogs[J].Pharmacol Ther.1991;49(3):239-68.
    37. Kuwatani M, Ikarashi Y, Mineishi S, et al. An irradiation-free nonmyeloablative bone marrow transplantation model: importance of the balance between donor T-cell number and the intensity of conditioning[J].Transplantation. 2005;80(9):1145-1152
    38. Karre K, Ljunggren HG, Piontek G, et al. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy [J]. Nature.1986;319(6055):675-8.
    39. Ciccone E, Grossi CE, Velardi A. Opposing functions of activatory T-cell receptors and inhibitory NK-cell receptors on cytotoxic T cells[J].Immunol Today. 1996;17(10):450-3.
    40. Cho SG, Shuto Y, Soda Y, et al. Anti-NK cell treatment induces stable mixed chimerism in MHC-mismatched, T cell-depleted, nonmyeloablative bone marrow transplantation[J].Exp Hematol. 2004; 32(12): 1246-54.
    41. Hallett WH, Murphy WJ. Positive and negative regulation of Natural Killer cells: therapeutic implications [J]. Semin Cancer Biol. 2006; 16(5):367-82.
    42. Kim DH, Won DI, Lee NY, et al. Non-CD34+ cells, especially CD8+ cytotoxic T cells and CD56+ natural killer cells, rather than CD34 cells, predict early engraftment and better transplantation outcomes in patients with hematologic malignancies after allogeneic peripheral stem cell transplantation[J].Biol Blood Marrow Transplant. 2006; 12(7):719-28.
    43. Shlomchik WD, Couzens MS, Tang CB, et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells[J].Science. 1999;285(5426): 412-5.
    44. Ruggeri L, Mancusi A, Capanni M, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value[J] .Blood. 2007;110(1):433-40.
    45. Ruggeri L, Mancusi A, Burchielli E, et al. Natural killer cell recognition of missing self and haploidentical hematopoietic transplantation[J].Seminars in Cancer Biology. 2006;16(5):404-11.
    46. Leung W, Iyengar R, Turner V, et al. Determinants of antileukemia effects of allogeneic NK cells[J]. J Immunol. 2004;172(1):644-50.
    47. Passweg JR, Koehl U, Uharek L,et al. Natural-killer-cell-based treatment in haematopoietic stem-cell transplantation[J].Best Pract Res Clin Haematol. 2006; 19(4):811-24.
    48. Igarashi T, Wynberg J, Srinivasan R, et al. Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells[J] .Blood. 2004;104(1):170-7.
    49. Slavin S. Allogeneic cell-mediated immunotherapy at the stage of minimal residual disease following high-dose chemotherapy supported by autologous stem cell transplantation[J]. Acta Haematol. 2005;114(4): 214-20.
    50. Guimaraes F, Guven H, Donati D, et al. Evaluation of ex vivo expanded human NK cells on antileukemia activity in SCID-beige mice[J]. Leukemia. 2006;20(5):833-9.
    51. Ruggeri L, Capanni M, Martelli MF, et al. Cellular therapy: exploiting NK cell alloreactivity in transplantation[J].Curr Opin Hematol. 2001 ;8(6):355-9.
    52. Peggs KS, Mackinnon S. Cellular therapy: donor lymphocyte infusion[J].Curr Opin Hematol. 2001 ;8(6): 349-54.
    53. Kolb HJ, Mittermuller J, Clemm C, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients[J].Blood. 1990; 76 (12):2462-5.
    54. Schmid C, Labopin M, Nagler A, et al. Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT Acute Leukemia Working Party[J].J Clin Oncol. 2007;25(31):4938-45.
    55. Beck JF, Klingebiel T, Kreyenberg H, et al. Relapse of childhood ALL, AML and MDS after allogeneic stem cell transplantation can be prevented by donor lymphocyte infusion in a critical stage of increasing mixed chimerism[J]. Klin Padiatr.2002;214(4):201-5.
    56. Munker R, Schmid C, Madrigal JA, et al. An update on graft-versus-host and graft-versus-leukemia reactions: a summary of the sixth International Symposium held in Schloss Ellmau, Germany, January 22-24, 2004[J].Bone Marrow Transplantation. 2004;34(9) :767-80.
    57. Giralt S, Hester J, Huh Y, et al. CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation[J]. Blood. 1995;86(11): 4337-43.
    58. Hale DA, Gottschalk R, Umemura A, et al. Immunologic mechanisms in tolerance produced in mice with nonradiation-based lymphoablation and donor-specific bone marrow[J]. Transplantation. 2002;74(4): 477-84.
    59. Kummar S, Ishii A, Yang HK, et al. Modulation of graft-versus-tumor effects in a murine allogeneic bone marrow transplantation model by tumor-derived transforming growth factor-beta [J]. Biol Blood Marrow Transplant. 2001;7(1):25-30.
    60. Carella AM , Champlin R, Slavin S, et al. Mini-allografts: ongoing trials in humans[J]. Bone Marrow Transplant, 2000,25:345-350.
    61.Bregni M, Dodero A, Peccatori J, et al. Nonmyeloablative conditioning followed by hematopoietic cell allografting and donor lymphocyte infusions for patients with metastatic renal and breast cancer[J]. Blood, 2002,99:4234-4236.
    62.Carella AM. Autografting and nonmyeloablative allogeneic stem cell transplantation in metastatic breast cancer[J]. Hematologica, 2002,87:11-12.
    63. Peccatori J, Ciceri F, Bernardi M, et al. Evidence of allogeneic graft-versus-tumor effect in prostate and ovarian cancer[J]. Hematologica, 2002,87:12-14.
    64. Childs R, Chernoff A, Contentin N, et al. Regression of metastatic renal cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem cell transplantation[J]. N Engl J Med, 2000,343:750-758.
    65. Gilleece MH, Dazzi F. Donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukaemia[J]. Leuk Lymphoma. 2003;44(1):23-28.
    66. Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells[J] .Nature. 1953;172 (4379):603-6.
    67. Exner BG, Domenick MA, Bergheim M, et al. Clinical applications of mixed chimerism[J]. Ann N Y Acad Sci. 1999;872:3 77-85.
    68. Fujimaki K, Maruta A, Yoshida M, et al. Immune reconstitution assessed during five years after allogeneic bone marrow transplantation[J]. Bone Marrow Transplant. 2001;27(12):1275-81.
    69. Hochberg EP, Chillemi AC, Wu CJ, et al. Quantitation of T-cell neogenesis in vivo after allogeneic bone marrow transplantation in adults[J].Blood. 2001; 98(4): 1116-21.
    70. Hazenberg MD, Otto SA, de Pauw ES, et al. T-cell receptor excision circle and T-cell dynamics after allogeneic stem cell transplantation are related to clinical events[J].Blood. 2002;99(9): 3449-53.
    71. Hatzakis A, Touloumi G, Karanicolas R, et al. Effect of recent thymic emigrants on progression of HIV-1 disease[J].Lancet. 2000;355(9204): 599-604.
    72. Al-Harthi L, Marchetti G, Steffens CM, et al. Detection of T cell receptor circles (TRECs) as biomarkers for de novo T cell synthesis using a quantitative polymerase chain reaction-enzyme linked immunosorbent assay (PCR-ELISA) [J]. J Immunol Methods. 2000;237(1-2): 187-97.
    73.杨新平,陶叠宏,陈国安.否决细胞与免疫耐受的诱导[J].国际移植与血液净化杂志.2007;5(2):39-41.
    74.Zhang L,Shannon J,Sheldon J,et al.Role of infused CD8+ cells in the induction of peripheral tolerance[J].J Immunol.1994;152(5):2222-8.
    75.Reich-Zeliger S,Zhao Y,Krauthgamer R,et al.Anti-third party CD8+ CTLs as potent veto cells:coexpression of CD8 and FasL is a prerequisite[J].Immunity.2000;13(4):507-15.
    76.Rachamim N,Gan J,Segall H,et al.Tolerance induction by "megadose"hematopoietic transplants:donor-type human CD34 stem cells induce potent specific reduction of host anti-donor cytotoxic T lymphocyte precursors in mixed lymphocyte culture[J].Transplantation.1998;65(10):1386-93.
    77.Gur H,Krauthgamer R,Berrebi A,et al.Tolerance induction by megadose hematopoietic progenitor cells:expansion of veto cells by short-term culture of purified human CD34(+)cells[J].Blood.2002;99(11):4174-81.
    78.Rachamim N,Gan J,Segall H,et al.Potential role of CD34 stem cells in tolerance induction[J].Transplant Proc.1997;29(4):1935-6.
    79.Gur H,Krauthgamer R,Bachar-Lustig E,et al.Immune regulatory activity of CD34+ progenitor cells:evidence for a deletion-based mechanism mediated by TNF-alpha[J].Blood.2005;105(6):2585-93.
    80.Sakaguchi S,Sakaguchi N,Asano M,et al.Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains(CD25).Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J].J Immunol.1995;155(3):1151-64.
    81.Sakaguchi S.Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses[J].Annu Rev Immunol.2004;22:531-62.
    82.Sakaguchi S.Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self[J].Nat Immunol.2005;6(4):345-52.
    83.Fontenot JD,Gavin MA,Rudensky AY.Foxp3 programs the development and function of CD4+CD25+ regulatory T cells[J].Nat Immunol.2003;4(4):330-6.
    84. Yagi H, Nomura T, Nakamura K, et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells [J]. Int Immunol. 2004;16(11):1643-56.
    85. Kanamaru F, Youngnak P, Hashiguchi M, et al. Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells[J].J Immunol. 2004;172(12): 7306-14.
    86. Paust S, Lu L, McCarty N, et al. Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease [J].Proc Natl Acad Sci U S A. 2004;101(28): 10398-403.
    87 . Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism[J].Nat Rev Immunol. 2004;4(10): 762-74.
    88. Liu W, Putnam AL, Xu-Yu Z, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells[J]. J Exp Med.2006;203(7):1701-ll.
    89. Hartigan-O'Connor DJ, Poon C, Sinclair E, et al. Human CD4+ regulatory T cells express lower levels of the IL-7 receptor alpha chain (CD 127), allowing consistent identification and sorting of live cells[J]. J Immunol Methods. 2007;319(1-2):41-52.
    90. Seddiki N, Santner-Nanan B, Martinson J, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells[J]. J Exp Med. 2006; 203(7): 1693-700.
    91. Asakura H, Ku G, Kataoka M, et al. Regulatory cells develop after the spontaneous acceptance of rat liver allografts[J].Surgery. 2004;136(3):532-6.
    92. Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality[J]. Blood. 2002; 99(10):3493-9.
    93. Cobbold SP, Graca L, Lin CY, et al. Regulatory T cells in the induction and maintenance of peripheral transplantation tolerance [J]. Transpl Int. 2003;16(2):66-75.
    94. Graca L, Thompson S, Lin CY, et al. Both CD4(+)CD25(+) and CD4(+)CD25(-) regulatory cells mediate dominant transplantation tolerance[J].J Immunol.2002;168(11):5558-65.
    95.Waldmann H,Graca L,Cobbold S,et al.Regulatory T cells and organ transplantation[J].Semin Immunol.2004;16(2):119-26.
    96.Piccirillo CA,Letterio JJ,Thornton AM,et al.CD4(+)CD25(+)regulatory T cells can mediate suppressor function in the absence of transforming growth factor betal production and responsiveness[J].J Exp Med.2002;196(2):237-46.
    97.Fehervari Z,Sakaguchi S.Development and function of CD25+CD4+regulatory T cells[J].Curr opin Immunol.2004;16(2):203-8.
    98.Nakamura K,Kitani A,Strober W.Cell contact-dependent immunosuppression by CD4(+)CD25(+)regulatory T cells is mediated by cell surface-bound transforming growth factor beta[J].J Exp Med.2001;194(5):629-44.
    99.Schramm C,Huber S,Protschka M,et al.TGFbeta regulates the CD4+CD25+T-cell pool and the expression of Foxp3 in vivo[J].Int Immunol.2004;16(9):1241-9.
    100.Annacker O,Pimenta-Araujo R,Burlen-Defranoux O,et al.CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T ceils through the production of IL-10[J].J Immunol.2001;166(5):3008-18.
    101.Akdis CA,Blaser K.IL-10-induced anergy in peripheral T cell and reactivation by microenvironmental cytokines:two key steps in specific immunotherapy[J].FASEB J.1999;13(6):603-9.
    102.D'Amico G,Vulcano M,Bugarin C,et al.CD40 activation of BCP-ALL cells generates IL-10-producing,IL-12-defective APCs that induce allogeneic T-cell anergy[J].Blood.2004;104(3):744-51.
    103.Billiau AD,Sefrioui H,Overbergh L,et al.Transforming growth factor-beta inhibits lymphokine activated killer cytotoxicity of bone marrow cells:implications for the graft-versus-leukemia effect in irradiation allogeneic bone marrow chimeras[J].Transplantation.2001;71(2):292-9.
    104.Xu H,Exner BG,Cramer DE,et al.CDS(+),alphabeta-TCR(+),and gammadelta-TCR(+)cells in the recipient hematopoietic environment mediate resistance to engraftment of allogeneic donor bone marrow[J].J Immunol.2002; 168(4):1636-43.
    105. Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer[J]. Blood.2005;105(8): 3051-57.
    106. Beyer M, Kochanek M, Darabi K, et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine[J]. Blood. 2005; 106(6):2018-25.
    107. Ghiringhelli F, Larmonier N, Schmitt E, et al.CD4_CD25_ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative[J]. Eur J Immunol. 2004;34:336-344.
    108. Dudley ME, Wunderlich JR, Robbins PF. et al.Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes [J]. Science. 2002;298:850-854.
    109. Hallett WH, Murphy WJ. Positive and negative regulation of Natural Killer cells: therapeutic implicalions[J].Semin Cancer Biol. 2006;16(5):367-82.
    110. Min WP, Zhou D, Ichim TE, et al. Inhibitory feedback loop between tolerogenic dendritic cells and regulatory T cells in transplant tolerance[J]. J Immunol. 2003; 170(3): 1304-12.
    111. Taner T, Hackstein H, Wang Z, et al. Rapamycin-treated, alloantigen-pulsed host dendritic cells induce ag-specific T cell regulation and prolong graft survival[J].Am J Transplant. 2005; 5(2): 228-36.
    112. Yates SF, Paterson AM, Nolan KF, et al. Induction of regulatory T cells and dominant tolerance by dendritic cells incapable of full activation[J]. J Immunol. 2007;179(2):967-76.
    113. Li M, Zhang X, Zheng X, et al.Tolerogenic dendritic cells transferring hyporesponsiveness and synergizing T regulatory cells in transplant tolerance[J].Int Immunol. 2008;20(2):285-93.
    114. Chang CC, Ciubotariu R, Manavalan JS, et al, Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4[J].Nat Immunol. 2002; 3(3):237-43.
    115. Gopinathan R, DePaz HA, Oluwole OO, et al. Role of reentry of in vivo alloMHC peptide-activated T cells into the adult thymus in acquired systemic tolerance[J].Transplantation. 2001; 72(9):1533-41.
    1. Mapara MY, Sykes M. Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance[J]. J Clin Oncol. 2004 ;22(6):1136-51.
    2. Staveley-O'Carroll K, Sotomayor E, Montgomery J, et al. Induction of antigen-specific T cell anergy: An early event in the course of tumor progression[J]. Proc Natl Acad Sci U S A. 1998;95(3):1178-83.
    3. Waller EK. Cellular immunothrapy and cancer[J]. Semin Oncol. 2004; 31(2 suppl 4):87-90.
    4. Zittoun RA, Mandelli F, Willemze R, et al. Autologous or allogeneic bone marrow transplantation compared with intensive chemotherapy in acute myelogenous leukemia. European Organization for Research and Treatment of Cancer (EORTC) and the Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto (GIMEMA) Leukemia Cooperative Groups[J]. N Engl J Med. 1995 Jan 26;332(4):217-23.
    5. Shimoni A, Nagler A. Nonmyeloablative stem cell transplantation: lessons from the first decade of clinical experience [J]. Curr Hematol Rep. 2004 Jul;3(4):242-8.
    6. Banna GL, Aversa S, Sileni VC, et al. Nonmyeloablative allogeneic stem cell transplantation (NST) after truly nonmyeloablative and reduced intensity conditioning regimens[J]. Crit Rev Oncol Hematol. 2004 Sep;51(3):171-89.
    7. Tamaki H, Ikegame K, Kawakami M, et al.Successful engraftment of HLA-haploidentical related transplants using nonmyeloablative conditioning with fludarabine, busulfan and anti-T-lymphocyte globulin[J].Leukemia. 2003 Oct;17(10):2052-4.
    8. Eibl B, Schwaighofer H, Nachbaur D, et al. Evidence for a graft-versus-tumor effect in a patient treated with marrow ablative chemotherapy and allogeneic bone marrow transplantation for breast cancer[J]. Blood. 1996 Aug 15;88(4):1501-8.
    9. Ueno NT, Rondon G, Mirza NQ, et al. Allogeneic peripheral-blood progenitor-cell transplantation for poor-risk patients with metastatic breast cancer[J]. J Clin Oncol. 1998 Mar;16(3):986-93.
    10. Bregni M, Dodero A, Peccatori J, et al. Nonmyeloablative conditioning followed by hematopoietic cell allografting and donor lymphocyte infusions for patients with metastatic renal and breast cancer [J]. Blood. 2002 Jun 1;99(11):4234-6.
    11. Carella AM. Autografting and nonmyeloablative allogeneic stem cell transplantation in metastatic breast cancer[J]. Hematologica. 2002;87(suppl 1):11-2.
    12. Childs R, Chernoff A, Contentin N, et al. Regression of metastatic renal cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem cell transplantation[J]. N Engl J Med. 2000;343:750-58.
    13. Childs R, Clave E, Contentin N, et al. Engraftment kinetics after nonmyeloablative allogeneic peripheral blood stem cell transplantation: full donor T cell chimerism precedes alloimmune responses[J|. Blood. 1999;94:3234-41.
    14. Bay JO, Fleury J, Choufi B, et al. Allogeneic hematopoietic stem cell transplantation in ovarian carcinoma: results of five patients[J]. Bane Marrow Transplant. 2002 Jul;30(2):95-102.
    15. Peccatori J, Ciceri F, Bernardi M, et al. Evidence of allogeneic graft-versus-tumor effect in prostate and ovarian cancer[J]. Hematologica. 2002;87(suppl 1):12-4.
    16. Moscardo F, Martinez JA, Sanz GF, et al. Graft-versus-tumour effect in non-small-cell lung cancer after allogeneic peripheral blood stem cell transplantation[J]. Br J Haematol. 2000 Nov;111(2):708-10.
    17. Zetterquist H, Hentschke P, Thorne A, et al. A graft-versus-colonic cancer effect of allogeneic stem cell transplantation[J]. Bone Marrow Transplant. 2001 Dec;28(12):1161-6.
    18. Pedrazzoli P, Da Prada GA, Giorgiani G, et al. Allogeneic blood stem cell transplantation after a reduced-intensity, preparative regimen: a pilot study in patients with refractory malignancies[J]. Cancer. 2002 May 1;94(9):2409-15.
    19. Kurokawa T, Fischer K, Bertz H, et al. In vitro and in vivo characterization of graft-versus-tumor responses in melanoma patients after allogeneic peripheral blood stem cell transplantation[J]. Int J Cancer. 2002 Sep 1;101(1):52-60.
    20. Childs R, Bradstock K, Gottlieb D, et al. Nonmyeloablative stem cell transplantation (NST) for metastatic melanoma: non durable chemotherapy responses without clinically meaningful graft-versus-tumor (GVT) effects [J]. Blood. 2002;99(suppl l):429a.
    21. Dini G, Canadda R, Locatelli F, et al. Unrelated donor marrow transplantation: an update of the experience of the Italian Bone Marrow Transplant Group (GITMO) [J]. Haematologica. 2000 Nov;85(11 Suppl):30-6.
    22. Isnard F, Guiguest M, Laporte JP, et al. Improved efficiency of remission induction facilitates autologous BMT harvesting and improves overall survival in adults with AML: 108 patients treated at a single institution[J]. Bone Marrow Transplant. 2001 May;27(10): 1045-52.
    23.Hale DA, Gottschalk R, Umemura A, et al. Immunologic mechanisms in tolerance produced in mice with nonradiation-based lymphoablation and donor-specific bone marrow[J]. Transplantation. 2002;74(4): 477-84.
    24. Rachamim N, Gan J , Segall H, et al. Tolerance induction by "megadose" hematopoietic transplants: donor-type human CD34 stem cells induce potent specific reduction of host anti-donor cytotoxic T lymphocyte precursors in mixed lymphocyte culture[J]. Transplantation. 1998;65(10):1386-93.
    25. Guinan EC,Gribben JG, Boussiotis VA, et al. Pivotal role of the B7:CD28 pathway in transplantation tolerance and tumor immunity[J]. Blood. 1994 Nov 15;84(10):3261-82.
    26. Cobbold SP, Adams E, Marshall SE, et al. Mechanisms of peripheral tolerance and suppression induced by monoclonal antibodies to CD4 and CD8[J]. Immunol Rev. 1996 Feb; 149:5-33.
    27. Hale G, Slavin S, Goldman JM, et al. Alemtuzumab (Campath-IH) for treatment of lymphoid malignancies in the age of nonmyeloablative conditioning[J]?Bone Marrow Transplant. 2002 Dec;30(12):797-804.
    28. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants [J]. Science,2002, 295:2097-2100.
    29. Giralt S, Hester J, Huh Y, et al. CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation[J]. Blood. 1995;86(11): 4337-43.
    30.Atra A, Millar B, Shepherd V, et al. Donor lymphocyte infusion for childhood acute lymphoblastic leukaemia relapsing after bone marrow transplantation[J]. Br J Haematol. 1997;97(1):165-8.
    31 .Kolb HJ, Schattenberg A, Goldman JM, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients[J]. Blood. 1995; 86(5):2041-50.
    32.Slavin S, Nagler A, Naparstek E, et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant andnonmalignant hematologic diseases[J]. Blood. 1998; 91(3):756-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700