红景天和麝香保心丸对兔动脉粥样斑块稳定性的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1、通过高脂饲料喂养和球囊扩张术建立兔股动脉粥样硬化模型,了解以此建立模型的大体形态,以及显微镜下的细胞组成情况。2、研究具有促进血管生成作用的中药麝香保心丸、红景天和调脂药物辛伐他汀(作为阳性对照药物)干预对于兔股动脉粥样硬化斑块内新生血管、细胞外基质代谢、炎症反应以及血脂水平的影响。3、比较红景天水煎剂和红景天苷悬浊液在相同红景天苷浓度下对兔股动脉粥样斑块内新生血管、细胞外基质代谢、炎症反应以及血脂水平的影响。通过研究两者的药效在本模型上的差异,为中草药红景天应用的定量化和标准化探索途径。
     方法:1、动物造模:50只健康雄性新西兰兔以高脂饲料喂养2周后,行球囊扩张术损伤股动脉内膜建立动脉粥样硬化模型。2、实验分组和给药方法:将动物随机分为对照组(10只)、红景天组(10只)、红景天苷组(10只)、麝香保心丸组(10只)和辛伐他汀组(10只)。继续喂养高脂饲料4周。干预组同时给予药物灌胃4周。红景天制成水煎剂(浓度为0.5g/ml),灌胃剂量为1ml/kg每天;测定红景天水煎剂中红景天苷含量为0.173mg/g,将1%的红景天苷干粉与蒸馏水配成红景天苷浓度同样为0.173mg/g的悬浊液,灌胃剂量也是1ml/kg每天;麝香保心丸给药剂量为一粒(22.5mg)每只每天;辛伐他汀碾碎后配成悬浊液,灌胃剂量是2.5mg/kg每天。3、血脂测定,分别于实验第1周、第3周以及第7周处死前采血。采血前禁食:选择耳缘静脉采血。测定血清总胆固醇、甘油三酯、低密度脂蛋白和高密度脂蛋白。4、实验第7周采用酶联免疫吸附法(ELISA)测定血清基质金属蛋白酶-3(MMP-3)、血清白介素6(IL-6)和血清超敏C反应蛋白(hsCRP)。5、用病理学染色和免疫组化染色定量兔股动脉粥样硬化斑块中CD34、血管内皮生长因子(VEGF)、MMP-3、胶原、增殖细胞核抗原(PCNA)、单核细胞趋化蛋白-1(MCP-1)、糜酶(chymase)和α平滑肌肌动蛋白(αSMA)的阳性面积。6、以实时荧光PCR检测各组粥样斑块中的VEGFmRNA含量。7、检测结果用(?)±S表示,各组间差异比较用单因素方差分析中的多重比较q检验。SPSS10.0软件进行统计分析。
     结果:1 一般情况和粥样斑块模型的大体观察 整个实验过程中共死亡兔子10只。实验结束时动物数目为:对照组8只,麝香保心丸组8只,红景天组6只,红景天苷组9只,辛伐他汀组9只。可见股动脉球囊扩张处有较大的灰白色斑块形成;光镜下看到斑块包含泡沫细胞、胆固醇结晶、平滑肌细胞和胶原组织等人类粥样斑块主要成分。2 斑块内新生血管情况 所有药物干预组的新生血管面积(用CD34阳性染色面积表示)都比对照组显著减少(辛伐他汀组vs对照
    组:15.24±3.34% vs 20.39±5.96%,P<0.01;红景天组vs对照组:10.99±3.59% vs 20.39±5.96%,P<0.01;麝香保心丸组vs对照组:13.85±2.97% vs
     20.39±5.96%,P<0.01);红景天苷也有类似的作用(13.28±4.01% vs 20.39±5.96%,P<0.01),与红景天组比较无显著性差异。同样药物干预组的VEGF阳性面积比对照组明显减少(辛伐他汀组vs对照组:13.35±7.27% vs 20.14±6.15%,P<0.01;红景天组vs对照组:11.43±3.41% vs 20.14±6.15%,P<0.01;麝香保心丸组vs对照组:15.23±2.93% vs 20.14±6.15%,P<0.01),并以红景天组减少最为显著。红景天苷也相仿(13.59±4.74% vs 20.14±6.15%,P<0.01),与红景天组比较没有显著差别。两个中药干预组斑块内VEGF的mRNA拷贝数不比对照组减少(红景天组vs对照组:1.38×10~(-2) vs 6.07×10~(-3);麝香保心丸组vs对照组:2.00×10~(-2) vs 6.07×10~(-3))。3 斑块内细胞外基质代谢情况 药物干预组的胶原面积都比对照组显著减少(辛伐他汀组vs对照组:12.54±2.82% vs 20.02±6.11%,P<0.01;红景天组vs对照组:16.99±6.00% vs
     20.02±6.11%,P<0.05;麝香保心丸组vs对照组:11.35±1.87% vs 20.02±6.11%,P<0.01),其中又以麝香保心丸组下降最为明显;红景天苷也有降低胶原作用(15.65±1.97% vs 20.02±6.11,P<0.01),与红景天组差别无显著性。辛伐他汀组和麝香保心丸组粥样斑块的α平滑肌肌动蛋白抗体阳性面积都与对照组相仿;而红景天组则显著减少(红景天组vs对照组:10.34±1.62% vs 14.44±2.76%,P<0.01);红景天苷也有降低作用(11.94±2.84% vs 14.44±2.76%,P<0.01);但该组降低程度不如红景天组,这种差别具有显著性(P<0.05)。辛伐他汀组和红景天苷组的斑块内的PCNA阳性面积比对照组明显减少(辛伐他汀组vs对照组:8.86±5.60% vs 15.07±5.66%,P<0.01;红景天苷组9.42±4.16
     vs 15.07±5.66%,P<0.01);红景天苷组和红景天组比较有显著性差异(P<0.05)。各药物干预组斑块内的MMP-3阳性面积都比对照组明显减少(辛伐他汀组vs对照组:11.24±2.81% vs 16.30±5.96%,P<0.01;红景天组vs对照组:11.89±4.29% vs 16.30±5.96%,P<0.01;麝香保心丸组vs对照组:11.52±4.97% vs
     16.30±5.96%,P<0.01;红景天苷组vs对照组10.51±2.34% vs 16.30±5.96%,P<0.01);红景天组和红景天苷组比较没有显著性差别。有两种药物能显著下降血清MMP-3水平(辛伐他汀组vs对照组:8.38±19.44mg/L vs 21.01±17.22mg/L,P<0.01;红景天组vs对照组:12.43±9.32mg/L vs 21.01±17.22mg/L,P<0.05)。红景天苷组和红景天组比较有显著性差别(P<0.05)。4 与斑块炎症相关的指标 除了红景天苷(8.05±4.14% vs 12.21±2.59%,P<0.01)外,其他药物降低斑块内MCP-1的作用都不显著;红景天苷与红景天组比较有显著性差异(MCP-1,P<0.01)。所有药物都能减少斑块内的chymase阳性面积(辛伐他汀组
    vs对照组:9.74±2.11% vs 12.53±2.78%,P<0.01;红景天组vs对照组:9.13±1.95% vs 12.53±2.78%,P<0.01;麝香保心丸vs对照组:6.23±3.71% vs
     12.53±2.78%,P<0.01;红景天苷组vs对照组:5.57±2.13% vs 12.53±2.78%,P<0.01);红景天苷组与红景天组比较差别达到显著性(P<0.01)。所有药物都没有显著降低血IL—6和CRP的水平。5 血脂 除辛伐他汀能显著降低血清总胆固醇、LDL-C和甘油三酯外,麝香保心丸和红景天都能显著降低血清LDL-C水平(麝香保心丸组vs对照组:6.19±14.34 mmol/L vs 12.88±9.82 mmol/L,P<0.01;红景天组vs对照组8.87±4.00 mmol/L vs 12.88±9.82 mmol/L,P<0.05),红景天还可以显著降低血清总胆固醇(10.11±3.59 mmol/L vs 20.32±6.33mmol/L,P<0.01);两种中药对甘油三酯都无降低作用。红景天苷对血脂的影响没有达到显著性,该组的血清总胆固醇水平与红景天组比较有显著性差异(19.34±11.44 vs 10.11±3.59 mmol/L,P<0.01)。
     结论:
     1、采用高脂饲料喂养结合球囊扩张术建立的动脉粥样硬化模型,包含人类粥样斑块的基本组成。
     2、红景天和麝香保心丸都能减少粥样斑块内血管新生,这种作用可能和促进斑块内VEGF的分解有关;抑制血管新生的部分直接机制是抑制肥大细胞的活性,部分间接机制是对斑块内基质的影响如减少斑块内MMP-3和抑制平滑肌增殖和转化。两种中药减少斑块内MMP-3的作用有利于斑块的稳定,机制包括抑制平滑肌增殖以及转化、抑制chymase活性和降低血清LDL-C等。两种中药对粥样斑块内胶原和MMP-3含量的净效应与降低血清LDL-C有关;对于斑块内平滑肌细胞的增殖和转化,MCP-1含量以及肥大细胞活性的影响似乎有降低LDL-C以外的其他机制参与。
     3、红景天主要通过红景天苷对粥样斑块发生的作用有:减少粥样斑块内新生血管和VEGF含量,抑制斑块内胶原生成和MMP-3活性,以及下降血清LDL-C。两种药物有差异的作用包括:对平滑肌增殖和转化的影响,对MCP-1的作用,对肥大细胞以及chymase的作用,还有下降血清VLDL-C的作用。产生这些差异的原因,考虑一是红景天含有其他与红景天苷药理作用不同的组成(尤其是显著下降血清VLDL-C的成分);二是红景天所含的其他成分直接拮抗红景天苷。
Objective: 1. To get acquainted with establishment of rabbit arteriosclerotic model through high-fat diet and femoral artery angioplasty operation. To observe morphology of arteriosclerotic plaque so as to analyze its component such as foam cells,extracellular cholesterol crystal,vascular smooth muscle cells,and collagen.2. To investigate effects of simvastatin, Rhodiola rosea, She Xiang Bao Xin Wan(SXBXW) ,and Salidroside(all as angiogenesis inducing agents) on angiogenesis, extracellular matrix,and inflammation response in the arteriosclerotic plaque . Blood lipid changes are also examined.3. To compare effects of Rhodiola rosea and Salidroside on angiogenesis ,extracellular matrix,and inflammation response in the arteriosclerotic plaque and blood lipid changes. To try finding a way of standardizition and quantification of usage of Rhodiola rosea.
    Methods: 1. Animal models: 50 Newsealand Rabbits were feed with high-fat diet for 2 weeks. Then femoral artery angioplasty operation were performed. 2. Grouping and medicine administration: All rabbits were divided into: control group ,simvastatin group, Rhodiola rosea group, SXBXW group ,and Salidroside group.All rabbits were fed high-fat diet for another 4 weeks. Rabbits of intervention groups were fed together with medicines for 4 weeks. The dose of Rhodiola rosea (decoction with concentration of 0.5g/ml) intragastric administration was 1 ml/kg everyday; The intragastric dose of Salidroside suspension was also 1 ml/kg everyday(by mixing 1% salidroside powder with distilled water with the same concentration of salidroside as in the Rhodiola rosea decoction as 0.173mg/g) ; rabbits of SXBXW group were given 1 pills everyday;simvastatin pills were scrunched and made suspension with the administration dose of 2.5mg/kg everyday.3. Blood lipid examination:Blood total cholesterol,LDL-C,HDL,and triglyceride were determined in 1~(st) week,3~(rd) week,and 7~(th) week.4. Serum MMP-3,IL-6,and hsCRP were determined in 7~(th) week by ELISA.5. CD34,VEGF,MMP-3 ,collagen ,PCNA,MCP-1,chymase,and α SMA positive area in the arteriosclerotic plaque were analyzed and quantification by means of immunohistochemistry techniques. 6.VEGF mRNA in arterosclerotic plaque were examed by realtime PCR.7. The results were express with X|- ± S, and the difference among the groups was tested by q test (multiple comparisons of one-factor analysis of variance). SPSS10.0 was used in the data processing.
    Results: 1 General obersvation and description of arteriosclerotic plaque model: 10 rabbits died during the 7 weeks experiment. At the end of the experiment,the number of rabbits of each group was: control group-8 ,simvastatin group-9, Rhodiola rosea group-6, SXBXW group-8 ,and Salidroside group-9. Big grey plaques could be seen in the femoral artery and foam cells,extracellular cholesterol crystal,vascular smooth muscle cells,and collagen could be found under microscope.
    2 Angiogenesis in the arteriosclerotic plaque: CD34 positive areas in arteriosclerotic plaques of All medicine intervention groups were decreased(simvastatin vs cotrol:15.24±3.34% vs 20.39 ± 5.96%, P<0.01; Rhodiola rosea vs cotrol: 10.99 ± 3.59% vs 20.39 ± 5.96%, P<0.01; SXBXW vs cotrol: 13.85 ± 2.97% vs 20.39±5.96%, P<0.01; Salidroside vs control: 13.28 ± 4.01% vs 20.39 ± 5.96%, P<0.01) . VEGF positive areas in arteriosclerotic plaques of all medicine intervention groups were also decreased (simvastatin vs cotrol: 13.35 ± 7.27% vs 20.14 ± 6.15%, P<0.01; Rhodiola rosea vs cotrol: 11.43± 3.41% vs 20.14 ± 6.15%, P<0.01; SXBXW vs cotrol: 15.23 ± 2.93% vs 20.14 ± 6.15%, P<0.01; Salidroside vs control 13.59 ± 4.74% vs 20.14 ± 6.15%, P<0.01) . Rhodiola rosea and Salidroside group didn't have significant difference on those two results.
    3. Changes of extracellular matrix in the arteriosclerotic plaque: Collagen positive areas in arteriosclerotic plaques of All medicine intervention groups were decreased (simvastatin vs cotrol: 12.54 ± 2.82% vs 20.02 ± 6.11%, P<0.01; Rhodiola rosea vs cotrol: 16.99 ± 6.00% vs 20.02 ± 6.11%, P<0.05; SXBXW vs cotrol: 11.35 ± 1.87% vs 20.02 ± 6.11%, P<0.01; Salidroside vs control 15.65 ± 1.97% vs 20.02 ± 6.11, P<0.01) . MMP-3 positive areas in arteriosclerotic plaques of all medicine intervention groups were also decreased(simvastatin vs cotrol: 11.24 ± 2.81% vs 16.30 ± 5.96%, P<0.01; Rhodiola rosea vs cotrol: 11.89 ± 4.29% vs 16.30 ± 5.96%, P<0.01; SXBXW vs cotrol: 11.52 ± 4.97% vs 16.30 ± 5.96%, P<0.01; Salidroside vs control: 10.51 ± 2.34% vs 16.30 ± 5.96%, P<0.01) . Rhodiola rosea and Salidroside group didn't have significant difference on those two results, α SMA positive areas in arteriosclerotic plaque of Simvastatin group and SXBXW group were similar with that of control group. However, Rhodiola rosea and Salidroside could both decease α SMA positive areas (Rhodiola rosea vs cotrol: 10.34±1.62% vs 14.44 ± 2.76%, P<0.01; Salidroside vs control: 11.94±2.84% vs 14.44 ± 2.76%, P<0.01) ,and they had significant difference(P<0.05) .Simvastatin and Salidroside could decrease PCNA positive area in the arteriosclerotic plaque (simvastatin vs cotrol: 8.86 ± 5.60% vs
    15.07 ± 5.66%, P<0.01; Salidroside vs control 9.42±4.16% vs 15.07 ± 5.66%, P<0.01) ,but Rhodiola rosea and SXBXW could not. The difference between Rhodiola rosea group and Salidroside group was signifibcant (P<0.05) . Two medicines could reduce serum MMP-3 level(simvastatin vs cotrol: 8.38 ± 19.44 mg/L vs 21.01 ± 17.22 mg/L, P<0.01; Rhodiola rosea vs control: 12.43 ± 9.32 mg/L vs 21.01 ± 17.22 mg/L, P<0.05 ) . The difference between Rhodiola rosea group and Salidroside group was signifibcant (P<0.05) .
    4. Inflammation response in the arteriosclerotic plaque: All medicines could decrease chymase positive areas in the arteriosclerotic plaque (simvastatin vs cotrol: 9.74±2.11% vs 12.53 ± 2.78%, P<0.01; Rhodiola rosea vs control: 9.13 ± 1.95% vs 12.53 ± 2.78%, P<0.01; SXBXW vs control: 6.23 ± 3.71% vs 12.53±2.78%, P<0.01; Salidroside vs control: 5.57±2.13% vs 12.53±2.78%, P<0.01) . Salidroside could decrease MCP-1 positive areas (8.05±4.14% vs 12.21 ±2.59%, P<0.01), but the other medicines could not. P<0.01) .Salidroside and Rhodiola rosea group had significant difference on those two results (P<0.01) . All medicines couldn't reduce serum IL-6 and CRP signicantly.
    5. Blood lipid: Simvastatin could reduce serum total cholesterol ,LDL-C,HDL and triglyceride significantly. Rhodiola rosea and SXBXW could reduce LDL-C(SXBXW vs control: 6.19±14.34 mmol/L vs 12.88 ± 9.82 mmol/L, P<0.01; Rhodiola rosea vs control :8.87±4.00 mmol/L vs 12.88 ± 9.82 mmol/L, P<0.05 )),and Rhodiola rosea could further reduce total cholesterol (10.11±3.59 mmol/L vs 20.32 ±6.33 mmol/L, P<0.01) . Salidroside had little effect on blood lipid and had significant difference on serum total cholesterol with Rhodiola rosea (19.34±11.44 vs 10.11±3.59 mmol/L, P<0.01) .
    Conclusions: 1. Rabbit arteriosclerotic plaque model establishe with high-fat diet and femoral artery angioplasty operation contained main cells and matrix components of human lesions.2. Rhodiola rosea and SXBXW could both decrease VEGF,MMP-3, and chymase in the arteriosclerotic plaque,inhibit angiogenesis in the plaque,and reduce serum LDL-C. Those mechanisms might benefit the stability of plaque.3. The effects of inhibition of angiogenesis and production of collagen,decrease of MMP-3 and VEGF in the arteriosclerotic plaque,and reduction of serum LDL-C by Rhodiola rosea may be attributed to salidroside . Rhodiola rosea might have other important components with functions such as increasing MCP-1 and chymase in the arteriosclerotic plaque, affecting proliferation of VSMCs and
    reducing serum VLDL-C.
引文
[1] 国家“九五”科技攻关课题协作组.我国中年人群心血管病主要危险因素流行现状及从80年代初至90年代末的变化趋势[J].中华心血管病杂志,2001,29(2):74—79.
    [2] Syed IS, Sanborn TA, Rosengart TK. Therapeutic angiogenesis: a biologic bypass[J]. Cardiology, 2004,101 (1-3): 131-143.
    [3] Fujita M, Tambara K.Recent insights into human coronary collateral development[J]. Heart, 2004, 90(3):246-250.
    [4] Felmeden DC, Blann AD, Lip GY.Angiogenesis: basic pathophysiology and implications for disease[J]. Eur Heart J, 2003,24(7):586-603.
    [5] Grossman JD, Grossman W.Angiogenesis[J]. Rev Cardiovasc Med, 2002 , 3(3):138-144.
    [6] Mukherjee D.Current clinical perspectives on myocardial angiogenesis[J]. Mol Cell Biochem, 2004, 264(1-2):157-167.
    [7] Fukuda S, Yoshii S, Kaga S,et al.Angiogenic strategy for human ischemic heart disease: brief overview[J]. Mol Cell Biochem, 2004, 264(1-2): 143-149.
    [8] 李剑、范维琥、敖红等.中药红景天对大鼠缺血心肌Flt-1、KDR及Tie-2表达的影响[J].中国中西医结合杂志,2005,25(5):445-448.
    [9] 王大英、李勇、范维琥.麝香保心丸对心肌梗死大鼠梗死面积和血管新生的作用[J].中成药,2004,26(11):912-915.
    [10] Baklanov D, Simons M.Endothelium. Arteriogenesis: lessons learned from clinical trials[J]. Endothelium, 2003,10(4-5):217-223.
    [11] Webster KA.Therapeutic angiogenesis: a complex problem requiring a sophisticated approach[J]. Cardiovasc Toxicol, 2003,3(3):283-298.
    [12] Langheinrich AC, Michniewicz A, Sedding DG, et al.Correlation of vasa vasorum neovascularization and plaque progression in aortas of apolipoprotein E(-/-)/low-density lipoprotein(-/-) double knockout mice[J]. Arterioscler Thromb Vasc Biol, 2006,26(2):347-352.
    [13] Virmani R, Kolodgie FD, Burke AP, et al.Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage[J]. Arterioscler Thromb Vasc Biol, 2005,25(10):2054-2061.
    [14] Chen F, Eriksson P, Kimura T, et al.Apoptosis and angiogenesis are induced in the unstable coronary atherosclerotic plaque[J]. Coron Artery Dis,2005,16(3): 191-197.
    [15] Moulton KS, Vakili K, Zurakowski D,et al.Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis[J]. Proc Natl Acad Sci U S A, 2003 ,100(8):4736-4741.
    [16]Epstein SE, Stabile E, Kinnaird T,et al. Janus phenomenon: the interrelated tradeoffs inherent in therapies designed to enhance collateral formation and those designed to inhibit atherogenesis[J]. Circulation,2004,109(23):2826-2831.
    [17] Henry TD, Annex BH, McKendall GR,et al. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis[J]. Circulation, 2003,107(10):1359-1365.
    [18] Kusumanto YH, Hospers GA, Mulder NH, Tio RA.Therapeutic angiogenesis with vascular endothelial growth factor in peripheral and coronary artery disease: a review[J]. Int J Cardiovasc Intervent, 2003,5(1):27-34.
    [19] Khurana R, Simons M. Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic disease[J]. Trends Cardiovasc Med, 2003 ,13(3):116-122.
    
    [20]Fina L, Molgaard HV , Robertson D et al. Expression of the CD34 gene in vascular endothelial cells[J]. Blood ,1990 ,75 (12):2417-2426.
    [21]Schlingenmann RO , Rietveld FJ , de Waal RM et al. Leukocyteantigen CD34 is expressed by a subset of cultured endothelial cells and on endothelial abluminal microprocesses in the tumor stroma[J].Lab Invest ,1990 ;62 :690-696.
    
    [22] 柏树,赵丹。CD34抗原的生物学特性及其临床应用[J].解剖科学进展,2005,11 (1): 54-56, 60.
    [23] Ferrara N,Davis-Smyth T.The biology of vascular endothelial growth factor[J]. Endocr Rev,1997,18(1):4-25.
    [24]Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their recep tors[J]. J Cell Sci, 2001,114 ( Pt 5) : 853-865.
    [25]Zachary I, Gliki G Signaling transduction mechanismsmediating biological actions of the vascular endothelial growth factor family[J].Cardiovasc Res, 2001, 49 (3) :568-581.
    [26]Neufeld G, Cohen T, Gengrinovitch S, et al. Vascular endothelial growth factor (VEGF) and its receptors[J]. FASEB J,1999, 13 (1) : 9-21.
    [27]Moulton KS.Plaque angiogenesis:its functions and regulation[J].Cold Spring Harb Symp Quant Biol,2002,67:471-482.
    
    [28]Libby P.Inflammation in atherosclerosis[J].Nature,2002,420:868-874.
    [29]Celletti FL,Waugh JM,Amabile PG,et al.Vascular endothelial growth factor enhances atherosclerotic plaque progression[J].Nat Med,2001,7:425-429.
    
    [30] Eaton CB.Hyperlipidemia[J]. Prim Care, 2005,32(4):1027-1055.
    [31] Tanaka A, AI M, Kobayashi Y,et al.Metabolism of triglyceride-rich lipoproteins and their role in atherosclerosis[J]. Ann N Y Acad Sci, 2001,947:207-212; discussion 212-213.
    [32] Rader DJ.High-density lipoproteins and atherosclerosis[J]. Am J Cardiol, 2002 ,90(8A):62i-70i.
    [33] Ehara S , Ueda M , Naruko T , et al . Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes [J]. Circulation , 2001,103 (15) :1955-1960.
    [34] Kruth HS.Lipoprotein cholesterol and atherosclerosis[J]. Curr Mol Med, 2001 ,1(6):633-653.
    [35]Ross R. Atherosclerosis—An inflammatory disease[J] . N Eng J Med ,1999 ,340 (2) :115-126.
    [36]Libby P, Ridker P M, Maseri A. Inflammation and atherosclerosis[J] .Circulation ,2002 ,105 (9) :1135-1143.
    [37]Shen CX, Chen HZ, Ge JB.The role of inflammatory stress in acute coronary syndrome[J]. ChinMed J ( Engl), 2004,117 (1): 133-139.
    [38] Barnes MJ, Farndale RW. Collagens and atherosclerosis[J]. Exp Gerontol, 1999,34:513-525.
    
    [39] Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease[J]. Physiol Rev, 2004,84:767-801.
    
    [40] Faxon DP, Fuster V, Libby P,et al. Atherosclerotic Vascular Disease Conference: Writing Group III: pathophysiology[J]. Circulation, 2004 ,109:2617-2625.
    
    [41] Rekhter MD. Collagen synthesis in atherosclerosis: too much and not enough[J]. Cardiovasc Res, 1999 ,41:376-384.
    [42] Takasaki Y, Kaneda K, Takeuchi K, et al. Analysis of the Structure of Proteasome - Proliferating Cell Nuclear Antigen (PCNA) Multiprotein Complex and Its Autoimmune Response in Lupus Patients[J]. Ann N Y Acad Sci, 2003 ,987:316 - 318.
    [43] Lavezzi AM, Ottaviani G, Matturri L. Biology of the smooth muscle cells in human atherosclerosis[J]. APMIS, 2005,113(2):112-121.
    [44]李爱民。单核细胸趋化蛋白─1与动脉粥样硬化[J].重庆医学, 1999,28(4): 294-295.
    
    [45]Ikeda U, Matsui K, Murakami Y,et al. Monocyte chemoattractant protein-1 and coronary artery disease[J]. Clin Cardiol, 2002 ,25(4):143-147.
    
    [46] Hojo Y, Ikeda U, Yakahashi N, et al. Increased levels of monocyte related cytokine in patients with unstable angina[J]. Atherosclerosis, 2002,161: 403- 408.
    
    [47] Lemos JA, Morrow DA, Sabatine MS, et al.Association between plasma levels of monocytechemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes[J]. Circulation, 2003, 107: 690-695.
    
    [48]Rish MF , Boyce JA. Mast cell growth , differentiation , and death[J]. Clin Rev Allergy Immunol, 2002 ,22(2) : 107-118.
    
    [49] KaartinenM, Penttila A, Kovanen PT. Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the p redilection site of athero- matous rup ture[J]. Circulation, 1994, 90: 1669-1678.
    
    [50] Ma H, Kovanen PT. Degranulation of cutaneousmast cells induces transendothelial transport and local accumulation of plasma LDL in rat skin in vivo[J]. J Lipid Res, 1997, 38: 1877-1887.
    
    [51 ]Jeziorska M, Woolley DE. Neovascularization in early atherosclerotic lesions of human carotid arteries : its potential contribution to plaque development[J]. Hum Pathol,1999,30:919-925.
    
    [52] Lappalainen H, Laine P, Pentikainen MO,et al. Mast cells in neovascularized human coronary plaques store and secrete basic fibroblast growth factor, a potent angiogenic mediator[J]. Arterioscler Thromb Vasc Biol, 2004 ,24(10): 1880-1885.
    
    [53] Heissig B, Rafii S, Akiyama H,et al.Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization[J]. J Exp Med, 2005 ,202(6):739-750.
    [54]Kovanen PT, Lee M, Leskinen J , et al. The mast cell, a rich source of neutral proteases in atherosclerotic plaques[J]. International Congress Series, 2004, 1262: 494-497.
    [55]Craig SS,Schwartz LB.Typtase and chymase:markers of distinct types of human mast cell[J].Immunol Re, 1989,8:130-148.
    [56] Doggrell SA, Wanstall JC.Vascular chymase: pathophysiological role and therapeutic potential of inhibition[J]. Cardiovasc Res. 2004,61(4):653-662.
    [57] Lindstedt KA, Kovanen PT.Mast cells in vulnerable coronary plaques: potential mechanisms linking mast cell activation to plaque erosion and rupture[J]. Curr Opin Lipidol, 2004,15(5):567-573.
    [58] Thompson D ,Pepys MB ,Wood SP. The physiological Structure of human C-reactive protein and its complex with phosphocholine [J]. Structure Fold Des,1999,7(2) :169-177.
    [59] Torzewsri M,Rist C ,Mortensen RF, et al. C-reactive protein in the arterial intima :role of C-reactive protein receptor2 dependent monocyte recruitment in atherogenesis[J]. Arterioscler Thromb Vase Biol ,2000,20(12) :2094-2099.
    [60] Jia EZ, Yang Z J, Yuan B,et al. Relationship between high-sensitivity C-reactive protein level and angiographical characteristics of coronary atherosclerosis[J]. Chin Med J (Engl). 2006, 119(4):319-323.
    [61] Wilson AM, Ryan MC, Boyle AJ.The novel role of C-reactive protein in cardiovascular disease: risk marker or pathogen[J]. Int J Cardiol, 2006,106(3):291-297.
    [62] Omoigui S. Cholesterol synthesis is the trigger and isoprenoid dependent interleukin-6 mediated inflammation is the common causative factor and therapeutic target for atherosclerotic vascular disease and age-related disorders including osteoporosis and type 2 diabetes[J]. Med Hypotheses, 2005,65(3):559-569.
    [63] Schieffer B, Selle T, Hilfiker A,et al.Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis[J]. Circulation, 2004,110(22):3493-3500.
    [64] Lubrano V, Cocci F, Battaglia D, et al.Usefulness of high-sensitivity IL-6 measurement for clinical characterization of patients with coronary artery disease[J]. J Clin Lab Anal, 2005,19(3): 110-114.
    [65] 于滢.基质金属蛋白酶与动脉粥样硬化及斑块破裂的关系[J].中国动脉硬化杂志,2003,11(6):592-595.
    [66] Tayebjee MH, Lip GY, MacFadyen RJ. Matrix metalloproteinases in coronary artery disease: clinical and therapeutic implications and pathological significance[J]. Curr Med Chem, 2005,12(8):917-925.
    [67] Garcia-Touchard A, Henry TD, Sangiorgi G, et al. Extracellular proteases in atherosclerosis and restenosis[J]. Arterioscler Thromb Vase Biol, 2005,25(6):1119-1127.
    [68] Suzuki H, Kobayashi H, Sato F, et al.Plaque-stabilizing effect of pitavastatin in Watanabe heritable hyperlipidemic (WHHL) rabbits[J]. J Atheroscler Thromb, 2003,10(2):109-116.
    [69] Malik J, Stulc T, Ceska R.Matrix metalloproteinases in isolated hypercholesterolemia[J]. Int Angiol, 2005,24(3):300-303.
    [70] Wu TC, Leu HB, Lin WT, et al. Plasma matrix metalloproteinase-3 level is an independent prognostic factor in stable coronary artery disease[J]. Eur J Clin Invest, 2005,35(9):537-545.
    [71] 宋华.麝香保心丸的药理研究与临床评价[J].中成药,2002,24(2):131-133.
    [72] 罗心平,施海明,范维琥等.麝香保心丸的基础与临床[J].中国中西医结合杂志,2002,22(9):718-720.
    [73] 汪姗姗,李勇,范维琥等.麝香保心丸对鸡胚绒毛尿囊膜及培养的血管内皮细胞的促血管生成作用[J].中国中西医结合杂志,2003,23(2):128-131.
    [74] 孙晓军.红景天的药理与制剂研究综述[J].中国药师,2005,8(5):415-416
    [75] 秦红霖,刘丽丽,高月.红景天研究概述[J].天津中医药,2005,22(5):436-438.
    [76] 胡敏.红景天苷对心血管系统作用的研究[J].国外医学·心血管疾病分册,2003,30(5):298-300.
    [77] Cullen P, Baetta R, Bellosta S,et al. Rupture of the atherosclerotic plaque: does a good animal model exist? [J] Arterioscler Thromb Vase Biol, 2003,23(4):535-542.
    [78] Yanni AE. The laboratory rabbit: an animal model of atherosclerosis research[J]. Lab Anim, 2004,38(3):246-256.
    [79] Reddick RL, Zhang SH, Maeda N. Aortic atherosclerotic plaque injury in apolipoprotein E deficient mice[J]. Atherosclerosis, 1998,140(2):297-305.
    [80] Rosenfeld ME, Polinsky P, Virmani R, et al. Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse[J]. Arterioscler Thromb Vasc Biol, 2000,20(12):2587-2592.
    [81] Forrester JS.Role of plaque rupture in acute coronary syndrome[J].Am J Cardiol,2000,86(8B): 15-23.
    [82] 沈丽,卢维晟,姚俊宇等.不同方法建立动脉粥样硬化大鼠模型的比较[J].心脏杂志,2005,17(1):18-20.
    [83] 仲琳,张运,张梅等.兔动脉粥样硬化易损斑块模型的建立[J].基础医学与临床,2005,25(4):370-374.
    [84] 杨丽.动脉粥样硬化动物模型研究概况[J].广东药学,2005,15(2):1-3.
    [85] 刘春玲,唐蜀华.中医药防治动脉粥样硬化的实验研究进展[J].中西医结合心脑血管病杂志,2005.3(6):519-521.
    [86] Shanshan Wang,Zhengui Zheng,Yinqi Weng,et al.Angiogenesis and anti-angiogenesis activity of Chinese medicinal herbal extracts[J].Life Sciences, 74(20):2467-2478.
    [87] Masataka Sata, Hiroaki Nishimatsu, Jun-ichi Osuga, et al. Statins Augment Collateral Growth in Response to Ischemia but They Do Not Promote Cancer and Atherosclerosis[J]. Hypertension,2004,43(6): 1214-1220.
    [88] Epstein SE, Kornowski R, Fuchs S,et al.Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects[J]. Circulation, 2001,104(1): 115-119.
    [89] Nalbone G, Bernot D, Peiretti F, et al. Statins: maid-of-all-work in cardiovascular diseases[J]. Arch Mal Coeur Vaiss. 2003,96(3):207-213.
    [90] 吴明.血管重构与临床[J].心脏杂志,2005,17(2):160-165.
    [91] Giden Hirschfield.Transgenic human C-reactive protein is not proatherogenic in aplipoprotein E-deficient mice[J].Proc Natl Acad Sci,2005,102(23): 8309-8314.
    [92] Gouni-Berthold I, Sachinidis A.Does the coronary risk factor low density lipoprotein alter growth and signaling in vascular smooth muscle cells? [J] FASEB J, 2002,16(12): 1477-1487.
    [93] Zettler ME, Prociuk MA, Austria JA,et al.Oxidized low-density lipoprotein retards the growth of proliferating cells by inhibiting nuclear translocation of cell cycle proteins[J]. Arterioscler Thromb Vasc Biol, 2004,24(4):727-732.
    [94] Zhao GF, Seng J J, Zhang H, et al. Effects of oxidized low density lipoprotein on the growth of human artery smooth muscle cells[J]. Chin Med J (Engl), 2005,18(23): 1973-1978.
    [95] Haug C, Lenz C, Diaz F, et al.Oxidized low-density lipoproteins stimulate extracellular matrix metalloproteinase Inducer (EMMPRIN) release by coronary smooth muscle cells[J]. Arterioscler Thromb Vasc Biol, 2004,24(10):1823-1829.
    [96] Kelley J, Hemontolor G, Younis W, et al.Mast cell activation by lipoproteins[J]. Methods Mol Biol,2006,315:341-348.
    [97] 宋桂英,李九丹.不同的红景天不尽一样的疗效[J].中国民族民间医药杂志,2004,67:78-80.
    [98] Stollenwerk MM, Lindholm MW, Porn-Ares MI,et al.Very low-density lipoprotein induces interleukin-lbeta expression in macrophages[J]. Biochem Biophys Res Commun, 2005,335(2):603-608.
    [99] Eck MV, Oost J, Goudriaan JR,et al.Role of the macrophage very-low-density lipoprotein receptor in atherosclerotic lesion development[J]. Atherosclerosis, 2005, 183(2):230-237.
    [1] 国家“九五”科技攻关课题协作组.我国中年人群心血管病主要危险因素流行现状及从80年代初至90年代末的变化趋势[J].中华心血管病杂志,2001,29(2):74—79.
    [2] Syed IS, Sanborn TA, Rosengart TK. Therapeutic angiogenesis: a biologic bypass [J]. Cardiology, 2004,101(1-3): 131-143.
    [3] Felmeden DC, Blann AD, Lip GY.Angiogenesis: basic pathophysiology and implications for disease[J]. Eur Heart J, 2003,24(7):586-603.
    [4] Grossman JD, Grossman W.Angiogenesis[J]. Rev Cardiovasc Med, 2002,3(3): 138-144.
    [5] Henry TD, Annex BH, McKendall GR,et al. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis[J]. Circulation,, 107(10): 1359-1365.
    [6] 汪姗姗,李勇,范维琥等.麝香保心丸对实验性心肌梗塞大鼠心脏的促血管生成作用[J].中成药,2002,24(6):446-449.
    [7] 李剑、范维琥、敖红等.中药红景天对大鼠缺血心肌Flt-1、KDR及Tie-2表达的影响[J].中国中西医结合杂志,2005,25(5):445-448.
    [8] Baklanov D, Simons M.Endothelium. Arteriogenesis: lessons learned from clinical trials[J]. Endothelium,2003,10(4-5):217-223.
    [9] Epstein SE, Kornowski R, Fuchs S,et al. Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects [J]. Circulation, 2001,104(1): 115-119.
    [10] Virmani R, Kolodgie FD, Burke AP, et al.Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage[J]. Arterioscler Thromb Vasc Biol, 2005,25(10):2054-2061.
    [11] Faxon DP, Fuster V, Libby P, et al. Atherosclerotic Vascular Disease Conference: Writing Group Ⅲ: pathophysiology[J]. Circulation, 2004,109:2617-2625.
    [12] Chen F, Eriksson P, Kimura T, et al.Apoptosis and angiogenesis are induced in the unstable coronary atherosclerotic plaque[J]. Coron Artery Dis, 2005,16(3): 191-197.
    [13] Moulton KS, Vakili K, Zurakowski D,et al.Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis[J]. Proc Natl Acad Sci USA, 2003,100(8):4736-4741.
    [14] Fukuda S, Yoshii S, Kaga S,et al.Angiogenic strategy for human ischemic heart disease: brief overview[J]. Mol Cell Biochem, 2004,264(1-2): 143-149.
    [15] 刘春玲,唐蜀华.中医药防治动脉粥样硬化的实验研究进展[J].中西医结合心脑血管病杂志,2005,3(6):519-521.
    [16] Masataka Sata, Hiroaki Nishimatsu, Jun-ichi Osuga, et al. Statins Augment Collateral Growth in Response to Ischemia but They Do Not Promote Cancer and Atherosclerosis[J]. Hypertension,2004,43(6): 1214-1220.
    [17] 霍伟琪.中药治疗动脉粥样硬化作用的研究进展[J].中医药导报,2005,11(11):64-65,73.
    [1] Haug C, Lenz C, Diaz F, Oxidized low-density lipoproteins stimulate extracellular matrix metalloproteinase Inducer (EMMPRIN) release by coronary smooth muscle cells[J]. Arterioscler Thromb Vasc Biol,2004,24:1823-1829.
    [2] Suzuki H, Kobayashi H, Sato F, et al.Plaque-stabilizing effect of pitavastatin in Watanabe heritable hyperlipidemic (WHHL) rabbits[J]. J Atheroscler Thromb, 2003,10:109-116.
    [3] 王大英、李勇、范维琥.麝香保心丸对心肌梗死大鼠梗死面积和血管新生的作用[J].中成药,2004,26:912-915.
    [4] 戴瑞鸿、王受益、王彩萍等.麝香保心丸减少高脂血症对动脉壁损害作用的实验研究[J].中国中西医结合杂志,1998,18(8)
    [5] Pollanen PJ, Lehtimaki T, Mikkelsson J,et al. Matrix metalloproteinase3 and 9 gene promoter polymorphisms: joint action of two loci as a risk factor for coronary artery complicated plaques[J]. Atherosclerosis, 2005,180:73-78.
    [6] 孙璐、韦立新、石怀银等.冠状动脉粥样硬化斑块内血管新生与斑块稳定的关系[J].中华病理学杂志,2003,32:427-431.
    [7] Panutsopulos D, Papalambros E, Sigala F, et al. Protein and mRNA expression levels of VEGF-A and TGF-betal in different types of human coronary atherosclerotic lesions[J]. Int J Mol Med, 2005,15:603-610.
    [8] Chen F, Eriksson P, Kimura T, Apoptosis and angiogenesis are induced in the unstable coronary atherosclerotic plaque[J]. Coron Artery Dis,2005,16:191-197.
    [9] Barnes M J, Farndale RW. Collagens and atherosclerosis[J]. Exp Gerontol, 1999,34:513-525.
    [10] Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease[J]. Physiol Rev, 2004,84:767-801.
    [11] Faxon DP, Fuster V, Libby P, et al. Atherosclerotic Vascular Disease Conference: Writing Group Ⅲ: pathophysiology[J]. Circulation, 2004,109:2617-2625.
    [12] Rekhter MD. Collagen synthesis in atherosclerosis: too much and not enough[J]. Cardiovasc Res, 1999,41:376-384.
    [1] Syed IS, Sanborn TA, Rosengart TK. Therapeutic angiogenesis: a biologic bypass[J]. Cardiology, 2004,101(1-3):131-143.
    [2] Epstein SE, Stabile E, Kinnaird T, et al. Janus phenomenon: the interrelated tradeoffs inherent in therapies designed to enhance collateral formation and those designed to inhibit atherogenesis[J]. Circulation, 2004, 109(23):2826-2831.
    [3] 李剑,范维琥,敖红,等.中药红景天对大鼠缺血心肌Flt-1、KDR及Tie-2表达的影响[J].中国中西医结合杂志,2005,25(5):445-448.
    [4] Chen F, Eriksson P, Kimura T.Apoptosis and angiogenesis are induced in the unstable coronary atherosclerotic plaque[J]. Coron Artery Dis, 2005, 16(3):191-197.
    [5] Faxon DP, Fuster V, Libby P, et al. Atherosclerotic Vascular Disease Conference: Writing Group Ⅲ: pathophysiology[J]. Circulation. , 2004, 109(21):2617-2625.
    [6] Moulton KS, Vakili K, Zurakowski D,et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis[J]. Proc Natl Acad Sci USA, 2003, 100(8):4736-4741.
    [7] Haug C, Lenz C, Diaz F.Oxidized low-density lipoproteins stimulate extracellular matrix metalloproteinase Inducer (EMMPRIN) release by coronary smooth muscle cells[J]. Arterioscler Thromb Vase Biol, 2004 , 24(10):1823-1829.
    [8] Haynes WG. Haynes.Triglyceride-Rich Lipoproteins and Vascular Function[J]. Arterioscler Thromb Vasc Biol, 2003, 23 (2):153-155.
    [9] 孙波,徐君东,闫国强,等.红景天对阿霉素肾病大鼠尿蛋白、血脂的影响[J].中医药学报,2001,29(1):43-45.
    [10] Suzuki H, Kobayashi H, Sato F, et al.Plaque-stabilizing effect of pitavastatin in Watanabe heritable hyperlipidemic (WHHL) rabbits[J]. J Atheroscler Thromb, 2003, 10(2):109-116.
    [11] Pollanen P J, Lehtimaki T, Mikkelsson J,et al. Matrix metalloproteinase3 and 9 gene promoter polymorphisms: joint action of two loci as a risk factor for coronary artery complicated plaques[J]. Atherosclerosis, 2005, 180(1):73-78.
    [12] Barnes MJ, Farndale RW. Collagens and atherosclerosis[J]. Exp Gerontol, 1999, 34(4):513-525.
    [13] Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease[J]. Physiol Rev, 2004, 84(3):767-801.
    [14] Rekhter MD. Collagen synthesis in atherosclerosis: too much and not enough[J]. Cardiovasc Res, 1999, 41(2):376-384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700