下一代宽带无线通信系统(MIMO-OFDM)关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
下一代宽带无线通信系统要实现在有限的频谱资源的条件下提供更多的通信业务、更高的通信速率和更好的通信质量。在此需求的背景下,通信领域面临新的挑战,由于多输入多输出(MIMO)无线通信系统具有不需要损失频带资源和发射功率资源就可提高数据传输速率的优点,而正交频分复用(OFDM)技术具有通过降低子载波上的数据流速率和插入循环前缀,可以消除码间干扰(ISI)大大提高频谱利用率的优点,故将MIMO系统与OFDM技术相结合构成MIMO-OFDM通信系统,将成为下一代宽带无线通信系统(4G)的核心技术。
     无论是MIMO系统、OFDM技术还是MIMO-OFDM系统,都存在着各自的主要问题和关键技术。比如MIMO系统主要有信道建模、信道容量、空时编码、信道估计、2D-RAEK接收、空时多用户检测等关键技术;OFDM技术中主要有峰均比、同步、信道估计、频偏估计、交织与编码技术等关键技术;而MIMO-OFDM系统则不但上述关键技术都有,而且又添加了二者结合后带来的类似关键技术。比如:MIMO-OFDM系统的峰均比等。因此,对MIMO、OFDM以及MIMO-OFDM系统的关键技术的研究,成为目前通信领域学者和研究人员的研究热点;由于MIMO-OFDM系统将成为4G通信系统的核心技术,所以该方面的研究工作和研究成果无论是对理论研究还是对工程应用都是非常有意义的。
     本论文对MIMO系统的空时编码、MIMO相关信道建模与信道估计、OFDM系统的同步以及MIMO-OFDM系统的峰均比等关键技术进行了深入研究,并获得一定的研究成果。论文具体工作内容如下:
     1.对空时分组码(STBC)在MIMO系统的平坦慢衰落信道、平坦时变衰落信道和频率选择性衰落信道下的性能开展了深入分析和研究;并分别针对上述三种信道模型进行了仿真分析。该部分工作弥补了当时对空时分组码在信道为时变衰落信道和频率选择性衰落信道下的性能研究工作的不足,并得到一些有参考价值的研究结果。
     2.对MIMO系统的相关信道模型和信道估计算法进行了研究。一是在总结现有方法和模型的基础上,综合考虑MIMO信道的衰落特性和相关特性,经合理选择空间变量,建立了一个较为合理且相对简单的MIMO空时相关信道模型。二是在了解掌握了平坦衰落下MIMO信道数学模型的基础上,对利用训练矩阵完成MMSE估计的MIMO信道算法进行了分析与仿真,证明其收敛速度有改善。
     3.对OFDM系统中的同步技术进行了深入研究。一是在Schmidl算法的基础上,提出了一种改进的OFDM联合时间频率同步算法。该算法拓宽了频偏估计范围,消除了Schmidl定时同步算法中的峰值平台现象。二是通过构造一种新的在频域上具有特殊相位旋转关系的训练符号结构,提出一种新的符号定时和频率同步算法,新算法具有符号定时精确和频偏估计范围大、精度高的优点。
     4.对MIMO-OFDM系统的峰均比算法进行了深入研究。首先,结合SFBC的编码特性及IFFT共轭和圆周移位特性,提出了适用于SFBC MIMO-OFDM系统的二次部分传输序列(T-PTS)算法,并对T-PTS算法进行次优化处理,引出RT-PTS算法,简化了权值的搜索过程,降低了运算复杂度,仿真结果证明了该算法可在较低复杂度下获得较优越的峰均比抑制效果。
     其次,利用IFFT的线性、共轭以及圆周移位特性,结合SFBC的编码特点,对CFPI算法进行了改进,提出适用于SFBC MIMO-OFDM系统的多相旋转交换PIP算法。该算法在获得较好抑制PAPR的同时降低了运算复杂度;并得到仿真证明。
The next generation broad band wireless communication system achieves to provide more communication business, higher communication rate and better communication quality under a condition of limited spectrum resources. In the context of this demand, communication industry is facing a new challenge. Multiple Input Multiple Output (MIMO) system improves the data transfer rate without frequency resources loss and transmit power resources loss by a large margin, while the outstanding advantage of orthogonal frequency division multiplexing (OFDM) is the elimination of ISI by using cycling prefix and reducing the data rate in sub-carriers. Therefore, MIMO-OFDM transmission system which combines MIMO system with OFDM technology will become the core technology of4G communication system.
     Despite the MIMO system, OFDM system or MIMO-OFDM technology, there are their main problems and key technologies. For example, there are Channel modeling, channel capacity, Space-Time Block Coding, channel estimation,2D-RAEK receiving, space-time multi-user detection and so on in MIMO system; Peak-to-Average Power Ratio, synchronization, channel estimation, frequency estimation, interwoven and encoding technology in OFDM system; while in MIMO-OFDM system, there are not only the above key technology, but also the technologies brought by MIMO system and OFDM technology, such as Peak-to-Average Power Ratio and so on. Therefore, the research of MIMO system, OFDM system and MIMO-OFDM system has become hot spots in communication area. As MIMO-OFDM system will become the core of4G communication technology, research achievements in this area are very meaningful to theoretical researches and engineering applications.
     In this paper, we lucubrate the Space-Time Blocking Coding, channel modeling and channel estimation in MIMO system, synchronization, frequency estimation in OFDM system, and the Peak-to-Average Power Ratio in MIMO-OFDM system, certain research achievements is proposed. The content is as follows:
     1. Here, we analyzed the performance of STBC in flat low fading channel,flat time-variant fading channel and frequency selective fading channel, then we emulated the three channel models respectively. This part of the research offsets the insufficient of the research on the performance of space-time block coding under time-varying fading channel and frequency selective fading channel, and get some reference value results to the research.
     2. Research on channel estimation algorithm and correlation channel model in MIMO system. Firstly, comprehensively considerating comprehensively of the decline characteristics and the related characteristics of MIMO channel, and selecting spatial variable rationally, we established a reasonable and relatively simple MIMO space-time related channel model based on the conclusion of the existing methods and models.
     3. Analysis of synchronization technology in OFDM system. Two methods is proposed in this paper aiming at improving synchronization in OFDM system, one is an improved OFDM joint timing and frequency synchronization algorithm based on Schmidl algorithm aiming at the synchronization problem of OFDM. This algorithm boradened the range of frequency estimation,and the plateau in Schmidl algorithm is eliminated. The other is a new joint symbol timing and frequency synchronization algorithm aiming at the synchronization problem of OFDM, which has special phase rotation relationship in the frequency domain. New frequency offset estimation algorithm is characteristic of large estimation range and high accuracy.
     4. Analysis to Peak-to-Average Power Ratio algorithm in MIMO-OFDM system. Firstly, by combining the characteristics of SFBC and IFFT, we put forward Twice Partial Transmit Sequence (T-PTS) algorithm used for SFBC MIMO-OFDM system, which can use the linear and cycling shifting and conjugate characteristics of IFFT. Then we propos RT-PTS algorithm, it can simplifies the process of searching weights, reduces the maximum extent the computing complexity. Simulation results show that the proposed algorithm can obtain better performance in the lower complexity.
     Then, by combining the characteristics of SFBC and IFFT, and improvied CFPI algorithom, we put forward multiphase rotating exchange PIP algorithm used for SFBC MIMO-OFDM system. It can use the linear and cycling shifting and conjugate characteristics of IFFT. The algorithm reduced the complexity of calculation when obtaining better PAPR reduction. Simulation results show the feasibility and efficiency of the algorithm.
引文
1.吴伟陵,牛凯.移动通信原理[M],北京:电子工业出版社,2005,2-3.
    2.佟学俭,罗涛OFDM移动通信技术原理与应用[M],北京:人民邮电出版社,2003.
    3. A Pandhafipande. Principles of OFDM [J]. IEEE Potentials,2002,21(2):16-19.
    4.杨大成.移动传播环境-理论基础·分析方法和建模技术[M],北京:机械工业出版社,2003,2-7&152-234.
    5. Lei Shang, Hussain, Z.M., Harris, R.J. An efficient mobile Rayleigh fading channel simulator a comparison with Clarke's model [J], Proceedings of IEEE TENCON'04, 2004,3:113-116.
    6. G. J. Foschini. Multicarrier modulation for data transmission:an idea whose time has come [J], IEEE Communications Magazine,1990,28(5):5-14.
    7. Shunjia Liu, Yi Zeng, Bo Hu. Minimum Spanning Circle Method for Using Spare Subcarriers in PAPR Reduction of OFDM Systems [J], Signal Processing Letters,2008, 15:513-516.
    8. I.E. Telatar, "Capacity of multi-antenna Gaussian channels," European Transactions on Telecommunication, vol.10, no.6, pp.585-596,1999.
    9. I. E. Telatar, "Capacity of Multi-Antenna Gaussian Channels," Technical report, AT&T Bell Laboratories Internal Technical Memorandom, June 1995.
    10.. G. J. Foschini, M. J. Gans. On limits of wireless communications in a fading environment when using multiple antennas[J], Wireless Personal Communications, 1998,6:311-335.
    11. I.E. Telatar. Capacity of multi-antenna gaussion channels[J], Bell Labs Tech. Memo., 1995:1-28
    12. G. J. Foschini. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas[J], Bell Labs Tech. Journal,1996,1(2): 741-765
    13. Tarokh, N. Seshachi, A. R. Calderbank. Space-time codes for high data rate wireless communication:Performance Criterion and Code Construction[J], IEEE Transactions on Information Theory,1998,44(2):744-765.
    14. P. W. Wolniansky, G. J. Foschini, R. A. Valenzuela. V-BLAST:an architecture for realizing very high data rates over the rich-scattering wireless channel [J], Proceedings of ISSSE-98,1998, Pisa, Italy:295-300.
    15. S. M. Alamouti. A simple transmit diversity technique for wireless communications [J], IEEE Journal on selected areas in communications,1998,16(8):1451-1458.
    16. Zhang, P. J. Smith, M. Shafi. A new space-time MIMO channel model[J], Proceedings of 6th Australian Communication Workshop,2005:249-254.
    17. A. Knopp, C. A. Hofmann, M. Chouayakh, B. Lankl. Extension of indoor SISO propagation models for correlated MIMO channels-an exemplification applying SALEH's model[J], The 18th Annual IEEE International Symposium on Person. Indoor, and Mobile Radio Communication(PIMR'07),2007:1-6.
    18. R. Stridh, K. Yu, B. Ottersten, P. Karlsson. MIMO channel capacity and modeling issues on a measured indoor radio channel at 5.8 GHz[J], IEEE Transactions on Wireless Communications,2005,4(3):895-903.
    19.黄韬,袁超伟,杨睿哲,刘鸣MIMO相关技术与应用[M],北京:机械工业出版社,2007,3-4.
    20. R.W.Chang. Synthesis of band-limited orthogonal signals for multi-channel data transmission [J]. Bell System Technical Journal,1996,46(2):1775-1796.
    21. SALTZBERG B R. Performance of an efficient parallel data transmission system [J]. IEEE Transactions on Communiacations,1967,15(6):805-811.
    22. S.B.Weinstein, P.M.Ebert. Data transmission by frequency division multiplexing using the discrete Fourier transform [J]. IEEE Transactions on Communiacations,1997,19(5): 628-634.
    23. A.Peled, A.Ruiz. Frequency domain data transmission using reduced computational complexity algorithms [C]. IEEE International Conference on Acoustics. Speech, and Signal Processing,1980,964-967.
    24.蒋学俭,乐光新.无线衰弱信道中的正交频分复用[J],无线通信技术,2000,4(5): 80-83.
    25. Digital Audio Broadcasting (DAB) to Mobile, Portable, and Fixed Receiver. ETSI ETS 300401,2001.
    26. Digital Video Broadcasting (DVB-T); Frame Structure, Channel Coding, and Modulation for Digital Terrestrial Television. ETSI ETS 300 744,2001.
    27. Chow P S, Tu J C, Cioffo J M. Performance evaluation of a multi-channel transceiver system for ADSL and VHDSL services [J]. IEEE Journal on Selected Areas in Communications,1991,9(6):909-919.
    28. instein, Ebert. P, Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform [J], Communications,1971,19(5):628-634.
    29. Yunho Jung, Seungpyo Noh; Horigil Yoon, Jaeseok Kim. Implementation of wireless LAN baseband processor based on space-frequency OFDM transmit diversity scheme [J], Consumer Electronics.2005,51(2):393-398.
    30. Sari, H., G. Karam, I. Jeanclaude. Transmission Techniques for Digital Terrestrial TV broadcasting[J], IEEE Communications Magazine,1995,33(2):100-109.
    31. Chua-Chin Wang, Gang-Neng Sung, Ming-Kai Chang, Ching-Li Lee, Cheng-Mu Wu, Ju-Ya Chen. A Low-power 4-T SAM Design for OFDM Demodulators in DVB Receiversers [C], Asia Pacific Conference on Circuits and Systems,2006:1112-1115.
    32. EEE Std 802.11a-1999, Part 11:wireless LAN/Medium Access Control (MAC) and Physical Layer (PHY) specifications [S]. IEEE 1999.
    33. ETSI TS 101 475 V1.1.1, ETSI Broadband Radio Access Networks(BRAN); HIPERLAN Type 2; Physical(PHY) Layer [S], ETSI Normalization Committee 2001.
    34. Young-Hwan You, Won-Gi Jeon. Performance evaluation of OFDM-CDMA with multiple antennas for broadband wireless access networks[J], Vehicular Technology, 2005,54(1):385-398.
    35. Chouly, A. Brajal, S. Jourdan. Orthogonal multicarrier techniques applied to direct sequence spread spectrum CDMA systems[C], Proc. Of IEEE GLOBECOM'93,1993: 1728-1732.
    36. Lee. CS-OFDMA:a new wireless CDD physical layer scheme[J], Communications Magazine,2005,43(2):74-79.
    37. William D. Warner. Cyril Leung. OFDM/FM frame synchronization for mobile radio data communication[J], IEEE Trans. Vehicular Tech.,199342(3):302-313.
    38. Bo Ai, Zhi-xing Yang, Chang-yong Pan, Jian-hua Ge, Yong Wang, Zhen Lu. On the synchronization techniques for wireless OFDM systems[J], Broadcasting,2006,52(2): 236-244.
    39. Hao Zhou, Malipatil A., Yih-Fang Huang. OFDM Carrier Synchronization Based on Time-Domain Channel Estimates[J], Wireless Communications,2008,7(8):2988-2999.
    40.周恩,张兴,吕召彪,孙宇昊.下一代宽带无线通信OFDM与MIMO技术[M],北京:人们邮电出版社,2008,12-13.
    41. Gao Jing, Wang Jinkuan, Xie Zhibin. A New Concurrent SLM Algorithm For STBC MIMO-OFDM Systems[C], Intelligent Signal Processing and Communication Systems, 2007:132-135.
    42.洪善艳.MIMO-OFDM系统中峰均功率比降低算法的研究[D].杭州:浙江大学,2006.
    43. M. Tan, Latinovic, Bar-Ness. STBC MIMO-OFDM Peak-to-Average Power Ratio Reduction by Cross-Antenna Rotation and Inversion[J], IEEE Commu.Lett.2005,9(7): 592-594.
    44. Haiyang Huang, Shaoqian Li. A Novel PAPR Reduction Method in MIMO-OFDM Systems by Frequency Block Exploitations[C], Personal Indoor and Mobile Radio Communications Symposium 2007:1-5.
    45.陈其铭,尹俊勋.空时编码在多入多出无线通信系统中的应用[J],移动通信,2003,6:68.
    46. Tarokh V, Jafarkhani H, Calderbank A R. Space-Time Block Coding for Wireless' Communications:Performance Results[J]. JSAC,1999.17(3):451-460.
    47. Foschini G J. Layered Space-Time Architecture for Wireless Communication in Fading Environment When Using Multiple Antennas[J]. Bell Labs Technical Journal.1996. 1(2):41-59.
    48. Alamouti S M. A Simple Transmit Diverty Technique Wireless Communication [J]. IEEE Journal on Selected Areas in Communications,1998,16(10):1451-1458.
    49. Golden G D, Foscini G J, Valenzuel R A and Wolniansky P W. Detection Algorithm and Initial Laboratory Results Using V-BLAST Space-Time Communication Architecture [J]. Electornices Letters,1999,35(1):6-7.
    50. Foscini G J, Golden G D, Wolniansky P W. Simplified Processing for High Spectral Efficiency Wireless Communication Employing Multi-element Arrays[J]. IEEE JSAC, 2000,17:1841-1852.
    51. Guixia Kang, C Elena, B Qi, et al. Searching Good Space-Time Trellis Codes of High Complexity[A].IEEE WCNC 2002(vol.1)[C],2002,103-114.
    52. Hochwald B M, Marzetta T L. Unitary Space-Time Modulation for Multiple Antenna Communications in Rayleigh Flat Fading [J].IEEE Trans. on IT,2000,46(2): 543-564.
    53. Foschini G J. Layered Space-Time Architecture for Wireless Communication in Fading Environment When Using Multiple Antennas [J], Bell Labs Technical Journal,1996, 1(2):41-59.
    54. Golden G D, Foscini G J, Valenzuel R A and Wolniansky P W. Detection Algorithm and Initial Laboratory Results Using V-BLAST Space-Time Communication Architecture [J], Electornices Letters,1999,35(1):6-7.
    55. Foscini G J, Golden G D, Wolniansky P W. Simplified Processing for High Spectral Efficiency Wireless Communication Employing Multi-element Arrays[J], IEEE JSAC, 2000,17:1841-1852.
    56. Tarokh V, Seshadri N, Calderbank A R. Space-Time Codes for High Data Rate Wireless Communication:Performance Criterion and Codes Construction[J], IEEE Trans.on IT, 1998,44(2):744-765.
    57. Naguib A F, Tarokh V, Seshadri N and Calderbank A R. A Space-Time Coding Modem for High-data-rate Wireless Communications[J], IEEE JSAC,1998,16:1462-1478.
    58. Guixia Kang, C Elena, B Qi, et al. Searching Good Space-Time Trellis Codes of High Complexity[A], IEEE WCNC 2002(vol.1)[C],2002,103-114.
    59. Alamouti S M. A Simple Transmit Diverty Technique Wireless Communication [J], IEEE JSAC,1998,16(10):1451-1458.
    60. Tarokh V, Jafarkhani H, Calderbank A R. Space-Time Block Coding for Wireless Communications:Performance Results[J] JSAC,1999,17 (3):451-460.
    61. Hochwald B M, Marzetta T L. Unitary Space-Time Modulation for Multiple-Antenna Communications in Rayleigh Flat Fading[J], IEEE Trans. on IT,2000,46(2):543-564.
    62. Hughes B L. Differential Space-Time Modulation[J], IEEE Trans. on IT,2000,46(7): 2567-2578.
    63. Jiahua Liu, Jan Li. Wireless Communications and Mobile Coputing Differention Space-Time Modulation for DS-CDMA Systems[J],2002,2(2):205-214.
    64. Siavash M. Alamouti. A simple transmit diversity technique for wireless communications[J]. IEEE Journal on Selected Areas in Communications,1998,16(8), 1451-1458.
    65. Branka Vucetic, Jinhong Yuan. Space-Time Coding[M], New York:Wiley,2003,92-94, 104-106.
    66.杨馨,董霄剑,尤肖虎.WCDMA系统STTD发送分集RAKE接收机的性能分析[J],电路与系统学报,2001,6(2):30.
    67. Branka Vucetic, Jinhong Yuan. Space-Time Coding[M], New York:Wiley.2003.92-94, 104-106.
    68.杨大成.移动传播环境[M],北京:机械工业出版社,2003,151-196.
    69.李江华,于昭民,解武,张星宇.3G中的STTD发送分集技术[J],信息技术2003,27(11):1-2.
    70Theodore S. Rappaport.无线通信原理与应用[M],北京:电子工业出版社,1999,121-127.
    71. GPP. Physical Channels and Mapping of Transport Channels onto Physical Channels (FDD) [S],3G TS25.211 v5.6.0,2004.
    72. Hao Xu, Dmitry Chizhik, Howard Huang, Reinaldo Valenzuela.A generalized Space-Time Multiple-Input Multiple-Output (MIMO) channel model[J]. IEEE Transactions on Wireless Communications,2004,3(3):966-975.
    73.李江华,于昭民,解武,张星宇.3G中的STTD发送分集技术[J],信息技术,2003,27(11):1-2.
    74.工东明,肖海勇,徐澄圻.空时编码及其在第3代移动通信中的应用[J],江苏通信技术,2001,17(6):1.
    75.束锋,颜永庆,陈明等.MIMO无线通信系统的关键技术和应用前景[J]。江苏通信技术,2005,21(5):7-10.
    76. Paulraj T, Gored A, Nabar R U. An overview of MIMO communications-A key to gigabit wireless[J], Proceedings of IEEE,2004,92,198-216.
    77.任立刚,宋梅,郗松楠.移动通信中的MIMO技术[J]。现代电信科技,2004,1:42-45.
    78. Proakis J G. Digital communications[J]. New York:Me Graw-Hill,1995:380-387.
    79. Andrea Goldsmith, Syed Ali Jafar, Nihar Jindal, Sriram Vishwannath. Capacity limits of MIMO Channels[J]. IEEE Journal on Selected Areas in Communications,2003, 21(5):684-701.
    80. K. Yu, B. Ottersten. Models for MIMO propagation channels, a review[J]. Wiley Journal on Wireless Commun. and Mobile Comput.,2002,2(7):653-666.
    81. R. B. Ertel, P. Cardieri, K. W. Sowerby, T. S. Rappaport, J. H. Reed. Overview of spatial channel models for antenna array communication systems[J]. IEEE Pers. Commun.,2003:10-22
    82. Patzold. Mobile Fading Channels[M], John Wiley & Sons, Ltd,2002.
    83S. Rappaport著,蔡涛等译.无线通信原理与应用[M].北京:电子工业出版社,1999.
    84G. D. Durgin著,朱世华等泽.空-时无线信道[M],西安:西安交通大学出版社,2004,7-10.
    85. J. P. Kermoal. Measurement, Modeling and Performance Evaluation of the MIMO Radio Channel[D], Aalborg University, Denmark,2002.
    86. W. C. Y. Lee. Effects on correlation between two mobile radio base-station antennas[J], IEEE Transactions on Vehicular Technology,1973,22(4):130-140.
    87. J. Zhou, S. Sasaki, S. Muramatsu, H. Kikuchi, Y.Onozato. Spatial correlation for a circular antenna array and its applications in wireless communications [J], Proceeding of IEEE Global Telecommunication Conference (GLOBECOM'03),2003.2: 1108-1113.
    88. P. Mattheijssen, M. H. A. J.Herben, G. Dolmans, L. Leyten. Antenna-pattern diversity versus space diversity for use at handhelds[J], IEEE Transactions on Vehicular Technology,2004,53(4):1035-1042.
    89. D. Aszetly. On antenna arrays in mobile communication systems:fast fading and GSM base station receiver algorithm[M], Stockholm:Royal Institute Technology Press,1996, 105-112.
    90. C. N. Chuah, D. Tse, J. M. Kahn, R. Valenzuela. Capacity scaling in MIMO wireless system under correlated fading[J], IEEE Transactions on Information Theory,2002, 48(3):637-650.
    91. IEEE802. TGn Channel Models, IEEE802.11-03/940r4,2004.
    92. IEEE802. TGn functional requirements. IEEE802.11-03/813.
    93. IEEE802. Sync proposal technical specification. IEEE802.11-04/889rl.
    94. P. Melancon, J. Lebel. Effects of fluorescent lights on signal fading characteristics for indoor radio channel[J], IEEE electronics Letters,1992,28(18):1740-1741.
    95. A Pandhafipande. Principles of OFDM[J]. IEEE Potentials,2002,21(2):16-19.
    96. T. Pollet, M. Van Bladel, M. Moeneclaey, BER sensitivity of OFDM systems to carrier frequency offset and Weiner phase noise [J]. IEEE Transactions,1995,43(1):191-193.
    97. Speth, M., Fechtel, S., Fock, G. Optimum receiver design for wireless broad-band systems using OFDM [J]. IEEE Transactions,1999,47(11):1668-1677.
    98. Speth, M., Fechtel, S., Fock, G. Optimum receiver design for OFDM-based broadband transmission.II. A case study [J]. IEEE Transactions,2001,49(4):571-578.
    99. Speth, M., Fechtel, S., Fock, G. Optimum receiver design for OFDM-based broadband transmission.H. A case study [J]. IEEE Transactions,2001,49(4):571-578.
    100.J.-J. van de Beek, M. Sandell, M. Isaksson, P. Borjesson, Low complex frame synchronization in OFDM systems [A], in Proc. ICUPC [C],1995:982-986.
    101.P. Moose, A technique for orthogonal frequency division multiplexing frequency offset correction [J]. IEEE Transactions,1994,42(10):2908-2914.
    102.T. M. Schmidl and D. C. Cox, Robust frequency and timing synchronization for OFDM [J]. IEEE Transactions,1997,45(12):1613-1621.
    103.M. Morelli, U. Mengali, An improved frequency offset estimator for OFDM applications [J]. IEEE Communication Letters,1999,3(3):75-77.
    104.Minn, H., Tarasak, P., Bhargava, V.K., OFDM Frequency Offset Estimation Based on BLUE principle [C]. Vehicular Technology Conference, IEEE 56th,2002:1230-1234.
    105.大成.移动传播环境-理论基础·分析方法和建模技术[M],北京:机械工业出版社,2003,152-177.
    106.Tureli U, Kivanc D, Hui Liu. Experimental and analytical studies on a high-resolution OFDM carrier frequency offset estimator [J],2005,50(7):629-643.
    107.Latinovic. Bar-Ness. STBC MIMO-OFDM Peak to Average Power Ratio Reduction by Cross Antenna Rotation and Inversion[J]. IEEE Commu.Lett,2005,9(7):592-594
    108.Muller, Huber. OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences[J]. Electronics Letters,1995, Volume 1:430-433
    109.Muller, Huber. OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences[J]. Electronics Letters,1995, Volume 1:430-433
    110.V Tarokh, N.Seshadria, A.R.Calderbank. Space-time codes for high data rate wireless communication performance criterion and code construction [J], IEEE Trans. On IT, 1998,44(2):275-278.
    111.樊昌信,张甫翊,徐炳祥,吴成柯.通信原理[M],长沙:国防工业出版社,2001,59-60.
    112.尹巧萍. MIMO-OFDM系统中空时编码技术的研究[D],南京:东南大学,2006.
    113.G.J.Foschini, M.J.Gans. On limits of wireless Communications in a Fading Enviroment when Using multiple Antennas [C], Wireless Personal communications,2002:311-335.
    114.E. Telatar. Capacity of multiantenna Gaussian channels, AT&T Bell Laboratories [J], Tech.Mimo. June,1995.
    115.E.Telatar. Capacity of multiantenna Gaussian channels [J], Eur. Trans. Commu.,1999, 10(6):585-595.
    116.Heung-Gyoon Ryu, Sang Burm Ryu, Seon-Ae Kim. Design and Performance Evaluation of the MIMO SFBC CI-OFDM Communication System [C], International Conference on Wireless and Mobile Communications,2008:60-64.
    117.程佩青.数字信号处理教程[M],北京:清华大学出版社,2001,87-132.
    118LYONS R G. Understanding Digital Signal Processing[M]北京:机械工业 出版社(影印版).2004
    119.BAR-NESS Z L. SFBC MIMO-OFDM peak-to-average power ratio reduction by' polyphase interleaving and inversion [J]. IEEE Com-mu.Lett,2006,10(4):266-268
    120.CHEN G G, RASHID A. Frame expansion based peak to average power ratio reduction in MIMO OFDM systems[J]. Signal Processing Systems 2007.61-66.
    121.佟学俭,罗涛OFDM移动通信技术原理与应用[M].北京:人民邮电出版社,2003.
    122.C.-K. Lee, J. W.-J. Wu, L. Y.-Y. Chang, I.-E. Tsai, H.-H. Lin, J. C.-T. Hsich, and T.-W. Lee, Appl. Opt.39,40 (2000).
    123.Salz J, Winters J H. Effect of fading correlation on adaptive arrays in digital mobile radio. IEEE Trans. On Veh Tech,1994,43(4):1049-1057.
    124. Pedersen K, Mogensen P, Fleury B H. Spatial channel characteristics in outdoor environments and their impact on BS antenna system performance. Prco. IEEE Veh. Tech. Conf (VTC-98), Ottawa, Ont. Canada, May 18-21,1998, vol.2: 719-723.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700