肉鸡H5亚型禽流感疫苗及其免疫应答的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
H5亚型高致病性禽流感常常给养禽业造成巨大的经济损失,严重威胁世界各地的养禽业。
     禽流感的爆发能使肉鸡养殖业受到巨大的经济损失,这也与肉鸡的生长特点有直接关系。肉鸡生长周期短,成长迅速。这种快速增长方式使肉鸡长期处于应激反应状态,抵抗禽流感侵袭的能力也较弱,疫苗免疫预防肉鸡感染禽流感显得尤为重要。本文进行了肉鸡母源抗体保护时间、不同抗原浓度疫苗及不同佐剂疫苗的免疫效果、灭活疫苗与活疫苗配合使用效果等研究,并进行了疫苗免疫后的细胞免疫应答检测,以寻找对肉鸡比较理想的禽流感疫苗,为肉鸡禽流感疫苗防控提供科学依据。
     为观察肉鸡母源抗体的保护时间,本试验选择哈尔滨当地一批肉鸡,对肉鸡母源抗体的消长规律及不同时间攻毒保护进行了研究。结果显示肉鸡出生后1日龄时HI抗体滴度在4log2,之后一周内持续下降,到7日龄时已下降到3log2以下。肉鸡3日龄攻毒后死亡率为12/20,总排毒率为18/20:7日龄攻毒后死亡率为16/20,总排毒率为20/20;14日龄攻毒后,死亡率达到了19/20,总排毒率为20/20。肉鸡生长周期短且在上市之前必须具有一段休药期。因此,结合肉鸡母源抗体攻毒保护结果,确定免疫时间为7日龄左右。
     进行了H5亚型重组禽流感病毒(Re-5株)不同抗原浓缩倍数白油佐剂灭活疫苗对肉鸡免疫效果的比较。结果显示3倍、5倍抗原浓缩疫苗免疫肉鸡后1~6周HI抗体滴度高于非浓缩疫苗组。免疫后第6周时5倍抗原浓缩疫苗免疫组HI抗体滴度达到最高峰为6.3log2,3倍抗原浓缩疫苗免疫组为5.6log2,非浓缩疫苗免疫组仅为3.6log2。在免疫后2周攻毒试验中,浓缩疫苗免疫组肉鸡无死亡、无排毒。试验结果表明增加抗原含量有助于提高肉鸡对禽流感灭活疫苗的免疫应答。
     为筛选具有理想免疫效果的佐剂,本试验制备了4种不同佐剂的H5N1亚型(Re-5株)灭活疫苗,并对其进行了免疫肉鸡效果比较研究。试验结果显示,(Re-5株)Montanide ISA71VG油包水灭活疫苗免疫肉鸡后1~6周HI抗体滴度平稳上升,免疫后第6周HI抗体滴度达到4.7log2;攻毒后免疫组肉鸡无发病、无死亡、无排毒。从免疫鸡抗体检测和攻毒后的排毒情况来看,Montanide ISA71VG油包水佐剂,优于传统的白油佐剂以及Montanide ISA206VG佐剂和铝盐佐剂,具有良好的应用前景。
     本文对灭活疫苗与活疫苗联合免疫肉鸡后免疫效果进行了研究。试验结果显示:(Re-5株)Montanide ISA71VG佐剂油包水禽流感灭活疫苗及传统白油佐剂灭活疫苗与禽流感、新城疫重组二联活疫苗(rL-H5株)同时免疫或间隔1周免疫肉鸡,免疫后1~6周联合免疫的平均HI抗体滴度均高于相应疫苗单独免疫;而且在免疫后第1、2和3周攻毒时,疫苗联合免疫肉鸡组无死亡、无排毒。结果表明,禽流感灭活疫苗与活疫苗联合免疫,能够激发肉鸡理想的体液免疫应答。本研究可为灭活苗和活疫苗联合免疫程序提供参考。
     本文进行了已经应用或正在研究的H5亚型禽流感4种疫苗细胞免疫反应研究。结果显示,H5亚型重组禽流感(Re-5株)Montanide ISA71VG油包水灭活疫苗、(Re-5株)白油佐剂灭活疫苗、禽流感和新城疫重组二联活疫苗(rL-H5株)、DNA疫苗免疫肉鸡后,外周血及脾脏和胸腺中CD4+、CD8+、CD3+T淋巴细胞相对百分含量均明显高于未免疫组,且脾脏CD4+ T淋巴细胞呈阶段性上升状态;各时期SI值和巨噬细胞NO分泌量检测结果,免疫组均高于同期对照组(p<0.05),表明这4种疫苗均可以激发肉鸡产生较强的细胞免疫应答。
H5 subtype Avian Influenza not only threats to poultry industry, but also causes huge economic losses all over the world in recent years.
     The growth characteristics of broilers are short growth cycle, rapid growth-up and most nutrients of feed turned into muscle growth. .So Broiler parts of the body are burdened and inside always in the state of stress reaction. As a result, broilers are poorer ability to resist avian flu. These cause more significant loss in broiler breeding industry in many countries and regions. The research on the time of maternal antibody against challenge, different cycles of concentration antigen of Inactivated oil-emulsion vaccines, immune effect of different vaccine adjuvant, effect of combined inactivated and live vaccine was studied and cellular immune response was detected, to find out satisfactory vaccines against Avian Influenza and provide scientific basis on prevention and control for broiler chickens Avian Influenza.
     Dynamic of maternal antibody and virus attack protection at different time was studied to observe the challenge time of maternal antibody by choosing a number of local broilers in Haerbin. The result is that HI antibody titers is 4log2 for one-day broiler and decline during the next week and is below 3log2 seven days later. The mortality is 12/20 and total shedding is 18/20. with 3-days vaccinated broilers, but 16/20 with7-days old and total shedding is 20/20. The mortality is up to 19/20 with 14-days vaccinated broilers.About 50 days old broiler will sell on the market, but they need some off-drug period for food safety. Based on experiment result, the broilers should be about 7 days old.
     By comparison of immune effect between different multiple cycles of concentration antigen of Inactivated oil-emulsion vaccines and (Re-5 Strain) Inactivated oil-emulsion vaccines, it shows that (Re-3 Strain) 3 cycles of concentration antigen of Inactivated oil-emulsion vaccines and (Re-5 Strain) 5 cycles of concentration antigen of Inactivated oil-emulsion vaccines have much better effect than (Re-5 Strain) Inactivated oil-emulsion vaccines. 0ne to six weeks later, HI antibody of different multiple cycles of concentration antigen is higher than none concentration antigen. HI antibody of 5 cycles of concentration antigen of inactivated oil-emulsion vaccines has maximum value 6.3log2, 3 cycles of concentration antigen of inactivated oil-emulsion vaccines 5.6log2 and none concentration antigen is 3.6log2. It turns out that increase antigenic content can improve immune reaction of avian influenza vaccine.
     4 (Re-5 Strain) different vaccine adjuvant inactivated vaccines have been developed to select desired adjuvant and compare the immune effect. (Re-5 Strain) Montanide ISA71VG Inactivated oil-emulsion vaccines Vaccinated one to six weeks later, HI antibody increases and up to 4.7log2 at the sixth week. Virus attack at two weeks later, no virus shedding, clinical signs, or deaths were observed. According to antibody level and detoxification, (Re-5 Strain) Montanide ISA71VG Inactivated oil-emulsion vaccines has better application prospect, compared with traditional Inactivated oil-emulsion vaccine、Montanide ISA206VG Inactivated oil-emulsion vaccine and aluminium adjuvant Inactivated oil-emulsion vaccine.
     Immune effect about vaccinated broilers was researched by using combined vaccines. It figures out that (Re-5 Strain) Montanide ISA71VG Inactivated oil-emulsion vaccines、Traditional (Re-5 Strain) Inactivated oil-emulsion vaccines combined with Avian Influenza Recombinant Newcastle Disease virus bivalent vaccine,Live(rL-H5 Strain) vaccinated at the same time or one-week interval, HI antibody are higher than none combined group after one to six weeks. Furthermore in virus attacking test at different time point, combined vaccines can provide completely immune protection of virus attack without detoxification or deaths. The results show that combined immune of inactivated vaccine against avain influenza and live vaccine triggers satisfactory humoral immune response. The research provides reference for immunization schedule of inactivated and live vaccines.
     In this paper cellular immune response was studied by 4 different kinds of H5 Subtype Vaccines against Avian Influenza. It figures out that while DNA vaccines , Avian Influenza Recombinant Newcastle Disease virus bivalent vaccine, Live(rL-H5 Strain),(Re-5 Strain)Montanide ISA71VG Inactivated oil-emulsion vaccines, (Re-5 Strain) Inactivated oil-emulsion vaccines immune chickens the relative percent contents of CD4+ and CD8+ subsets, CD3+ T lymphocytes in periphery blood, spleen and thymus of immunized groups are higher than the unvaccinated groups, and the relative percent contents of CD4+ T lymphocytes in spleen consistently increased after vaccination. Test result of SI-value and NO secretory volume of macrophages in the different stage display that immunized groups higher than the control groups (p<0.05), selected vaccine can stimulate strong cellular immune response with AA broiler.
引文
1.陈化兰,马文军.表达禽流感病毒血凝素基因的重组禽痘病毒的构建[J].中国农业科学,2000. 33(5):86-90.
    2.陈化兰,于康震,卢景良,等.禽流感及其分子生物学研究进展[J].国外兽医学—畜禽传染病,1997,17(1):3-6.
    3.陈洪亮,樵宝山,李德发,等.黄芩氏多糖对肉鸡脾淋巴细胞转化及信息分子的影响[J].中国兽医杂志,2003,39(10):11-13.
    4.陈吉祥,李广林,薛飞群,等.脂质体在生物学中的应用新进展[J].甘肃畜牧兽医,2000,3:28-29
    5.陈伯伦,张泽纪,陈伟斌,等.鸡A型禽流感病毒的分离与血清型初步鉴定[J].中国兽药杂志,1994,20(1):1-5.
    6.何萍,吕凤林,陈月,等.铝佐剂毫微粒制备及其对小鼠Th2细胞亚群影响的研究[J].中华微生物学和分子学杂志,2005,25(3):179-182.
    7.金存娇.免疫佐剂研究进展[J].亚太传统医药,2008,4(4):25-27
    8.金伯泉.(主编).细胞和分子免疫学[M]西安:世界图书出版公司,1995.110-133.
    9.姜永萍,张洪波,李呈军,等.H5亚型禽流感DNA质粒pCAGGoptiHA5对高致病力禽流感病毒攻击的免疫保护[J].畜牧兽医学报,2005,36(11),1178-1182
    10.姜永萍,张洪波,步志高.等.表达载体pCAGG显著增强禽流感DNA疫苗的免疫保护效果[J].中国农业科学,2006,39(4):825-830
    11.卡尔尼克.(主编).高福,刘文军译.禽病学[M].第9版.北京:北京农业大学出版社1991:455-471.
    12.林小敏.新型疫苗佐剂—免疫刺激复合物(ISCOM)的研究进展[J].广东畜牧兽医科技2005,30(3):18-20.
    13.李淑芳,李英,张继,等.1米糠多糖对健康雏鸡外周血:T淋巴细胞转化和体液免疫的影响[J]动物营养学报,2007,19(3):237-244.
    14.李雁冰,施建忠,赵海丹,等.中国H5N1亚型高致病性禽流感病毒抗原变异株的鉴定分析[J].畜牧兽医学报,2010,41(3):305-309.
    15.李庆章,刘忠贵.MTT比色分析法检测鸡外周T淋巴细胞体外增殖反应的研究[J].中国兽医杂志,1994.20:(9):18-20.
    16.李德娟,何巍,张睿,等.氢氧化铝佐剂配制工艺的优化[J].中国生物制品学杂志,2010,23(10):1135-1137.
    17.刘民,马华,李伯青,等.MTT法检测小鼠淋巴细胞增殖性反应探讨[J].中国实验动物学杂志,1999.99(3):146-149.
    18.李海燕,于康震,张晶,等.畜禽重大疫病生物技术防制研究[M].北京:中国农业科技出版社, 1998:329-331.
    19.毛群颖,张华远,廖雪雁,等.铝盐佐剂对甲型肝炎病毒抗原和乙型肝炎病毒表面抗原细胞免疫反应的研究[J].中国预防医学杂志,2003.(1)26-29
    20.乔传玲,夏永萍,李呈军,等.禽流感重组禽痘病毒rFPV-HA-NA活载体疫苗的研究[J].免疫学杂志,2003,19(1):46-49.
    21.裘孝良,郝勤宗,侯艳红,等.H5亚型禽流感病毒的分离及河北省流行高致病禽流感的思考[M].中国畜牧兽医学会禽病学分会第11次学术研究会论文集,2002:131-132.
    22.乔传玲,常洪涛,于康震,等.共表达禽流感病毒HA和NA基因重组禽痘病毒的遗传稳定性[J].微生物学报,2003,44(5):686-688.
    23.乔传玲,李呈军,于康震,等.禽痘病毒感染对禽流感重组禽痘病毒疫苗效力的影响[J].中国预防兽医学报,2005,27(2):154-156.
    24.孙永科,田占成,王云峰,等.表达鸡γ2干扰素和传染性支气管炎病毒S1基因的重组鸡痘病毒疫苗对鸡外周血T淋巴细胞动态分布影响的研究[J].中国预防兽医学报,2006.28(5):539-543.
    25.田国彬,曾显营,钟功勋,等.H5N1亚型禽流感变异株灭活疫苗种毒Re-4株的生物学特性及免疫原性研究[J].中国预防兽医学报,2009,31(9):717-720.
    26.田国彬,于康震,唐秀英,等.禽流感灭活疫苗的标准化研究[J].中国兽药杂志,2002,36(4):41-44.
    27.田国彬,李雁冰,施建忠等禽流感(H5N1亚型,Re1株)研究及应用[J].2004学术年会,878-882.
    28.田国彬,李呈军,李雁冰,等.高效安全禽流感H5N1亚型灭活疫苗种毒株Re1的构建及其生物学特性和免疫原性研究[J].2004学术年会,662-666.
    29.田国彬,冯菊艳,李雁冰,等.禽流感H5亚型油乳剂灭活苗的研究[J].中国预防兽医学报, 2002,24(增刊):178-82.
    30.王彦妮,曾显营,田国彬,等.AA肉鸡免疫禽流感油乳剂灭活疫苗细胞免疫应答的变化[J].中国预防兽医学报,2011,33(2):14-145.
    31.王永卫,张利峰,张鹤晓,等.常用禽流感检测技术及其在检验检疫领域中的应用[J].检验检疫科学,2003.13(5):51-53.
    32.王国俊(2010)两个H5亚型禽流感抗原群DNA疫苗的构建和评价.硕士学位论文.中国农业科学院.
    33.于康震,付朝阳,崔尚金,等.我国禽流感预防研究进展[J].中国预防兽医学报,2001,21(l):103-106
    34.杨帆帆,薛飞群,王霄旸.疫苗佐剂的研究发展和前景展望[J].中国动物传染病学报,2010, 18(5):79-84
    35.杨发龙,岳华,罗薇,杨晓燕,等.MTT法检测鸡外周血淋巴细胞增殖性反应的最佳条件探讨[J].西南民族学院报,2002(2):214-215.
    36.曾显营,钟功勋,李雁冰,等.禽流感病毒H5N1变异株灭活疫苗(Re-4)对鸡、鸭和鹅的免疫效果研究[J].中国预防兽医学报,2010,32(10):800-803.
    37.张苏华,刘佩红,周锦萍,等.新型H5N1亚型禽流感灭活疫苗对鸭、鹅及鸽的免疫原性研究[J].中国预防兽医学报,2004,26(6):401-404.
    38.祝明(2009)纳米铝佐剂禽流感(H5N1)疫苗对肉鸭免疫效力的影响.硕士学位论文.西南大学.
    39.张超(2007)四种免疫佐剂对三黄鸡新城疫免疫效果的影响.硕士学位论文.广西大学.
    40.周红蕾,李春玲,王贵平,等.脂质体作为疫苗免疫佐剂的应用研究进展[J].动物医学进展,2006,27(2):34-38.
    41. Alymova, I.V., Kodihalli, S., Govokrova, E.A., Fanget, B., Gerdil, C.,Webster, G.Immunogeniciyt and Protective efficacy in Mice of influenza Bviurs vaccines grown in mammalian cells on embyronated chicken eggs [J].J.Virol.72,1998,4472-4477.
    42. Allison, A.C., Byars, N.E. Immunological adjuwants: desirable properties and side-effects [J]. Mol Immunol.1991 Mar; (3) 28:279-284.
    43. Blok, J., & Air, G. M.Variation in the membrane-insertion and stalk sequences in eight sub-types of influenza type a virus neuraminidase [J]. Biochem, 1982,21(17): 4001-4007.
    44. Bosch, F. X., Garten, W., Klenk, H.D., & Rott, R.Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses [J]. Virology, 1981, 113(3): 725-735.
    45. Bounous, D.I., Campagnoli, R. P.,Brown, J. Comparison of MTT colorimetric assay and triturated Thymidine up take for lymphocyte proliferation assay using chicken splenocytes [J].Avian Dis,1992 (3) : 1022-1027.
    46. Crawford, J., Wilkinson, B., Vosneseuskey, A., et al., Baculovieas derived hemagglutinin Vaccines p rotect against lethal influenza infections by avian H5 and subtypes [J]. Vaccine, 1999.839-843.
    47. Chen, H., Yu, K., Jiang, Y., Tang, X., DNA immunization elicits high HI antibody and protects chicken from AIV challenge [J].Immuntional Congress Series, 2001: 917-921.
    48. Chen, H. L., Li, Y. B., Li, Z. J., Shi J. Z .,Shinya K., Deng G. H., et al, Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory water fowl in western China[J].J Virol. , 2006, 80:5976–5983.
    49. Chen,H.L,Avian influenza vaccination:the experience in China[J].Rev SciTech,2009,28(1):267-174
    50. Capua, I., Alexander, D.J. Avian influenza: recent developments [J].Avian Pathol,2004,33:393-404.
    51. Capua,I.,MarangonS.,dalla,Pozza,M.,Terregino,C.&Cattoli,G.,Avian influenza inItaly1997-2001.A vian diseases ,2003,47:839-843.
    52. Chen, H., Li,Y., Li, Z., Shi, J., Shinya, K., Deng, G., Qi, Q., Tian, G., Fan, S., Zhao, H., Sun, Y., Kawaoka, Y.,Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory water fowl in western China[J].Journal of virology 2006,80:5976-5983.
    53. Chen, H.,Smith, G.J.,Zhang, S.Y., Qin, K.,Wang, J.,Li, K.S.,Webster, R.G., Peiris, J.S.,Guan, Y.,Avian flu:H5N1 virus outbreak in migratory waterfowl[J].Nature.2005, 436:191-192.
    54. Dunn, A. J., Swiergiel, A.H.,et al., The role of cytokines in infection-related behavior[J] .Ann N Yacad Sci,1998,840:577-585.
    55. Donnelly, J.J.,Friedman, A., Ulmer, B.J., et al.,Further Protection against antigenicdritf of influenza viurs in aefrret model by DNA vaccination [J],Vaccine,1997,15(8):865-868.
    56. Deshpande, K. L., Fried, V. A., Ando, M., & Webster, R.G. Glycosylation affects cleavage of an H5N2 influenza virus haemagglutinin and regulates virulence. Proc. Natl. Acad. Sci, 1987, 84(1):36-40.
    57. Francis, T., Salk, J.E., Quiligan, J.J., et al., Experence with vaccination against influenza in the spring of 1947[J]. Public Health, 1947, 37:1013-1016.
    58. Fan, S. F., Gao, Y. W., Shinya K., Chris, K. F., Li, Y.B., Shi, J.Z.,et al.,Immunogenicity and protective efficacy of a live attenuated H5N1 vaccine in nonhuman primates. Plos Pathogens, 2009,5(5), 409-502.
    59. Gisela, F.E., Walter, G., Bottje, Tina, K., Bersi CD4、CD8 and TCR defined T-cell subsets thymus and spleen of 2-and7-week old commercial broiler chickens [J].Veterinary Immunology and Immunopathology, 1998, 62(1):339–348.
    60. Gilkeson, G.S., Ruiz, P.,Howell, D., Lefkowith, J. B., Pisetsky, D.S.Induction of immunemediated GlomerulonePhritis in normal mice immunized with baeterial DNA.Clin Immunol ImmunoPathol 1993, 68(2):283-292.
    61. Guo, Y.J., Jin, F.G., Wang, M., et al., Isolation of influenza C vitus from pigs and experimental infection of pigs with influenza C virus [J]. Gen Virol,1983,64:177-182
    62. Potter, C.W.,Inactivated influenza virus vaccine, In:Beare A S(ed).Basic and Applied Influenza Research.Boca Ra-ron:CRC Press,1982.116-185
    63. Reimer, C.B., Baker, R.S., Newlin, J.E., et al., Influenza virus purification with the zonalul tracentrifuge [J].Science, 1966, 152:1379-1381.
    64. Roth, S.Role of nitric oxide in retinal cell death [J].Clin neurosci, 1997, 4:216-223.
    65. Stacey, K.J., Sweet, M.J., Hume, D.A.,Macro Phages ingest and are Activated by bacterial DNA [J].J Immunol.1996, 157:2116-122.
    66. Steinberg, A.D., Krieg, A.M., Gourley, M.F., Klinman, D. M., et al., Theoretieal and experimental approaches to Generalized unimmunity [J]. Immunol Rev, 1990, 118:129-163.
    67. Steven, G., Reed, Sylvie, Bertholet, Rhea, N., Coler and Martin Friede New horizons in adjuvants for vaccine development[J].Review.2008,30:23-32
    68. Tian, G.B., Zhang, S.H.,Li, Y.B.,et al.,Protective efficacy in chickens,geese and ducks of an H5N1 inactived vaccine developed by reverse genetics[J].Virology,2005,341:153-162
    69. Wolff, J.A., Malone, R.W., Williams, P., Chong,W.,Aesadi, G., Jani, A.,Feigner, P.L., et al., Direct gene transfer into Mouse musele in vivo[J] .Science,1990,247:1465-1468.
    70. Wellmann, H., Kaitsehmidt, B.,Kaitschmidt, C., Optimized Protocol for biolistic transfeetion of brain slices and dissociated cultured neurons with a hand-held gene gun[J].Feistier biology Letters, 1995,131:289-294.
    71. Wack, A. & Rappuoli, R., Vaccinology at the beginning of the 21st century [J]. Curr. Opin. Immunol.2005, 17, 411–418.
    72. Yang, N.S., Sun, W.H.,Mccabe,D.,Developing partical-mediated gene-transfer technology for research into gene therapy of cancer[J].mol med Today,1996,2(11):476-481.
    73. Yoshida, A., Nagata, T., Uchijima, M.,Koide, Y. et al.,Protective CTL response is indueed in the absence of CD4+T cells and IFN-Y by gene gun DNA vaceination with minigene encoding a CTL epitope of Listeria monkey to genes Vaccine,2001,19:4297-4306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700