新型宽带无线接入网中资源管理若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽带无线接入网具有启动资金少、建设周期短、提供服务快、灵活性强等诸多优势,代表着一种新的不可忽视的发展趋势。无线资源管理是宽带无线接入网面临的关键问题,本文以提高资源利用率、改善用户无线接入的服务质量为目标,对新型宽带无线接入网中资源管理若干关键问题进行了深入研究。
     WiMAX WMN是未来最具发展前途的宽带无线接入技术之一。受制于无线介质的广播特性,提高网络吞吐量并提供通信的QoS支持已经成为WiMAX WMN的关键问题。针对WiMAX WMN中最大吞吐量目标,给出了无干扰最优链路调度模型。针对固定顺序的待调度链路集,提出求解最优吞吐量的启发式算法。考虑链路顺序对算法性能的影响,从全局优化的角度对全网链路进行排序,提出基于遗传算法的链路调度优化机制。仿真结果表明本文算法能够在无干扰传输条件下快速收敛于全网链路的最小调度周期,具有更高的传输效率和更低的实施复杂度。
     WiMAX WMN对业务传输效率的要求越来越高,寻找同时满足吞吐量与传输效率要求的链路调度机制无疑具有重要意义。为此,给出了链路调度与吞吐量及路径延时的关系模型,设计了基于节点分解的扩展图模型,建立了链路单次传输与多次传输的统一调度框架。为了加快节点分解情况下算法运算速度,提出一种快速链路调度算法。引入多目标优化理论,给出算法性能评价的Pareto标准,提出一种基于NSGA-II的链路调度机制。仿真结果验证了上述算法的有效性。
     多射频多信道WMN可以显著提升无线通信系统容量,但传统信道分配算法仅以降低全网干扰度为目标,极易导致网络连通性的缺失。为此,给出了信道分配与网络连通及网络干扰变化的关系模型,通过定义节点、链路及相应的信道评价准则,分别提出面向节点层次和面向链路层次的贪心信道分配算法。进一步,提出一种基于NSGA-II的信道分配算法。通过改进干扰评估模型,还使得本文算法能够应用于部分重叠信道环境中。一系列仿真实验验证了上述算法的有效性。
     多媒体业务应用的视频流量即将成为宽带无线网络中的主要流量,针对VBR视频流量时变、非线性及长相关性等特点,提出一种多尺度分解的VBR视频业务特征提取方法。选择具有任意多分辨分解特性的小波包,对其进行空间划分并求解适合视频信号特征提取的最优分解基。基于最优基对视频信号进行快速多尺度分解,建立基于最小二乘支持向量机与最小均方的小波系数预测方法,提出基于小波系数逆变换的视频流量长时预测方法。进一步,提出基于时间预测窗的资源管理机制。一系列仿真实验验证了上述算法的有效性。
     宽带卫星接入网是下一代网络的重要组成部分,现有宽带卫星接入网资源申请算法严重滞后于流量变化,不能满足卫星网络长延时链路环境的通信需求。为此,系统分析了宽带卫星接入网MAC协议中的资源分配流程及资源申请时序关系,提出基于记录因子和流量预测相结合的资源申请算法,以减少带宽申请信令的数量,缩短网络资源申请的响应时间。针对基于流量预测的资源申请机制,提出联合剩余时隙分配的按比例带宽分配机制。仿真结果表明,算法能够有效提高资源分配效率,在高负载度、长峰值传输时间条件下,算法均具有良好的适应性。
Broadband wireless access networks have many advantages such as the lower cost, shorter construction period, faster service provision and stronger flexibility, which represent a new trend that can not be ignored. Resource management is one of the key issues in the research on broadband wireless access networks. This dissertation focuses on the efficient resource management and the QoS improvement. An in-depth study on the resource management problem in broadband wireless access network is presented.
     WiMAX WMNs (Wireless Mesh Networks) is one of the most promising broadband wireless access technologies in the future. However, Due to the broadcast characteristics of wireless media, maximizing network throughput and providing QoS support for data transmission has become one of the key issues in WiMAX WMNs. Theoretically the interference aware link scheduling model with objective of maximizing the entire network throughput is analyzed. A heuristic algorithm to solve the near optimal scheduling length is proposed for link list with fixed sequence. Furthermore, as the performance is much more affected by the sequence of the link list, the link scheduling scheme is proposed to sort the overall network link list.based on genetic algorithm. Simulation results demonstrate that the proposed scheme can converge to the optimal schedule length more rapidly, thus having a better transfer efficiency and a lower implementation complexity than the existing algorithms.
     As the demand of transfer efficiency of multimedia services has become much higher, undoubtedly, searching the link scheduling scheme to satisfy both throughput and transmission efficiency requirement is of great significance. The relationship between link scheduling and throughput as well as the delay of end to end transmission is analyzed. With the design of the expansion graph model by node decomposition, a unified framework to solve the link scheduling algorithm with single transmission and multiple transmissions is designed. The fast link scheduling algorithm is also proposed to speed up computing in the condition of node decomposition. With the introduction of multi-objective optimization theory, performance evaluation based on Pareto rules for scheduling algorithms is given and the NSGA-Ⅱ based link scheduling algorithm is proposed. Simulation results validate the above claims.
     Multi-radio multi-channel WMN can significantly enhance the network capacity. However, traditional algorithms merely aim at minimizing the overall network interference, which lead to the reduction of the network connectivity. By analyzing the relationship between channels assignment with the whole interference and connectivity, the corresponding evaluation criteria of node, link and channel selection are defined, and then the node-level oriented and link-level oriented channel assignment schemes based on greedy algorithm are proposed. Furthermore, a link scheduling scheme based on NSGA-II is proposed. Extensive simulation results demonstrate the effectiveness of these approaches.
     The multimedia applications will become the main part of the network traffic in the future broadband wireless network. As to the time variation, non-linearity and long range dependence in VBR video traffic trace, a novel method of feature based on multi-scale decomposition is proposed. The wavelet packets which have the trait of arbitrary distinction and decomposition are selected. After space partition of wavelet packets, the best wavelet packet basis for feature extraction is picked out. Based on the best basis, it can do fast arbitrary multi-scale WPT (Wavelet Packet Transform). On the basis of LS-SVM and LMS algorithms, the wavelet coefficients prediction is proposed. The long-term prediction of VBR video traffic is obtained through reverse wavelet transformation on the predicted wavelet coefficients. Furthermore, the resource management scheme on the basis of prediction time window is proposed. Numerical and simulation results are provided to validate the claims.
     Broadband satellite access network has become an important component of next generation networks. Traditional resource request mechanisms lag far behind the increasing traffic, and cannot meet the communication needs in satellite link with long transmission delay. In this dissertation, the resource allocation procedure and time sequence of resource requests in MAC protocol for multimedia satellite network are analyzed systematically. A resource request algorithm combined traffic prediction and recording operator is proposed. The algorithm can decrease the number of request signaling messages and shorten the resource response time. Further, a bandwidth allocation combining free slots allocation and fair allocation is proposed. The simulation results show that the algorithm proposed can greatly improve the bandwidth allocation efficiency, and is superior to other existing resource request algorithms in the adaptability under conditions of high load ability and long peak transmission time.
引文
[1]Hong D, Rapport SS. Traffic modeling and performance analysis for cellular mobile Radio telephone systems with prioritized and non prioritized handoff procedures [J], IEEE Transactions on Vehicle Technology,1986,35(8):77-92.
    [2]Ramjee R, Towsley D, Nagarajan R. On optimal call admission control in cellular networks, Wireless Networks [J],1997,14(3):29-41.
    [3]Naghshineh M, Schwartz S. Distributed call admission control in mobile/wireless networks [J], IEEE Journal of Selected Areas Communication,1996,14(5):711-717.
    [4]Wu S, Wong KYM, Li B. A Dynamic Call Admission Policy with Precision QoS Guarantee Using Stochastic Control for Mobile Wireless Networks [J], IEEE/ACM Transactions on Networking,2002,10(2):34-39.
    [5]Oliveira C, Kim JB, Suda T. An adaptive bandwidth reservation scheme for high-speed multimedia wireless networks [J], IEEE Journal of Selected Areas Communication,1998, 16(6):858-874.
    [6]Capone J.M, Stavrakakis I. Delivering diverse delay/dropping QoS requirements in a TDMA environment [A]. In:Proceedings of the Annual International Conference on Mobile Computing and Networking (MobiCom) [C],1997:110-119.
    [7]IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor 1-2005. IEEE Standard for Local and metropolitan area networks-Part 16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Amendment 2:Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1. Feb.2006.
    [8]刘兴春,张殿国,李铮.HFC网络技术及其发展趋势[J],光通信技术,2001,25(1):84-87.
    [9]Noerpel AR, Lin YB. Wireless local loop:architecture, technologies and services [J], IEEE Personal Communications,1998,5(3):74-80.
    [10]Panagopoulos AD, Pantelis-Daniel M, Arapoglou. LMDS diversity systems:a new performance model incorporating stratified rain [J], IEEE Communications Letters,2005, 9(2):145-147.
    [11]Frodigh M, Parkvall S, Roobol C. Future-generation wireless networks [J], IEEE Personal Communications,2001,8(5):10-17.
    [12]3GPP. Physical Layer Aspects of UTRA High Speed Downlink Packet Access.3GPP TR25.848 V4.0.0,2001.
    [13]Parkvall S, Dahlman E, Frenger P. The evolution of WCDMA towards higher speed downlink packet data access [A]. In:Proceedings of theVTC'01 [C],2001:2286-2291.
    [14]3GPP2 C. S0002-2004, Physical layer standard for CDMA2000 spread spectrum systems, revision D[S].
    [15]Whale PC. Challenges and trends in 3G devices [A]. In:Proceedings of the 4th International Conference on 3G Mobile Communication Technologies [C],2003:173-177.
    [16]Yallapr R, Naidu M. New enhancements in 3G technologies [A]. In:Proceedings of thelEEE International Conference on Personal Wireless Communications (ICPWC) [C],2005: 182-187.
    [17]Song W, Jiang H, Zhuang W. Performance analysis of the WLAN-First scheme in Cellular/WLAN interworking [J], IEEE Transactions on Wireless Communications,2007, 6(5):1932-1952.
    [18]IEEE 802.11 Standard Group Web Site, Available at:http://www.ieee802.org/11.
    [19]IEEE 802.15 Standard Group Web Site, Available at:http://www.ieee802.org/15.
    [20]IEEE Standard for Local and Metropolitan Area Networks Part 16:Air Interface for Fixed Broadband Wireless Access Systems,802.16,2004.
    [21]Dedicated Short Range Communications (DSRC), Available at: http://www.leeannstrong.com/DSRC/DSRCHomeset.htm.
    [22]Akyildiz IF, Wang X, Wang W. Wireless mesh networks:a survey [J], Computer Networks and ISDN Systems,2005,47(4):445-487.
    [23]Akyildiz IF, Wang X. A survey on wireless mesh networks [J], IEEE Communications Magazine,2005,43(9):S23-S30.
    [24]Lan YW, Yeh JH, Chen JC. Performance enhancement of IEEE 802.11e EDCA by contention adaptation [A]. In:Proceedings of the IEEE VTC [C],2005:2096-2100.
    [25]Kaixin X, Gerla M, Sang B. How effective is the IEEE 802.11 RTS/CTS handshake in ad hoc networks [A]. hi:Proceedings of the IEEE Global Telecommunications Conference Workshops (GlobeCom) [C],2002:72-76.
    [26]Jurdak R, Lopes CV, Baldi P. A survey, classification and comparative analysis of medium access'control protocols for ad hoc networks [J], IEEE Communications Surveys and Tutorials,2004,6(1):2-16.
    [27]Johnson D, Hu Y, Maltz D. The Dynamic Source Routing Protocol (DSR) for Mobile Ad Hoc Networks for IPv4 [S], RFC 4728, Available at:http://www.ietf.org.
    [28]Perkins C, Belding-Royer E, Das S. Ad hoc On-Demand Distance Vector (AODV) Routing [S], RFC 3561, Available at:http://www.ietf.org.
    [29]Aoki, H. et al.802.11 TGs Simple Efficient Extensible Mesh (SEE-Mesh) Proposal. IEEE 802.11 Wireless LANs, Document IEEE 802.11-05/0562,2005.
    [30]Bhatia R, Kodialam M. On power efficient communication over multi-hop wireless networks:joint routing scheduling and power control [A]. In:Proceedings of the Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM) [C], 2004:1457-1466.
    [31]IEEE 802.11b Standard, standards.ieee.org/getieee802/download/802.11b-1999.pdf.
    [32]IEEE 802.11a Standard, standards.ieee.org/getieee802/download/802.11a-1999.pdf.
    [33]Huang C, Juan HH, Lin MS, Chang CJ. Radio resource management of heterogeneous services in mobile WiMAX systems [J], IEEE Wireless Comm.,2007,14(1):24-26.
    [34]Cicconetti C, Lenzini L, Mingozzi E, Eklund C. Quality of service support in IEEE 802.16 networks [J], IEEE Network,2006,20(2):50-55.
    [35]Zhao D, Shen X. Performance of packet voice transmission using IEEE 802.16 protocol [J], IEEE Wireless Communication,2007,14(1):44-51.
    [36]David S, Rosener. A robust high performance network provided by astrolink [EB/OL], Available at:http://www.astrolink.com.
    [37]Available at:http://www.echostar.com.
    [38]Available at:http://en.wikipedia.org/wiki/SPACEWAY-1.
    [39]Available at:http://en.wikipedia.org/wiki/Artemis.(satellite).
    [40]Cruickshan H, Sun Z, Carducci F, Sanchez A. Analysis of IP voice conferencing over EuroSkyWay satellite system [J], IEE Proceedings Communications,2001,148(4):202-206.
    [41]Available at:http://www.itu.int/newsarchive/press/WRC97/SkyBridge.html.
    [42]Zander J. Radio resource management in future wireless networks:requirements and limitations [J], IEEE Communications Magazine,1997,35(8):30-36.
    [43]Salient O, Perez-Romero J, Agusti R, Casadevall F. Provisioning multimedia wireless communication networks for better QoS:RRM strategies for 3G W-CDMA [J], IEEE communications Magazine,2003,41(2):100-106.
    [44]Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor networks:a survey [J], Computer Networks,2002,38(4):393-422.
    [45]Poduri S, Pattern S, Krishnamachari B, Sukhatme G. A unifying framework for tunable topology control in sensor networks [R]. Technical Report, University of Southern California, CRES-05-004,2005:1-15.
    [46]Kamerman A, Monteban L. Wave LAN-II:A high-performance wireless LAN for the unlicensed band [R], in Bell Lab Technical Journal,1997:118-133.
    [47]Jung E, Vaidya N. A power control MAC protocol for ad hoc networks [J], in Wireless Networks,2005,11(12):55-66.
    [48]Kawadia V, Kumar PR. Principles and protocols for power control in ad hoc networks [J], IEEE Journal on Selected Areas in Communications,2005,23(5):76-88.
    [49]Subramanian A, Sayed AH. Joint rate and power control algorithms for wireless networks [J], IEEE Transactions on Signal Processing,2005,53(11):4204-4214.
    [50]Xiaoyu F, Hlaing M. Initial uplink synchronization and power control (ranging process) for OFDMA systems [A]. In:Proceedings of the IEEE Global Telecommunications Conference Workshops (GlobeCom) [C],2004:3999-4003.
    [51]Sunghyun Cho. Hard handoff scheme exploiting uplink and downlink signals in IEEE 802.16e Systems [A]. In:Proceedings of the IEEE 63rd Vehicular Technology Conference (VTC) [C],2006:1236-1240.
    [52]Iera A, Molinaro A, Aloi G, Pace P, Marano S. On the performance of CAC algorithms in multimedia geostationary satellite networks [A]. In:Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC) [C],2002:837-843.
    [53]Mohamed AH. Call admission control in wireless networks:a comprehensive survey [J], IEEE Communications Surveys & Tutorials,2005,7(1):50-69.
    [54]Niyato D, Hossain E. Call admission control for QoS provisioning in 4G wireless networks: issues and approaches [J], IEEE Network,2005,19(5):5-11.
    [55]Ghaderi M, Boutaba R. Call admission control for Voice/Data integration in broadband wireless networks [J], IEEE Transactions on Mobile Computing,2006,5(3):193-207.
    [56]Alagoz F, Vojcic BR, Walters D, AlRustamani A, Pickholtz RL. Fixed versus adaptive admission control in direct broadcast Satellite networks with return channel systems [J], IEEE Journal on Selected Areas in Communications,2004,22(2):238-249.
    [57]Jang YM, Ganz A, Hayes JF. Predictive congestion control for broadband satellite systems [A]. In:Proceedings of thelnternational Zurich Seminar Digital Communications [C],1996: 277-288.
    [58]Qing H, Kuo GS. IEEE 802.16 Based QoS Architecture for Future Fixed Broadband Wireless Access System [A]. In:Proceedings of the 12th Meeting of Wireless World Research Forum (WWRF) [C],2004.
    [59]Wongthavarawat K, Ganz A. IEEE 802.16 based last mile broadband wireless military networks with quality of service support [A]. In:Proceedings of thelEEE Military Communications Conference (MILCOM) [C],2003:779-784.
    [60]Niyato D, Hossain E. Service Differentiation in Broadband Wireless Access Networks with Scheduling and Connection Admission Control:a Unified Analysis [J], IEEE Trans, on Wireless Communications,2007,6(1):293-301.
    [61]Qingwen L, Xin W, Giannakis GB. A cross-layer scheduling algorithm with QoS support in wireless networks [J], IEEE Trans. on Vehicular Technology,2006,55(3):839-847.
    [62]Xiaojun L, Shroff NB. The impact of imperfect scheduling on cross-layer congestion control in wireless networks [J], IEEE/ACM Trans. on Networking,2006,14(2):302-315.
    [63]Kim S, Varshney PK. Adaptive load balancing with preemption for multimedia cellular networks [A]. In:Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC) [C],2003:1680-1684.
    [64]Das SK, Sen SK, Jayaram R. A dynamic load balancing strategy or channel assignment using selective borrowing in cellular mobile environment [J], Wireless Networks,1997,3(5): 333-348.
    [65]Karlsson J, Eklundh B. A cellular mobile telephone system with load sharing:an enhancement of directed retry [J], IEEE Transactions on Communications,1989,37(5): 530-535.
    [66]Velayos H, Aleo V, Karlsson G Load balancing in overlapping wireless LAN cells [A]. In: Proceedings of the IEEE International Conference on Communications (ICC) [C],2004: 3833-3836.
    [67]Anand B, Paramvia B, Geoffrey MV. Hot-spot congestion relief in public-area wireless networks [A]. In:Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications [C],2002:195-205.
    [68]Yiqun W, Yingjun Z, Zhisheng N. Non-preemptive constrained link scheduling in wireless mesh networks [A]. In:Proceedings of the IEEE Global Telecommunications Conference Workshops (GlobeCom) [C],2008:5286-5291.
    [69]Djukic P, Valaee S. Link scheduling for minimum delay in spatial re-use TDMA [A]. In: Proceedings of the Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM) [C],2007:28-36.
    [70]Djukic P., Valaee S. Delay aware link scheduling for multi-hop TDMA wireless networks [J], IEEE/ACM Transactions on Networking,2009,17(3):870-883.
    [71]Kyasanur P, Vaidya NH. Routing and interface assignment in multi-channel multi-interface wireless networks [A]. In:Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC) [C],2005:2051-2056.
    [72]BongJun K, Vishal M, Jitendra P, Dan R. Distributed channel assignment in multi-radio 802.11 mesh networks [A]. In:Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC) [C],2007:3978-3983.
    [73]Chandrakanth C, Pradeep K, Nitin H. Design and implementation of a multi-channel multi-interface network [A]. In:Proceedings of the International Symposium on Mobile Ad Hoc Networking & Computing (SIGMOBILE) [C],2006:23-30.
    [74]Ramachandran KN, Belding EM, Almeroth KC. Interference-aware channel assignment in multi-radio wireless mesh networks [A]. In:Proceedings of the Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM) [C],2006:1-12.
    [75]Jing Z, Sumit R.802.11 Mesh networks with two-radio access points [A]. In:Proceedings of the IEEE International Conference on Communications (ICC) [C],2005:3609-3615.
    [76]Raniwala A, Gopalan K, Chiueh T. Centralized channel assignment and routing algorithms for multi-channel wireless mesh networks [A]. In:Proceedings of the International Symposium on Mobile Ad Hoc Networking & Computing (SIGMOBILE) [C],2004:50-65.
    [77]Raniwala A, Chiueh T. Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network [A]. In:Proceedings of the Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM) [C],2005:2223-2234.
    [78]Wu SL, Lin CY, Tseng YC, et al. A new multi-channel MAC protocol with on-demand channel assignment for multi-hop mobile ad hoc networks [A]. In:Proceedings of the I-SPAN [C],2000:232-237.
    [79]Draves R, Padhye J, Zill B. Routing in multi-radio, multi-hop wireless mesh networks [A]. In:Proceedings of the 10th ACM Annual International Conference on Mobile Computing and Networking (MOBICOM) [C],2004:114-128.
    [80]Bu T, Chan MC, Ramjee R. Designing wireless radio access networks for third generation cellular networks [A]. In:Proceedings of the Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM) [C],2005:68-78.
    [81]Bhatnagar P, Ganguly P, Izmailov R. Design of IEEE 802.16-based multi-hop wireless backhaul networks [A]. In:Proceedings of the 1st International Conference on Access networks [C],2006:1-6.
    [82]Viswanathan H, Mukherjee S. Throughput-range tradeoff of wireless mesh backhaul networks [J], IEEE Journal on Selected Areas in Communications,2006,24(3):593-602.
    [83]Cao M, Wang X, Kim S, Madihian M. Multi-hop wireless backhaul networks:a cross-layer design paradigm [J], IEEE Journal on Selected Areas in Communications,2007,25(4): 738-748.
    [84]Arikan E. Some complexity results about packet radio networks [J], IEEE Transactions on Information Theory,1984 30(4):681-685.
    [85]Hajek B, Sasaki G. Link scheduling in polynomial time [J], IEEE Transactions on Information Theory,1988 34(5):910-917.
    [86]Cidon I, Sidi M. Distributed assignment algorithms for multi-hop packet radio networks [J], IEEE Transactions on Computers,1989,38(10):1353-1361.
    [87]Andras R, Gyorgy M, Ferenc K, Andres V. A pseudo random coordinated scheduling algorithm for Bluetooth scatternets [A]. In:Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking and computing (MobiHoc) [C],2001:193-203.
    [88]Kim YM, Lai TH, Arora A. A QoS-aware scheduling algorithm for Bluetooth scatter nets [A]. In:Proceedings of the 32nd International Conference on Parallel Processing (ICPP) [C], 2003:455-462.
    [89]Gronkvist J. Novel assignment strategies for spatial reuse TDMA in wireless ad hoc networks [J], Wireless Networks,2006,12(2):255-265.
    [90]Sanchez M, Zander J, Giles T. Combined routing and scheduling for spatial TDMA in multi-hop ad hoc networks [A]. In:Proceedings of WPMC [C],2003:781-785.
    [91]Tian D, Georganas ND. A node scheduling scheme for energy conservation in large wireless sensor networks [J], Wireless Communications and Mobile Computing,2003,3:271-290.
    [92]Jian C, Jie J, Ying-you W, Da-zhe Z, Ji-ren L. Modeling and Extending Lifetime of Wireless Sensor Networks Using Genetic Algorithm [A]. In Proceeding of the ACM SIGEVO Genetic Evolutionary Computation [C],2009:47-55.
    [93]Wang H, Lei H, Argawal D. Dynamic admission control and QoS for 802.16 Wireless MAN [A]. In:Proceedings of the Wireless Telecommunications Symposium [C],2005:60-68.
    [94]Chu G, Wang D, Mei S. A QoS architecture for the MAC protocol of IEEE 802.16 BWA system [A]. In:Proceedings of the IEEE Conference on Communications, Circuits, and Systems [C],2002, pp.435-439.
    [95]Liu N, Li X, Pei BYC. Delay character of a novel architecture for IEEE 802.16 systems [A]. In:Proceedings of the Parallel and Distributed Computing, Applications and Technologies [C],2005:293-296.
    [96]Daehyon K, Ganz A. Fair and efficient multi-hop scheduling algorithm for IEEE 802.16 BWA systems [A]. In:Proceedings of Broadnets [C],2005:895-901.
    [97]Shetiya H, Sharma V. Algorithms for routing and centralized scheduling to provide QoS in IEEE 802.16 mesh networks [A]. In:Proceedings of the 1st ACM workshop on Wireless Multimedia Networking and Performance Modeling [C],2005:140-149.
    [98]Shreedhar M, Varghese G. Efficient fair queuing using deficit round-robin [J], IEEE/ACM Transactions on Networking,1996,4(3):375-385.
    [99]Parekh A, Gallager R. A generalized processor sharing approach to flow control in integrated services networks:the single node case [J], IEEE/ACM Transactions on Networking,1999,1(3):344-357.
    [100]Wongthavarawat K. IEEE 802.16 based last mile broadband wireless military networks with quality of service support [A]. In:Proceedings of the IEEE Military Communications Conference [C],2005:779-784.
    [101]Fu L, Cao Z, Fan P. Spatial reuse in IEEE 802.16 based wireless mesh networks [A]. In: Proceedings of the IEEE International Symposium on Communications and Information Technology (ISCIT) [C],2005:1358-1361.
    [102]Jain K, Padhye J, Padmanabhan V N, Qiu L. Impact of interference on multi-hop wireless network performance [J], Wireless Networks,2005,11:4471-487.
    [103]Murali K, Nandagopal T. Characterizing achievable rates in multi-hop wireless networks: The joint routing and scheduling problem [A].In:Proceedings of the Annual International Conference on Mobile Computing and Networking (MobiCom) [C],2003:42-54.
    [104]Tao J, Liu F, Zeng Z, Lin Z. Throughput enhancement in WiMax mesh networks using concurrent transmission [A].In:Proceedings of the IEEE Intertional Conference on Wireless Communication Networks and Mobile Computing,2005:871-874.
    [105]Kumar VSA, Marathe MV. Parthasarathy S, Srinivasan A. Algorithmic aspects of capacity in wireless networks [A]. In:Proceedings of SIGMETRICS,2005:133-144.
    [106]Ramanathan S. A unified framework and algorithm for channel assignment in wireless networks [J], Wireless Networks,1999,5(2):81-94.
    [107]Sarkar S, Kar K. Achieving 2/3 throughput approximation with sequential maximal scheduling under primary interference constraints [A]. In:Proceedings of the 44th Annual Allerton Conference Communication, Control and Computing [C],2006:729-740.
    [108]Han B, Jia W, Lin L. Performance evaluation of scheduling in IEEE 802.16 based wireless mesh networks [J], Computer Communication,2007,30(4):782-792.
    [109]Liu S, Feng S, Ye W. Slot allocation algorithm in centralized scheduling scheme for IEEE 802.16 based wireless mesh networks [J], Computer Communications,2009,32(5): 942-953.
    [110]Salonidis T, Tassiulas L. Distributed dynamic scheduling for end-to-end rate guarantees in wireless ad hoc networks [A]. In:Proceedings of the ACM international symposium on Mobile ad hoc networking and computing (MobiHoc) [C],2005:145-156.
    [111]Kyasanur P, Vaidya NH. Capacity of multi-channel wireless networks:impact of number of channels and interfaces [A]. In:Proceedings of the Annual International Conference on Mobile Computing and Networking (MobiCom) [C],2005:43-57.
    [112]Yanbin L, Guoqing Z. Maintaining routing tree in IEEE 802.16 centralized scheduling mesh networks [A]. In:Proceedings of the 16th International Conference on Computer Communications and Networks [C],2007:240-245.
    [113]Goldberg DE. Genetic algorithms in search, optimization and machine learning [M], Addison-Wesley Press,1989.
    [114]Horn J. Multi-criterion decision making [M], In:Handbook of Evolutionary Computation, Oxford University Press,1997.
    [115]Schaffer JD. Multiple objective optimization with vector evaluated genetic algorithms [A]. In:Proceedings of the First International Conference on Genetic Algorithms [C],1985: 93-100.
    [116]Deb K, Pratap A, Agrawal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ[J], IEEE Trans on Evolutionary Computation,2002,6(2):182-197.
    [117]Deb K, Goel T. Controlled elitist non-dominated sorting genetic algorithms for better convergence [A]. In:Proceedings of the First International Conference on Evolutionary Multi-criterion Optimization [C],2001:67-81.
    [118]Jia J, Chen J, Chang GR, Wen YY. Efficient cover set selection in wireless sensor networks [J], Acta Automatica Sinica,2008,34(9):1157-1162.
    [119]Jia J, Chen J, Chang GR, Li J. Coverage optimization based on improved NSGA-II in wireless sensor network [A]. In:Proceedings of the IEEE International Conference on Integration Technology [C],2007:614-618.
    [120]Blum C, Roli A. Metaheuristics in combinatorial optimization:overview and conceptual comparison [J], ACM Computing Surveys,2003,35(3):268-308.
    [121]Subramanian AP, Gupta H, Das SR. Minimum interference channel assignment in multi-radio wireless mesh networks [A]. In:Proceedings of the Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (SECON) [C],2007:481-490.
    [122]So J, Vaidya N. Multi-channel MAC for ad hoc networks:handling multi-channel hidden terminals using a single transceiver [A]. In:Proceedings of the ACM international symposium on Mobile ad hoc networking and computing (MobiHoc) [C],2004,222-233.
    [123]Bahl P, Chandra R, Dunagan J. SSCH:slotted seeded channel hopping for capacity improvement in IEEE 802.11 ad-hoc wireless networks [A]. In:Proceedings of the 10th Annual International Conference on Mobile Computing and Networking (MobiCom) [C], 2004:216-230.
    [124]Shi J, Salonidis T, Knightly E. Starvation mitigation through multi-channel coordination in CSMA multi-hop wireless networks [A]. In:Proceedings of the ACM international symposium on Mobile ad hoc networking and computing (MobiHoc) [C], New York:ACM Press,2006:214-225.
    [125]Marina MK, Das SR. A topology control approach for utilizing multiple channels in multi-radio wireless mesh networks [A]. In:Proceedings of Broadnets [C],2005:381-390.
    [126]Adya A, Bahl P, Padhye J, et al. A multi-radio unification protocol for IEEE 802.11 wireless networks [A]. In:Proceedings of Broadnets [C],2004:344-354.
    [127]Chandra R, Bahl P. Multinet:connecting to multiple IEEE 802.11 networks using a single wireless card [A]. In:Proceedings of the Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM) [C],2004:882-893.
    [128]Nasipuri A, Zhuang J, Das SR. A multi channel CSMA MAC protocol for multi-hop wireless networks [A]. In:Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC) [C],1999:1402-1406.
    [129]Alicherry M, Bhatia R, Erran L. Joint channel assignment and routing for throughput optimization in multi-radio wireless mesh networks [A]. In:Proceedings of the Annual International Conference on Mobile Computing and Networking (MobiCom) [C],2005: 1960-1971.
    [130]Das AK, Alazemi HMK, Vijayakumar R, et al. Optimization models for fixed channel assignment in wireless mesh networks with multiple radios [A]. In:Proceedings of the Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (SECON) [C],2005:463-474.
    [131]Jian C, Jie J, Ying-you W, Da-zhe Z, Ji-ren L. Optimization of resource allocation in multi-radio multi-channel wireless mesh networks [A]. In:Proceeding of International Conference on Hybrid Intelligent Systems [C],2009:240-244.
    [132]Mishra A, Rozner E, Banerjee S, Arbaugh W. Exploiting partially overlapping channels in wireless networks:turning a peril into an advantage [A]. In:Proceedings of the 5th ACM SIGCOMM conference on Internet measurement [C],2005:1-6.
    [133]Mishra A, Banerjee S, Arbaugh W. Weighted coloring based channel assignment for WLANs [A]. In:Proceedings of the ACM Mobile Computing and Communications Review (SIGMOBILE) [C],2005:19-31.
    [134]Mishra A, Shrivastava V, Banerjee S, Arbaugh WA. Partially overlapped channels not considered harmful [A]. In:Proceedings of SIGMETRICS [C],2006:63-74.
    [135]Alizadeh F. Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization [J], SIAM Journal on Optimization,1995,38(5):13-51.
    [136]Lazar AA, Pacifici G. Control of resources in broadband networks with quality of service guarantees [J], IEEE Communications,1991,9(3):66-73.
    [137]Chong S, Li S, Ghosh J. Predictive dynamic bandwidth allocation for efficient transport of real-time VBR video over ATM [J], IEEE Journal of Select Areas Communication,1995, 13(1):12-23.
    [138]Alarcon V, Barria JA. Multi-resolution FIR neural-network-based learning algorithm applied to network traffic prediction [J], IEEE Transactions on Systems, Man, and Cybernetics-Part C:Applications and Reviews.2006,36(2):208-220.
    [139]Leland WE, Taqqu MS, Willinger W, et al. On the self-similar nature of Ethernet traffic [A]. In:Proceedings of the ACM SIGCOMM conference on Internet measurement [C],1993: 183-193.
    [140]Leland E, Taqqu M S, Willinger W, et al. On the self similar nature of ethernet traffic (extended version) [J], IEEE/ACM Transactions on Networking,1994,2(1):1-15.
    [141]Beran J, Sherman R, Taqqu MS, Willinger W. Long-range dependence in variable-bit-rate video traffic [J], IEEE Transactions on Communication,1995,43(234):1566-1579.
    [142]Paxson V, Floyd S. Wide-area traffic:the failure of possion modeling [J], IEEE/ACM Transactions on Networking,1995,3(3):226-244.
    [143]Rathgeb EP. Modeling and performance comparison of policing mechanism for ATM network [J], IEEE Journal of Select Areas Communication,1991,9(3):325-334.
    [144]Crovella M, Bestavros A. Self similarity in world wide web traffic:Evidence and possible causes [J], IEEE/ACM Transactions on Networking,1997,5(6):835-846.
    [145]Tsybkov B, Georganas ND. On self-similar traffic in ATM queues:definitions, overflow probability bound, and cell delay distribution [J], IEEE/ACM Transactions on Networking, 1997,5(3):397-409.
    [146]Beran J, Sherman R, Taqqu MS, et al. Long-range dependence in variable-bit-rate video traffic [J], IEEE Transactions on Communications,1995,4(3):1565-1579.
    [147]Atiya AF, Aly MA, Parlos AG. Sparse basis selection:new results and application to adaptive prediction of video source traffic [J], IEEE Transactions on Neural Network,2005, 16(5):1136-1146.
    [148]Liang Y, Page EW. Multi-resolution learning paradigm and signal prediction [J], IEEE Transactions on Signal Processing,1997,45(11):2858-2864.
    [149]Liang Y. Multi-resolution learning paradigm and high-speed network traffic prediction [D]. Ph.D. dissertation, Dept. Comput. Sci., Clemson Univ., Clemson, SC,1997.
    [150]Liang Y, Page EW. VBR video traffic prediction using neural networks with multi-resolution learning [A]. In:Proceedings of the Advances in Neural Networks and Applications [C], 2001:98-103.
    [151]Garrett MW, Willinger W. Analysis, modeling and generation of self-similar VBR video traffic [A]. In:Proceedings of the ACM SIGCOMM conference on Internet measurement [C],1994:269-280.
    [152]Mao G, Liu H. Real time variable bit rate video traffic [J], International journal of communication system,2006,20(4):491-505.
    [153]Tse D, Gallager R, Tsitsiklis J. Statistical multiplexing of multiple time scale markov streams [J], IEEE Journal of Select Areas Communication,1995,13(6):1028-1038.
    [154]陈剑,闻英友,赵大哲,刘积仁.VBR视频流量的小波包分解及其长时预测[J].通信学报,2008,29(6):34-42+50.
    [155]Mallat S. Theory for multi-resolution signal decomposition:the wavelet representation [J], IEEE Transactions on Pattern Anal. Machine Intelligence,1989,11(7):674-693.
    [156]Cohen A, Kovacevic J. Wavelets:the mathematical background [A]. In:Proceedings of the IEEE [C],1996,84(4):514-522.
    [157]Tewfik AH, Kim M. Correlation structure of the discrete wavelet coefficients of fractional Brownian motion [J], IEEE Transactions on Information Theory,1992,38(2):904-909.
    [158]Willinger W, Taqqu MS, Sherman R. Self-similarity through high-variability:statistical analysis of ethernet LAN traffic at source level [J], IEEE/ACM Transactions on Networking, 1997,5(1):71-86.
    [159]Patrick F. Wavelet analysis and synthesis of fractional Brownian motion [J], IEEE Transactions on Information Theory,1992,38(2):910-917.
    [160]Sarvotham S, Riedi R, Baraniuk R. Connection level analysis and modeling of network traffic [A]. In:Proceedings of the IEEE/ACM Network Measurement Workshop [C],2001: 99-103.
    [161]王新.自相似网络流量的建模与预测[D],北京,清华大学.
    [162]Mallat S. A wavelet tour of signal processing (Second Edition) [M], Washington:Academic Press,1999.
    [163]王首勇,朱光喜,唐远炎.应用最优小波包变换的特征提取方法,电子学报,2003,31(7):1035-1038.
    [164]刘毅,张彩明,赵玉华,董亮.基于多尺度小波包分析的肺音特征提取与分类,计算机学报,2006,29(5):769-777.
    [165]Chiruvolu G, Sankar R, Ranganathan N. Adaptive VBR traffic management for higher utilization of ATM networks [J], ACM SIGCOMM Computer Communications Review, 1998,28(3):27-40.
    [166]Adas A. Using adaptive linear prediction to support real-time VBR video under RCBR network service model [J], IEEE Transactions on Networking,1998,6(5):635-644.
    [167]Iera A, Molinaro A, Marano S. Call admission control and resource management issues for real-time VBR traffic in ATM-satellite networks [J], IEEE Journal on Selected Areas in Communications,2000,18(11):2393-2403.
    [168]Johan AK.S, Tony VG, Jos D B. Least squares support vector machines [J], Machine Learning,2002,7:1-25.
    [169]Weigend AS, Gershenfeld NA. Time series prediction:forecasting the future and understanding the past [M], Addison-Wesley,1994:429-455.
    [170]苏晓星,常胜江,熊涛.用神经网络实现VBR视频通信量的在线预测,电子学报,2005,33(7):1163-1167.
    [171]Tseng YH,Wu EH, Chen GH, Scene-Change Aware Dynamic Bandwidth Allocation for Real-Time VBR Video Transmission Over IEEE 802.15.3 Wireless Home Networks [J]. IEEE TRANSACTIONS ON MULTIMEDIA,2007,9(3):542-654.
    [172]Farserotu J, Prasad R. A survey of future broadband multimedia satellite systems, issues and trends [J], IEEE Communications Magazine,2000,38(6):128-133.
    [173]Peyravi H. Medium access control protocols performance in satellite communications [J], IEEE Communications Magazine 1999,38(3):62-71.
    [174]Jiang Z, Li Y, Leung VCM. A predictive demand assignment multiple access protocol for broadband satellite networks supporting Internet applications [A]. In:Proceedings of the IEEE International Conference on Communications (ICC) [C],2002:2973-2977.
    [175]Le-Ngoc T, Jahangir IM. Performance analysis of CFDAMA-PB protocol for packet satellite communication [J], IEEE Transaction on Communications,1998,46(9):1206-1214.
    [176]Mobasseri M. Performance evaluation of MAC protocols and buffer management strategies in ATM-based broadband satellite networks. Master's Thesis, University of British Columbia,2000.
    [177]Celandroni N, Ferro E. The FODA-TDMA satellite access scheme:presentation, study of the system, and results [J], IEEE Transactions on Communications,1991,39(12): 1823-1831.
    [178]Huang J, Le-Ngoc T, Hayes JF. Broadband satcom system for multimedia services [A]. In: Proceedings of IEEE International Conference on Communications [C],1996:906-910.
    [179]Ors T, Sun Z, Evans BG. Analysis of a MAC protocol to guarantee QoS for ATM over satellite [A]. In:Proceedings of the IEEE International Conference on Communications (ICC) [C],1998:1420-1424.
    [180]陈剑,闻英友,赵大哲,刘积仁.多媒体卫星通信系统中的无线资源申请[J].东北大学学报(自然科学版),2008,29(8):1091-1095.
    [181]Gotta A, Secchi R, Potorti F. Simulating dynamic bandwidth allocation on satellite links [A]. In:Proceedings of the International Conference on Performance Evaluation Methodologies and Tools [C],2006:8-17.
    [182]Acar G, Rosenberg C. Algorithms to compute bandwidth on demand requests in a satellite access unit [A]. In:Proceedings of the 5th Ka Band Utilization Conference [C],1999: 353-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700