逆向模型重建技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆向工程技术是随着计算机技术的发展和成熟以及数据测量技术的进步而迅速发展起来的一门新兴学科与技术,它的出现,改变了原来CAD系统中从图纸到实物的设计模式,为产品的迅速开发以及快速原型化设计提供了一条新的途径。曲线重建、曲面重建是逆向工程中重要的问题,从已知的采样数据点出发,构造出物体的几何模型,是对物体进行分析、计算和绘制的根据,是研究曲面性质的重要工具。散乱数据点的三角网格剖分是逆向工程中的一个重要环节,是进行后续曲面重建的前提和基础,随着激光和三维坐标测量机等三维数据采样技术和硬件设备的日益完善,人们采用先进的测量设备可以获得物理模型的数据信息。这些数据往往是散乱数据点,而且数据量非常大。对这样的数据直接进行NURBS曲面重构存在很大困难,为此,人们开始研究多项式网格曲面。网格曲面可以表达任意复杂的形体,尤其是三角网格曲面具有计算简单、数值稳定性好以及显示效率高等优点,但是随着数据量的明显增多,扫描获取的几何体的细节以及外形的日渐丰富,对有效生成、处理超大规模几何模型的新方法的需求也日渐增长,单纯采用传统的基于三角面片的绘制方法难以满足真实性、实时性和交互性的要求,三角形网格生成以及进一步简化成为又一个研究热点。
     本文介绍了文章的选题背景、意义以及目前逆向工程中逆向模型重建的主要技术。本文主要工作如下:
     1.以Bézier曲线为例,对重新参数化和参数最优化进行了研究,并将参数最优化方法应用到散乱点的曲线重建。
     2.在判断多边形顶点凹凸性的基础上,提出一种基于多边形的三角剖分方法。
     3.提出基于边删除和改进二次误差测度的带有属性的三角网格简化方法,在现有的三角网格简化方法的基础上加入了属性的处理。
     最后对全文进行总结,并指出了今后进一步的研究方向。
Reverse engineering is a new subject and technology coming up with the development of computer science and data digitization.Its help to change the design mode from draft to models in conventional CAD systems.It's a new approach for rapid prototype manufacture.Curve and surface reconstruction are two basilica questions in reverse engineering.With the data acquired from one existent object,the geometrical models can be reconstructed which is a useful tools to study the existent object such as analysis,computing and rendering.Triangulation of scattered data is the first important step and the base of later step of reconstructing curved Surface in Reverse Engineering.Meanwhile,with the recent development of 3D data collection technologies and hardware facilities,people can get the data information of the physical model by using the advanced measurement tools.
     The data often is scattered,and the volume of the data is very large.It is very difficult to directly reconstruct NURBS surface from such data,so people divert attention to the Polynomial meshes.Meshes can descript complex shape objects,especially triangular mesh is with the advantages of simple calculation,great numerical stability and high showing efficiency, but with the volume of the data significantly increasing,the geometry details got by scanning and the shape is becoming rich gradually,the need to new method which can effectively produce and process ultra-large-scale geometric model is growing day by day.It is very difficult for meeting the requirements of authenticity real-time performance and interactive performance only to use the traditional rendering method based on triangular mesh,it is another new field to produce triangular mesh and to simplify the triangular mesh.
     This paper introduces the background of article topic,significance and the main technology in reverse engineering.
     1.Considering the Bezier curve as an example,it is to research on the re-parametric and optimal parameterization and use the optimal parameterization method into the curve reconstruction.
     2.Judging the polygon as concave or convex,a triangulation method of polygon is proposed.
     3.Considering Edge collapse and improved Quadric-error metric as a basis,a simple and speedy mesh simplification algorithm with additional properties such as color,texture etc is proposed.
     At last.some conclusions are made for the whole article and tb.e future work to do in related research fields is suggested.
引文
[1] Varady, T. and Benko, P. Reverse engineering B-rep models from multiple point clouds, GMP, 2000
    [2] Zhu, H. and Menq, C.H. B-Rep model simplification by automatic fillet/round suppressing for efficient automatic feature recognition, Computer-Aided Design, 2002, 34(2): 109-123
    [3] Sapidis, N.S. and Besl, P.J. Direct construction of polynomial surfaces from dense range images through region growing, ACM Transactions on Graphics, 1995, 14(2): 171-200
    [4] BENKO, P. and VARADY, T. Best Fit Translational and Rotational Surfaces for Reverse Engineering Shapes, In: 9th IMA Conference on the Mathematics of Surfaces, Eds: R. Cipolla, R, Martin; Springer 2000, 71-81
    [5] McAllister, D.F. and Roulier, J.A. An algorithm for computing a shape preserving oscillatory quadratic spline. ACM Transactions on Mathematical Software, 1991, 7: 331-347
    [6] Fritsch, F.N. and Carlson, R.E. Monotone piecewise cubic interpolation, SIAM Journal of Numerical Analysis, 1980, 17, 238-246
    [7] Fritsch, F.N. and Butland, J.A method for constructing local monotone piecewise cubic interpolates. SIAM Journal of Scientific and Statistical Computing, 1984, 5,303-304
    [8] Passow, E. and Roulier, J.A. Monotone and convex spline interpolation, SIAM Journal of Numerical Analysis, 1977, 904-909.
    [9] Gregory, J.A. Shape preserving spline interpolation. Computer-Aided Design, 1986, 18(1): 53-57
    
    [10] Sarfraz, M. Preserving monotone shape of the data using piecewise rational cubic functions. Computers & Graphics, 1997, 21(1):5-14
    
    [11] Sarfraz, M. A rational cubic spline for the visualization of monotonic data, Computers & Graphics, 2000, 24:509-516
    
    [12] Lavery, J.E. Shape-preserving, multi-scale fitting of univariate data by cubic L~1 smoothing splines, Computer Aided Geometric Design, 2000, 17:715-727
    [13] Yang ,X. and Wang, G. Planar point set fair and fitting by arc splines, Computer-Aided Design, 2001, 33:35-43
    [14] Korsters, M. Curvature-dependent parameterization of curves and surfaces. Computer Aided Design 1991, 23(8), 569-578
    [15] McLain, D. Drawing contours form arbitrary data pints, The Computer Journal, 1974, 17:318-324
    [16] McLain, D. Two dimensional interpolation from random data, The Computer Journal, 1976, 19:178-181
    [17] Lancaster, P. Moving weighted least-squares methods, Polynomial and Spline Approximation, Reidel, 103-120
    [18] Lee, I. K. Curve reconstruction from unorganized points, Computer Aided Geometric Design, 2000, 17:161-177
    [19] Fang, L. and Gossard, D.C. Multidimensional curve fitting to unorganized data points by nonlinear minimization, Computer-Aided Design, 1995, 27(1):48-58
    [20] Taubin, G. and Ronfard, R. Implicit simplicial models for adaptive curve reconstruction, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(3):321-325
    [21] Blum, H. A transformation for extracting new descriptors shape, In: Models for the Perception of Speech and Visual Form, Wathen-Dunn ed. MIT Press, Cambridge, MA, 1967, 362-380
    [22] Arcelli, C. Pattern thinning by contour tracing, Computer Graphics and Image Processing, 1981, 17:130-144
    [23] Arcelli, C. and di Baja, G. S. A width-independent fast thinning algorithm, IEEE Transactions on Pattern Anal. Mach. Intel., 1985, 7:463-473
    [24] Yun, X. Skeletonization via the realization of the fire front's propagation and extinction in digital binary shapes, IEEE Transactions on Pattern Anal. Mach. Intell, 1989, 11:1076-1086
    [25] Eckhardt, U. and Maderlechner, G. Invariant Thinning, International Journal of Pattern Recognition and Artificial Intelligence, 1993, 7(5): 1115-1144
    [26] Pottmann, H. and Randrup, T. Rotational and helical surface approximation for reverse engineering, Computing, 1998, 60, 307-322
    [27] Goshtasby, A. A Grouping and parameterizing irregularly spaced points for curve fitting, ACM Transactions on Graphics, 2000, 19(3): 185-203
    [28] Boehm, W. Farin, G. and Kahmann, J. A survey of curve and surface methods in CAGD, Computer Aided Geometric Design, 1984, 1(1): 1-60
    [29] Bajaj, C.L. Bernardini, F. and Xu, G. Automatic reconstruction of surfaces and scalar fields form 3D scans, SIGGRAPH '95,109-118
    [30] Eck, M. and Hoppe, H. Automatic reconstruction of B-spline surfaces of arbitrary topological type, SIGGRAPH, 1996, 335-342
    [31] Guo, B. Surface reconstruction: from points to splines, Computer-Aided Design, 1997, 29(4):269-277
    [32] Yang, M. and Lee, E. Segmentation of measured point data using a parametric quadric surface approximation, Computer-Aided Design, 1999, 31:499-457
    [33] Floater, M.S. Meshless parameterization and B-spline surface approximation, The Mathematics of Surfaces, 1-18
    [34] Muraki. S. Volumetric shape description of range data using "blobby model", SIGGRPAH, 1991,227-235
    [35] Sapidis, N.S. and Besl, P.J. Direct construction of polynomial surfaces from dense range images through region growing, ACM Transactions on Graphics, 1995, 14(2): 171-200
    [36] Zhao, H.K. Osher, S. Merriman, B. and Kang, M. Implicit and nonparametric shape reconstruction from unorganized data using a variational level set method, Computer Vision and Image Understanding, 2000, 80:295-314
    [37] Carr, J.C. Beatson, R.K. Cherrie, J.B. Mitchell, T. J. Fright, W. R. McCallum, B. C. and Evans, T. R. Reconstruction and representation of 3D Objects with Radial Basis Functions, SIGGRAPH '2001, 67-76
    [38] Zhou, L. and Kambhamettu, C. Extending super-quadrics with exponent functions: modeling and reconstruction, Graphical Models, 2001, 63(1):1-20
    [39] Miller, J.V. Breen, D.E. Lorensen, W.E. O'Bara, R.M. and Wozny, M.J. Geometrically deformed models: A method for extracting closed geometric models from volume data, SIGGRAPH, 1991, 25(4):217-226
    [40] Ruperecht, D. Nagel, R. and Muller, H. Spatial free-form deformation with scattered data interpolation methods. Computers & Graphics, 1995,19(1):63-71
    [41] Witkin, A. and Welch, W. Fast animation and control of non-rigid structures. Computer Graphics, 1990, 24(4):243-252
    [42] Turk, G. and O'Brien, J.F. Shape transformation using variational implicit functions, SIGGRAPH, 1999, 335-342
    [43] Breen, D.E. and Whitaker, R.T. A Level-Set Approach for the Metamorphosis of Solid Models, IEEE Transactions on Visualization and Computer Graphics, 7(2): 173-192
    [44] Hoppe, H. DeRose, T. Duchamp, T. McDonald, J. and Stuetzle, W. Surface reconstruction from unorganized points, Computer Graphics, 1992, 26(2):71-76
    [45] Amenta, N. Bern, M. and Kamvysselis, M. A new Voronoi-based surface reconstruction algorithm, SIGGRAPH '98, 415-421
    [46] Bradley, C. Rapid prototyping models generated from machine vision data, Computers in Industry, 2001, 41:159-173
    [47] Floater, M.S. and Riemers, M. Meshless parameterization and surface reconstruction, Computer Aided Geometric Design, 2001, 18:77-92
    [48] Hoppe, H. DeRose, T. Duchamp, T. and Halstead, M. Piecewise smooth surface reconstruction,SIGGRAPH,1994,295-302
    [49]Volpin,O.Sheffer,A.Bercovier,M.and Joskowicz,L.Mesh simplification with smooth surface reconstruction,Computer-Aided Design,1998,30(11):875-882
    [50]Cong,G.and Parvin,B.An algebraic solution to surface recovery from cross sectional contours,Graphical Models and Image Process,1999,61,222-243
    [51]Klein,R.and Schilling,A.Fast distance field interpolation for reconstruction of surface from contours,EUROGRAPH,1999,Short Papers & Demos Proceedings,Milano,Italy,1999
    [52]Senasli,M.Garnero,L.Herment,A.and Mousseaux,E.3D reconstruction of vessel lumen from very few angiograms by dynamic contours using a stochastic approach,Graphical Models,2000,62:105-127
    [53]Lai,J.Y.and Ueng,W.D.Reconstruction of surfaces of revolution from measured points,Computers in Industry,2001,41:147-161
    [54]Farouki,R.T.Optimal parameterizations,Computer Aided Geometric Design,1997,14(2):153-168
    [55]郭凤华.参数曲线的最优参数化.计算机辅助设计与图形学学报,2007,19(14):464-467
    [56]梁锡坤.Bernstein-Bezier类曲线和Bezier曲线的重新参数化方法.计算机研究和发展,2004,41(6):1016-1021
    [57]施法中.计算机辅助几何设计与非均匀有理B样条(CAGD&NURBS).北京:北京航空航天大学出版社,1994
    [58]施法中.论采用有理Bezier表示的圆弧曲线的参数化.见:张彩明,方漪,编.第一届全国几何设计与计算学术会议论文集.东营:石油大学出版社,2002.60-69
    [59]胡倩倩,王国瑾.有理圆锥曲线段的参数的几何意义[J].中国科学A辑数学,2005,35(5):513-525
    [60]戴春来.样条曲线的参数化变形方法.计算机辅助设计与图形学学报,2005,17(6):1207-1212
    [61]金建国,周明华,王明怡等.曲线参数化模型研究.浙江大学学报,2002,36(1):74-77
    [62]Piegl,L.Tiller,W.The NURBS Book.New York:Springer,1995.5-34
    [63]Farin,G.Curves and Surfaces for Computer Aided Geometric Design.NewYork:Academic Press,1988.33-58
    [64]Bezier,P.The Mathematical Basis of the UNISURF CAD System.London:Butterworths,1986.11-72
    [65]郭凤华,杨兴强.Bezier曲线的一种重新参数化方法[J].工程图学学报,2006,2:108-111
    [66]郭凤华.Bezier曲线最优化参数研究[J].计算机科学,2005,32(5):195-212
    [67]Tsai,C.Y.A New Mesh Generation Scheme for Arbitrary Planar Domains.International Journal for Numerical Methods in Engineering,1985(21):1403-1426
    [68]Robinson,M.C.The Greedy and Delaunay Triangulations Are Not Bad in The Average Case.Information Processing Letters,1986(22):25-31
    [69]周杰,丁贤荣,汪德.平面散点集Delaunay三角剖分的一种高效方法.测绘信息与工程,2003,28(6):21-23
    [70]周培德.平面点集三角剖分的算法.计算机辅助设计与图形学学报,1996,8(4):259-264
    [71]周培德.平面散乱点线集三角剖分的算法.计算机辅助设计与图形学学报,2003,15(9):1141-1144
    [72]Epprtein,D.A.and Hong,J.A Heuristic Triangulation Algorithm.J.Algorithms,1987,(8):405-437
    [73]方锡武,崔汉国.有限元网格自动生成的Delaunay算法.海军工程学院学报,1998,4:31-34
    [74]李世森,朱志夏,秦岭,时钟.任意平面区域的自动三危剖分.天津大学学报,2000,33(5):592-598
    [75]孟倩,陈德棉.地质模型网格剖分中Delaunay三角剖分算法的实现及优化.佳木斯大学学报,2004,22(3):323-327
    [76]Aurenhammer,F.Voronoi diagrams:a survey of a fundamental data structure.ACM Computing Surveys.1991,23(3):345-405
    [77]闵卫东,唐泽圣.二维任意域内点集的Delaunay三角划分生成算法.计算机学报,1995,18(5):365-371
    [78]徐永安.约束Delaunay三角剖化的关键问题研究与算法实现及应用.博士学位论文.杭州.浙江大学.1999
    [79]Silbson,R.Locally equiangular triangulations.The Computer Journal.1978,21(3):243-245
    [80]Joe,B.Delaunay versus Max-min solid angle triangulations for three dimensional mesh generation.International Journal of Numerical Methods in Engineering.1991,31:987-997
    [81]刘润涛.任意多边形顶点凸、凹性判别的简捷算法.软件学报,2002,13(7):1309-1312
    [82]周石琳,汤晓安,陈敏,等.基于多边形顶点法矢量的网格模型简化算法.中国图象图形学报,2002,6(7):601-605
    [83]Frey,P.J.Borouchaki,H.Surface mesh quality evaluation.International Journal of Numerical Methods in Engineering.2000,45:101-118
    [84] William J Schroeder, Jonathan A Zarge, William E Lorensen. Decimation of triangle meshes .Computer Graphics, 1992, 26(2):65-70
    [85] Turk, G. Re-Tiling polygonal surfaces. In: Proceedings of the Computer Graphics, SIGGRAPH'92.1992.http://www.gvu.gatech.edu/people/faculty/greg.turk/mypapers/retile. pdf
    [86] Hoppe, H. DeRose, T. Duchamp, T. et al. Mesh optimization. In: Proceedings of the SIGGRAPH'93.1993. http://citeseer.nj. nec.com/hoppe93mesh.html
    [87] Hinker, P. and Hansen, C. Geometry optimization. In: Proceedings of the IEEE Visualization'93. 1993.http://www.acl.lanl.gov/Viz/abstracts/GeometricOptimization.html
    [88] Low, K.L. and Tan, T.S. Model simplification using vertex-clustering. In: Proceedings of the 1997 Symposium on Interactive 3D Graphics, ACM SIGGRAPH'97. 1997. http://www.comp.nus.edu.sg/~tants/Paper/simplify.pdf
    [89] Hamann, B. A data reduction scheme for triangulated surface. Computer Aided Geometric Design, 1994, 11 (2): 197-214
    [90] Ronfard, R. and Rossignac, J. Full-Range approximation of triangulated polyhedra. Computer Graphics Forum, 1996,15(3):67-76
    [91] Luebke, D. Hierarchical structures for dynamic polygonal simplification. Technical Report, TR96-006, Department of Computer Science, University of North Carolin at Chape Hill, 1996
    [92] Cohen, J. Varshney, A. et al. Simplification envelopes. In: Proceedings of the SIGGRAPH'96. 1996. http://www.cs.unc.edu/~geom/envelope.html
    [93] Garland, M. and Heckbert, P. S. Surface simplification using quadric error metrics. Computer Graphics, 1997, 31 (3): 209-216

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700