Ca_3SiO_5及Ca_3SiO_5/CaCl_2复合牙科材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在吉林大学纳米基金重点项目的支持下,针对牙脱敏材料和根管充填材料存在问题,根据硅酸三钙自固化材料具有的良好的生物相容性、降解性和生物活性等特性,通过对应用硅酸三钙糊剂后的牙本质进行表征发现,硅酸三钙不仅通过自固化过程与牙本质紧密结合,而且在生理环境下能诱导牙本质再矿化,有效阻塞牙本质小管,可能作为脱敏治疗的有效药物。结合氯化钙的促凝作用,首次制备了硅酸三钙和氯化钙复合材料,并证明氯化钙可缩短硅酸三钙的凝固时间,提高其抗压强度,降低其pH值;体外实验研究表明,Ca3SiO5/CaCl2复合材料具有优良的生物相容性和诱导羟基磷灰石沉积的能力,根管充填后的密封性也优于传统的氧化锌丁香油水门汀,为进一步应用于根管治疗奠定了基础。
Dentin hypersensitivity, pulpitis and periradicular inflammation are common clinical conditions of stomatology, the therapy of which is closely related to the dental materials. At present, the materials of desensitizing and root canal filling have some shortcomings. Chemical and physical materials have been reported effective in reducing dentine hypersensitivity. However, these materials were not components of natural dentine, and may diminish during teeth brushing and food chewing. An ideal root canal filling material should have several properties, such as being harmless to the periapical tissues and permanent tooth germs; resorbing readily if pressed beyond the apex; easily filling the root canals; adhering to the walls of the canal; not being susceptible to shrinkage; being easily removed if necessary; being radiopaque and not discolouring the tooth. At present, none of root canal filling materials is able to meet all the above requirements. Zinc oxide eugenol cement (ZOE) was the first root canal filling material to be recommended for permanent teeth, as described by Sweet in 1930. However, later studies showed that this cement has a slow rate of resorption in the canals, limited antibacterial action and cytotoxic effects possibly causing by the release of eugenol and formaldehyde. In recent years, the introduction of calcium hydroxide in dental therapy has received much attention for its biological activity. It is antibacterial and anti-inflammatory primarily due to the high pH value of the surrounding environment (approximately 12.5) after its dissolution. In addition, calcium hydroxide can induce mineralization resulting in a repair of damaged dentin matrix. Although calcium hydroxide has some advantages compared with ZnO eugenol cement and has already been used in the root canal filling system, it has also shown disadvantages such as the low hardening rate and high dissolution, which resulting in a loose filling. So it can only be used as temporary filling materials in indications for which hermeticity is a priority. A new class of restorative material called mineral trioxide aggregate (MTA) was recently introduced as dental materials. In vitro and in vivo studies have demonstrated that the bioactivity and biocompatibility of MTA are superior to those of the traditional materials, but the main disadvantage of it is its long setting time. In addition, the complex of the constitution makes it difficult to prepare, which in turn lead to the high cost. Therefore, it is of important significance for the fundamental theory and clinical application to prepare the desensitizing materials and root canal filling materials with outstanding properties and low cost.
     Since Hench invented 45S5 Bioglass? and put forward the concept of bioactivity, many scholars have been interested in CaO-SiO2 materials. Tricalcium silicate was one of the main components of Portland cement and MTA. In our earlier studies, phase pure Ca3SiO5 self-setting materials have been successfully prepared by sol-gel method, which were reported to not only have good bioactivity, degradability and compatibility, but also have self-setting properties. The hydration reaction of Ca3SiO5 leaded to the formation of calcium silicate hydrate(CSH) with size about 100nm, which maybe penetrate into dentinal tubules. The aim of this investigation was to study whether the bioactive tricalcium silicate paste could cover the dentine surface during the hydration and intimately bond to tooth, which would remineralize the tooth surface due to contact with oral fluids and significantly occlude the opening of dentinal tubules.
     Meanwhile, the initial setting time of Ca3SiO5 seems too long to meet the need of clinical applications, while calcium chloride is one of the most effective accelerators of hydration and setting in Portland cement pastes. According to this, Ca3SiO5/CaCl2 composite cements were developed to examine the changes in mechanical properties, bioactivities and compatibility. In addition, the sealing ability and antimicrobial activity of the composite cements were also studied to explore the possibility for using it as a root canal filling material. The results are described as follows:
     1. Ca3SiO5 paste as a desensitizing agent
     The in vitro dentin hypersensitivity model was prepared and the tricalcium silicate paste was applied to the experimental surface of dentine samples with a cotton swab. Then, the samples were air-dried and the dentine surface was wiped with a dry swab after drying. This process was repeated 3 times before soaking the samples in 20ml artificial saliva at 37℃under continuous shaking. After soaking in the artificial saliva for 7 days, the SEM analysis showed that the dentine tubules were occluded completely, and the higher magnification SEM image showed that the particles were consist of round and strip-like nanocrystals with 100nm in diameters and 300nm in length, and many of these particles formed agglomerates, which were identified by XRD as hydroxyapatite (HA). EDS results showed that the ratio of Ca/P was 1.62, which was close to that for the intertubular dentine but higher than that for the peritubular dentine. In conclusion, tricalcium silicate could not only occlude the dentinal tubules by its self-setting process, but also induce the re-mineralization of the dentine in a physiological environment. It may be used for treatment of dentine hypersensitivity.
     2. Preparation and properties of Ca3SiO5/CaCl2 composite cements
     Composite cements were obtained by mixing Ca3SiO5 and different amount of CaCl2 (0, 5%, 10% and 15%) with deionized water as liquid phase. The purpose of this study was to investigate the effect of CaCl2 on the setting time, pH values and compressive strength of tricalcium silicate, and the in vitro bioactivity of Ca3SiO5/CaCl2 composite cements was also studied. The results showed that with the addition of CaCl2 from 0 to 15%, the initial setting time time decreased obviously from 90 to 50min and the final setting time from 180 to 85min. The compressive strength of the Ca3SiO5/CaCl2 composite cements after setting for 7 days increased obviously from 5.28 to 23.46MPa as the content of CaCl2 increased from 0 to 10%. It reached the maximum at the 10%CaCl2, and then decreased with the further increased of CaCl2. When the content of CaCl2 was same, the compressive strength of composite cement increased with prolonged time. The variation in the pH values for the Ca3SiO5/CaCl2 composite cements showed a similar trend with a rapid increase of the pH value in the first 3 hours followed by a rapid decrease in 5-8 hours, and stabilized thereafter. The higher the content of CaCl2 is, the lower is the maximum and minimum pH value. Furthermore, the paste with up to 15% of CaCl2 showed good ability to induce the formation of hydroxyapatite (HA).
     3. Compatibility of Ca3SiO5/CaCl2 composite cement
     The investigation of cell proliferation was conducted using extraction method with mouse fibroblast cell line L929 and osteoblast cell. The MTT method was used to assess the cell proliferation levels. Ca3SiO5/CaCl2 composite cements could release different ionic products in culture medium, and the ionic products at a certain concentration range could stimulate proliferation of L929 fibroblast cells and osteoblast cells. Ca2+, Si4+ ions play a main role in the stimulation of cell proliferation. Cl- ions may also contribute to the that. However, more detailed investigation is required to confirm the role of the Cl- ions.
     4. Properties of Ca3SiO5/CaCl2 composite cement as root canal filling materials
     4.1 Sealing ability of Ca3SiO5/CaCl2 composite cement Sealing ability was a very important index to evaluate the root canal filling materials. Inadequate obturation could make saliva or periodontal tissue liquid penetrating into the root canal, which became irritants after degradation leading to the periradicular inflammation. The objective of this study was to introduce a glucose fluid transport model for quantitative analysis of endodontic microleakage of Ca3SiO5/CaCl2 composite cement, ZOE and Cortisomol paste. Fifty single-rooted human maxillary anterior teeth were collected and divided into 3 experimental groups and 2 control groups randomly. The canals were prepared with the step-back technique and obtrurated with gutta-percha and 3 experimental materials. The glucose fluid transport model was used to test the glucose leakage after 1, 3, 5, 7, 14, 20 and 30days. The results showed that Ca3SiO5/CaCl2 composite cement and Cortisomol paste had a better sealing ability than ZOE(P<0.05).
     4.2 Antibacterial ability of Ca3SiO5/CaCl2 composite cement The antibacterial ability of root canal filling materials was the important factor on evaluating quality of root canal treatment. Agar diffusion method was used to evaluate the antibacterial ability of Ca3SiO5/CaCl2 composite cement, ZOE and calcium hydroxide paste on the predominant bacteria of infected root canal, which included Mutans streptococci, Porphyromonas gingivalis, Prevotalla intermedius and Actinomyces viscosus. The results showed that Ca3SiO5/CaCl2 composite cement had no effect on Porphyromonas gingivalis, Prevotalla intermedius and Actinomyces viscosus. The effect of antibacterial on Mutans streptococci was Ca(OH)2 paste> ZOE> Ca3SiO5/CaCl2 composite cement ( P<0.05 ) . Therefore, Ca3SiO5/CaCl2 composite cement should be compounded with other materials with good antibacterial ability to use as root canal filling materials according to the optimum design rule in the next study.
     In conclusion, the results of this study indicated that tricalcium silicate paste could not only occlude the dentinal tubules by its self-setting process, but also induce the re-mineralization of the dentine in physiological environment. It may be used for treatment of dentine hypersensitivity. Meanwhile, the setting speed and compressive strength of Ca3SiO5 have been improved by adding CaCl2, and Ca3SiO5/CaCl2 composite cements showed excellent bioactivity, cell compatibility and sealing ability as compared with traditional ZOE. These in vitro studies provided foundations for Ca3SiO5/CaCl2 composite cements using as root canal filling materials clinically. The innovation of this study was that tricalcium silicate paste was first applied to occlude the dentinal tubules and obtained good results, which may be used for treatment of dentine hypersensitivity. Moreover, Ca3SiO5/CaCl2 composite cement was first prepared and proved to possess outstanding properties, which may be used as root canal filling materials for clinical application in the future.
引文
1. Orchardson R, Collins WIN. Clinical features of hypersensitive teeth. Br Dent J 1987;162:253-256.
    2. Liu HC, Lan WH, Hsieh CC. Prevalence and distribution of cervical dentin hypersensitivity in a population in Taipei, Tai wan [J]. J Endod;1998:24(1):45.
    3. 梁琪彬,邢思明. 微波治疗牙本质过敏 98 例临床观察. 牙体牙髓牙周病学杂志 2002;12(10):554.
    4. Brannstrom M, Linden LA, Astrom A. The hydrodynamics of the dental tubule and of pulp fluid. A discussion of its significance in relation to dentinal sensitivity. Caries Res 1967;1:310-7.
    5. Verzak Z, Bukovic D Jr, Bagic I. Prevalence and interoral distribution of dentine hypersensitivity among students [J]. Coll Antropol 1998;22(suppl):259.
    6. Rosenthal MW. Historic review of the management of tooth hypersensitivity. Dent Clin North Am 1990;34(3):403.
    7. Grossman LI. A systematic method for the treatment of hypersensitive dentine. J Am Dent Assoc1935;22:592-602.
    8. Pereira R, Chava VK. Efficacy of a 3% potassium nitrate desensitizing mouthwash in the treatment of dentinal hypersensitivity. J Periodontol 2001;72(12):1720-1725.
    9. Kielbassa AM, Attin T, Hellwig E, et al. In vivo study on the effectiveness of a lacquer containing CaF2/NaF in treating dentin hypersensitivity [J]. Clin Oral Investig 1997;1(2):95.
    10. 厚 继 续 . 防 龋 药 物 氟 化 钼 酸 铵 . 国 外 医 学 , 口 腔 医 学 分 册1992;19(5):261-264.
    11. 杨东梅,李玉晶,葛丽华,等. 氟钼酸铵溶液对人工根面龋作用的研究.中华口腔医学杂志 1995;30(5):274-276.
    12. 李玉晶,仇新全,李建英. 氟化氨银溶液对牙本质作用的研究. 北京第二医学院学报 1984;4:274-275.
    13. 李玉晶,李建英,杨玉琴. 氟化氨银抑制牙本质龋机制的探讨. 北京口腔医学 1997;5(4):151-152.
    14. 马茹苓,石义贵,宋子元,等.氟化氨银溶液治疗牙齿敏感症的临床观察. 中华口腔医学杂志 1993;28(1):30-31.
    15. 池田英治. 象牙质の知觉感过敏に对するシェウ酸カリウム溶液の效果について. 日本齿科保存学杂志 1988;31:1201.
    16. Pashley DH, Galloway SE. The effects of oxalete treatment on the smear layer of ground surfaces of human dentin. Arch Oral Biol 1985;30:731.
    17. Muzzin KB. Effects of potassium oxalate on dentin hypersensitivity in vivo. J Periodontol March 1989;60(3):151.
    18. Markunitz K. Various ionic solutions on pulpal nerve sensitivity. Laboratory of Oral Physiology, Columbia University, New York.
    19. 松本宏之. シェウ酸カリウム溶液による象牙质处理が齿髓组织に及ぼす影响. 日本齿科保存学杂志 1991;51:1449.
    20. Branntrom M, Johnson G, Nordenvall KJ. Transmission control of dentinal pain : resin impregnation for the densensitisation of dentin.JADA 1979;99:612-618.
    21. Nakabayashi N, Kojima K, Masuhara I. The promotion of adhesion by the infiltraion of monomers into tooth substrates. J Biomed Mater Res1982;16:265-273.
    22. Schubach P, Lutz F, FingerWJ. Closing of dentinal tubules by Gluma densensitizer [J]. Eur J Oral Sci 1997;105(5pt1):414-421.
    23. Jain P, Reinhart JW, Krell KV. Effect of dentin densensitizers and dentin bonding agents on dentin permeability [J]. Am J Dent 2000;13(1):21-27.
    24. 邢晓艳,刘士有,张青松,等. Seal&Protect 对牙本质作用的扫描电镜研究[J]. 现代口腔医学杂志 2002;16(1):28-29.
    25. Perdugao J, Lopes M. Dentin bonding-questions for the new millennium [J]. J Adhes Dent 1999;1:191-209.
    26. 郑榕,陈邦干,于西权. 中药脱敏灵治疗牙齿敏感症近期观察[J]. 中华口腔医学杂志 1996;31(2):128.
    27. 许姜泽 . 中西医结合治疗口腔病 [M]. 北京:人民卫生出版社1993;43-48.
    28. 张佐. 中药脱敏凝胶治疗牙齿敏感症的临床观察[J]. 宁夏医学杂志2003;25(12):780-781.
    1. Herzberg MC, Meyer MW. Apexification in a nonvital tooth by control of infection. J Periodontol 1996;67:1138-45.
    2. Ray H, Seizer L. A new glass ionomer root canal sealer. J Endod 1991;17:598-604.
    3. 王素文,韩林,刘建平. 用钛镍合金做固体根管充填剂的临床研究[J].中国口腔医学杂志 1994;29(3):183-185.
    4. Torabinejad M, Ung B, Kettering JD. J Endod 1990;16(12): 566-569.
    5. Yu Danald C, Honag T . Thermoprofile or Gutta Percha in vertical compaction using different heat sources, Table Clinic presentation[C].Depatment of dentistry, University of Alberta. April, 1999.
    6. 刘剑,王贤福,Donald C.YU. 暖牙胶垂直挤压术治疗根管源性牙髓根尖周病的临床应用. 临床口腔医学杂志 2001;17:12-15.
    7. 王青 . 热牙胶注射根管充填封闭性的研究 . 中华口腔医学杂志1996;31(3):
    8. Kaplan AE, Picca M, Gonzalez MI, et al. Antimicrobial effect of six endodontic sealers : an in vitro evaluation. Endod Dent Traumatol 1999;15(1): 42-45.
    9. Orstavik D, Nordahl I, Tibballs JE. Dimensional change following setting of root canal sealer materials [J]. J Dent Mater 2001;17(6):512-519.
    10. Geurtsen W. Biocompatibility of root canal filling materials [J]. Aust Endod J 2001;27(1):12-21.
    11. 陈蕾,尹仕海,邹玲,等. 慢性根尖周炎根尖生物膜的扫描电镜观察[J]. 口腔医学研究 2005;21(2):147-149.
    12. 肖丹,高燕,黄小兰. Cortisomol 根管糊剂根尖封闭能力的实验研究.口腔医学研究 2005;21(3):319-320.
    13. Siqueira J, Jurior F. Mechanisms of antimicrobial activity of calcium hydroxide :a critical review [J]. Int Endod J 1999;32(5):361.
    14. Canalda C. Bacterial growth inhibition produced by root canal sealer coments with a calcium hydroxide base [J]. Oral Surg Oral Med Oral Pathol 1989;68(1):99-102.
    15. Safavi KE, Nichols FC. Effect of calcium hydroxide on bacterial lipopolysaccharide [J]. J Endod 1993;19(2):76-78.
    16. Georgepoulou M,Kontakiotis E,Nakou M. In vitro evaluation of the effectiveness of calcium hydroxide and paramonochlorlphenol on anaerobicbacteria from the root canal [J]. Endod Dent Traumatol 1993;9:249.
    17. Quackenbnsh L. In vitro testing of a types of endodonic medicaments against annearobic bacteria. J Endod 1986;12(2): 132-136.
    18. Carlos Canalda, Jose Pumarola. Bacterial growth inhibition produced by root canal sealer cements with a calcium hydroxide base. Oral Surg Oral Med Oral Pathol 1989;68(1):99-102.
    19. Metzger Z, Solomonov M, Mass E. Calcium hydroxide retention in wide root canals with flaring apices [J]. Dent Traumatol 2001;17(2):86-92.
    20. 薛广波. 实用消毒学.北京:人民军医出版社 1986;403.
    21. 孙剑,杨宏军,邓玲玲,朱艳,曲淑华. 碘仿氢氧化钙糊剂充填感染根管的微漏实验研究.牙体牙髓牙周病学杂志 2002;12(6):329-330.
    22. 资云玲,李梅,张颂农. 碘仿氢氧化钙糊剂注射根管充填的微渗漏实验研究.口腔医学纵横杂志 2000;16(1):47-50.
    23. The Anerican Association of Endodontists. American Association of Endodontists Response on BiocalexTM 6/9 :Case of the Month [J]. J Endod 2001;27(12):789.
    24. Teixeira FB, Teixeira EC, Thompson JY, et al. Fracture resistance of roots endodontically treated with a new resin filling material .J Am Dent Assoc 2004;135(5):646-652.
    25. Leonard JE, Gutmann JL, Guo IY. Apical and coronal seal of roots obturated with a dentine bonding agent and resin. Int Endod J 1996;29(2):76- 83.
    26. Fujishima T. J Conserv Dent 1992;35(11):1513-1522.
    27. Kataoka H, Yoshioka T, Suda H, et al. Dentin bonding and sealing ability of a new root canal resin sealer.J Endod; 2000:26(4):230-235.
    28. Timpawat S, Amo rnchat C, Trisuwan WR. Bacterial coronal leakage after obstruction with three root canal sealers [J]. J Endod 2001;27(1): 36-39.
    29. Grecca FS, Leonardo MR, da-Silva LA, et al. Radiographic evaluation of periradicular repair after endodontic treatment of dog’s teeth with induced periradicular periodontitis [J]. J Endod 2001;27(12):610-612.
    30. Torabinejad M, Hong CU, McDonald F, et al. Physical and chemical properties of a new root - end filling material [J]. J Endod 1995;21(7):349-353.
    31. Shah PM, Chong BS, Sidhu SK, et al. Radiopacity of potential root-end filling materials [J]. Oral Surg Oral Med Oral Pathol 1996;81(4):476-479.
    32. Josette C, Franco EM, Ken B, et al. The constitution of mineral trioxide aggregate. Dent Mater 2005;21:297-303.
    33. Huang TH, Ding SJ, Hsu TC, et al. Effects of mineral trioxide aggregate (MTA) extracts on mitogen-activated protein kinaseactivity in human osteosarcoma cell line (U2OS) [J]. Biomaterials 2003;24:3909-3913.
    34. Bonson S, Jeansonne BG, Lallier TE. Root-end filling materials alter fibroblast differentiation [J]. J Dent Res 2004;83(5):408-413.
    35. Mitchell PTC, Pitt ford TR, Torabinejad M, et al. Osteoblast biocompatibility of mineral trioxide aggregate [J]. Biomaterials 1999:20:167-173.
    36. Torabinejad M, Hong CU, Pitt Ford TR, et al. Antibacterial effects of some root end filling materials [J]. J Endod 1995;21(8):403-406.
    37. Fischer EJ, Arens DE, Miller CH. Bacterial leakage of mineral trioxide aggregate as compared with zinc-free amalgam, intermediate restorative material, and Super-EBA as a root-end filling material [J]. J Endod1998;24(3):176-179.
    38. Tang HM, Torabinejad M, Kettering JD.Leakage evaluation of root end filling material using endotoxin [J]. J Endod 2002;28(1):527.
    39. Wu MK, Kontakiotis EG, Wesselink PR. Long term seal provided by some root-end filling materials [J]. J Endod 1998;24(8):557-560.
    40. Caroline RAV, Edson DCJ. Influence of the thickness of mineral trioxide aggregate on sealing ability of root-end fillings in vitro. Oral Surg Oral Med Oral Pathol Oral Radio Endod 2004;97:108-11.
    41. Tittle KW, Farley J, Linkhardt T, et al. Apical closure induction using bone growth factors and mineral trioxide aggregate. J Endod 1996;22:198.
    42. Witherspoon DE, Ham K. One-visit apexification:technique for inducing root-end barrier formation in apical closures [J]. Pract Proced Aesthet Dent 2001;13(6):455–460.
    43. Torabinejad M, Chivian N. Clinical application repair comparing mineral trioxide aggregate. J Endod 1999;21:349-353.
    44. 山口和彦. 以合成羟基磷灰石为基质的新型根管充填材料的生物学评价(日) [J]. 生物学报 1989;89(4):161-192.
    45. 张乐生. 羟基磷灰石糊剂感染根管充填 195 例临床疗效观察[J]. 口腔医学 1995;15(1):41-42.
    46. 李平,肖丽英,李伟等. 新型纳米羟基磷灰石根充糊剂的细胞毒性研究. 华西口腔医学杂志 2005;23(5):427-430.
    47. Yan YG, Li YB, Wang JX, et al. Study on preparation and properties of polyam ide 66/nano-apatite composite. China Plastics Industry 2000;28(3):38.
    48. Wang XJ, Li YB. Study on bionic composite of Nano-HA N eedle-likecrystals and polyamide. High Technology Letters 2001;11(5):1.
    49. 叶玲,苏勤,周学东,谭红.管充填材料对成骨细胞生长的影响.生物医学工程学杂志 2005;22(5):1011-1014.
    50. Brown WE, Chow LC. A new calcium phosphate, water-setting cement. In. Brown Pw Ed. Cement Research Progress. Wasterville,Ohio,Qmerican Ceramic Society 1986;352-379.
    51. Costantino PD, Friedman CD. Synthetic bone graft substitutes. Otolaryngol Clin North Am 1994;27(15):1037.
    52. 王伟,徐晓东,陈莺等.自固化磷酸钙充填根管的临床疗效观察.上海生物医学工程杂志 2002;23(4):21-25.
    53. Cherng AM, Chow LC, Takagi S. In vitro evaluation of a calcium phosphate cement root canal filler-sealer [J]. J Endod 2001,27(10):613- 615.
    54. Goodell GG, Mork TO, Hutter JW, et al. Linear dye penetration of a calcium phosphate cement apical barrier [J]. J Endod 1997;23(3):174- 177.
    55. Sugawara A, Chow LC, Takagi S, et al. In vitro evaluation of the sealing ability of a calcium phosphate cement when used as a root canal sealer-filler [J]. J Endod 1990;16(4):162-165.
    1. Lane JM, Tomin E, Bostrom MPG. Biosynthetic bone grafting. Clin Orthop 1999;367:107-117.
    2. Mellonig JT, Prewett AB, Moyer MP. HIV inactivation in a bone allograft. J Periodontol 1992;63:979-983.
    3. Mizutani A, Fujita T, Watanabe S, Sakakida K, Okada Y. Experiments on antigenicity in allotransplanted cancellous bone. Int Orthop1990;14:243-248.
    4. Asselmeier MA, Caspari RB, Bottenfield S. A review of allograft processing and sterilization techniques and their role in transmission of the human immunodeficiency virus. Am J Sports Med 1993;21:170-175.
    5. Buck BE, Malinin TI, Brown MD. Bone transplantation and human immunodeficiency virus. An estimate of risk of acquired immunodeficiency syndrome (AIDS). Clin Orthop 1989;240:129-136.
    6. Bucholz RW, Carlton A, Holmes R. Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop 1989;240:53-62.
    7. De Bore H. The history of bone graft. Clin Othop 1988;174:28-33.
    8. Hench LL, Splinter RJ, Allen WC, Greenlee Jr TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp 1971;2:117-141.
    9. Hench LL. Bioceramics: Materials characteristics versus in-vivo behavior. Ducheyne P, Lemons J (Eds.). Annals of New York Acad Sci: New York 1988;523:54-65.
    10. Hench LL. Bioceramics: From Concept to Clinic, J Am Ceram Soc 1991;74: 1487-1510.
    11. Li P, Ohtsuki C, Kokubo T. Process of formation of bone-like apatite layer on silica gel. J Mater Sci: Mater Med 1993;4:127-131.
    12. Hench LL, Polak JM. Third generation biomedical materials. Science 2002;295:1014-1016.
    13. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity of bone formation and bone cell function. Biomaterials 1999;20:2287-2303.
    14. 俞耀庭,张兴栋主编.生物医用材料.天津大学出版社.2000.
    15. Patel N, Best SM, Bonfiled W, Gibson IR, Hing KA, Damien E, Revell PA. A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci : Mater Med 2002;13:1199-1206.
    16. Porter AE, Parel N, Skepper JN, Best SM, Bonfield W. Comparison of vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 2003;24:4609-4620.
    17. Ellies LG, Carter JM, Natiella JR, Featherstone JDB. Quantitative analysis of early in vivo tissue reponse to synthetic apatite implants. J Biomed Mater Res 1988;22:137-148.
    18. Doi Y, Shibutani T, Moriwaki Y, Kajimoto T, Iwayama Y. Sintered carbonate apatites as bioresorbable bone substitutes. J Biomed Mater Res 1998;39:603-610.
    19. Barinov SM, Tumanov SV, Fadeeva IV, Bibikov VY. Environment Effect on the Strength of Hydroxy- and Fluorohydroxyapatite Ceramics. Inorg Mater 2003;39:877-880.
    20. Klein CPAT. Calcium phosphate plasma-spayed coating and their stability : a vivo study. J Biomed Mater Res 1994;28:909-917.
    21. Wang M. Hydroxyapatite-polyethylene composites for substitution effect of ceramic particle size and morphology. Biomaterials 1998;19:2357-2366.
    22. Brown WE, Chow LC. A new calcium phosphate, water-setting cement, In: Cements Research Progress. Brown (editor) Westerville, Ohio: Am Ceram Soc. 1986, p 352-379.
    23. Yuan H, Li Y, Bruijn de JD, Groot de K, Zhang X. Tissue responses of calcium phosphate cement: a study in dogs. Biomaterials2000;21:1283-1290.
    24. Lu JX, Gallur A, Flautre B, Anselme K. Descamps M, Thierry B. Hardonin P. Comparative study of tissue reactions to calcium phosphate ceramics among cancellous, cortical, and medullar bone sites in rabbits. J Biomed Mater Res 1998;42:357-367.
    25. Khairoun I, Boltong MG, Driessens FCM, Planell JA. Some factors controlling the injectability of calcium phosphate bone cements. J Mater Sci: Mater Med 1998;9:425-428.
    26. Sarda S, Fernandez E, Llorens J, Martinez S, Nilsson M. Rheological properties of an apatitic bone cement during initial setting. J Mater Sci: Mater Med 2001;12:905-909.
    27. Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials 2005;26: 1553-1563.
    28. Leroux L, Hatim Z, Frèche M, Lacout JL. Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of calcium phosphate cement. Bone 1999;25:31-34.
    29. Kobayashi M, Nakamura T, Tamura J, Kokubo T, Kikutani T. Bioactive bone cement: Comparison of AW-GC filler with hydroxyapatite and β-TCP fillers on mechanical and biological properties. J Biomed Mater Res 1997;37:301-301
    30. Kobayashi M, Nakamura T, Okada Y, Fukumoto A, Furukawa T, Kato H, Kokubo T, Kikutani T. Bioactive bone cement: Comparison of apatite and wollastonite containing glass-ceramic, hydroxyapatite, and β-tricalcium phosphate fillers on bone-bonding strength. J Biomed Mater Res 1998;42:223-237.
    31. Kobayashi M, Nakamura T, Shinzato S, Mousa WF, Nishio K, Ohsawa K, Kokubo T, Kikutani T. Effect of bioactive filler content on mechanical properties and osteoconductivity of bioactive bone cement. J Biomed Mater Res 1999;46:447-457.
    32. Tamura J, Kawanabe K, Yamamuro T. Bioactive bone cement: the effect of amours of glass powder and histologic change with time. Biomed Mater Res 1995;29:551-559.
    33. Izqquierdo-Barba I, Salinas AJ, Vallet-Regí M. Effect of the continuous solution exchange on the in vitro reactivity of a CaO-SiO2 sol-gel glass. J Biomed Mater Res 2000;51:191-199.
    34. Ohura K, Nakamura T, Yamamuro T, Kokubo T, Ebisawa Y, Kotoura Y, Oka M. Bone-bonding ability of P2O5-Free CaO SiO2 glasses. J Biomed Mater Res 1991;25:357-365.
    35. Mertz W, The essential trace elements. Science 1981; 213:1332-1338.
    36. Carlisle EM. Silicon: a possible factor in bone calcification. Science 1970; 167:279-280.
    37. Schwarz K, Milne DB. Growth-promoting effects of silicon in rats. Nature 1972; 239:333-334.
    38. Dufrane D, Delloye C, Mckay J, De Aza PN, De Aza S, Schaneider YJ, Anseau M. Indirect cytotocicity evaluation of pseudowollastonite. J Mater Sci M 2003;14:33-38.
    39. Hench LL. Bioactive ceramics: Theory and clinical applications. Bioceramics 1994;7:3-14.
    40. Hench LL, Xynos I, Edgar A, Buttery L, Polak J, 钟吉品, 刘宣勇, 常江. 激活基因的玻璃. 无机材料学报 2002;17:897-909.
    41. Bielby RC, Christodoulou I , Pryce RS, Radford WJP, Hench LL, Polak JM. Time- and concentration-dependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts. Tissue Eng 2004;10:1018-1026.
    42. Valerio P, Pereira M M, Goes A M, Leite M F. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 2004;25:2941-2948.
    43. Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, Powell JJ, Hampson GN. Orthosilicic acid stimulates collagen type ? synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 2003;32:127-135.
    44. Aza de PN, Guitian F, Aza de S. Bioactivity of wollastonite ceramics: in vitro evaluation. Sci Metal Mater 1994;31:1001-1005.
    45. Aza de PN, Luklinska ZB, Anseau MR, Guitian F, Aza de S. Bioactivity of pseudo-wollastonite in human saliva. J Dent 1999;27:107-113.
    46. Siriphannon P, Kameshima Y, Yasumori A, Okada K. Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid. J Euro Ceram Soc 2002;22:511-520.
    47. Liu XY, Ding CX, Wang ZY. Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid. Biomaterials 2001;22:2007-2012.
    48. Li X, Chang J. Synthesis of wollastonite single crystal nanowires by a novel hydrothermal route. Chem Letters 2004;33:1458-1459.
    49. Long LH, Chen LD, Bai SQ, Chang J, Lin KL. Preparation of dense β-CaSiO3 ceramic with high mechanical strength and its HAp formation insimulated body fluid. J Euro Ceram Soc 2005. In press.
    50. Long LH, Chen LD, Chang J. Low temperature fabrication and characterizations of β-CaSiO3 ceramics. Ceram Inter 2005. In press.
    51. Lin K, Zhai W, Ni S, Chang J, Zeng Y, Qian W. Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics. Ceram Inter 2005;31:323-326.
    52. Xue W, Liu X, Zheng X, Ding C. In vivo evalution of plasma-sprayed wollastonite coating. Biomaterials 2005 ;26 (17): 3455-3460.
    53. Aza de PN, Luklinska ZB, Anseau MR, Hector M, Guitian F, Aza de S. Reactivity of a wollastonite-tricalcium phosphate bioeutectic ceramics in human parotid saliva. Biomaterials 2000;21:1735-1741.
    54. Aza de PN, Guitian F. Phase diagram of wollastonite-tricalcium phosphate. J Am Ceram Soc 1995;78:1653-1656.
    55. Aza de PN, Guitian F, Aza de S. A new bioactive materials which transforms in situ into hydroxyapatite. Acta Mater 1998;46:2541-2549.
    56. Ghosh SN, Rao B, Paul AK, Raina K. The chemistry of dicalcium silicate mineral. J Mater Sci 1979;14:1554-1562.
    57. Lamy D, Pierrc A C, Heimann RB. Hydroxypatite coatings with a bond coating of biomedical implants by plasma projection. J Mater Res 1996;11:680-686.
    58. Liu XY, Tao SY, Ding CX. Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials 2002;23:963-968.
    59. Gou Z, Chang J. Synthesis and in vitro bioactivity of dicalcium silicate powders. J Eur Ceram Soc 2004;24:93-99.
    60. Gou Z, Chang J, Zhai W Y. Preparation and characterization of novelbioactive dicalcium silicate ceramics. J Eur Ceram Soc 2005;25:1507-1514.
    61. Gou Z, Chang J, Zhai W Y, Wang J Y. Study on the self-setting property and the in vitro bioactivity of β-Ca2SiO4. J Biomed Mater Res, Part B: Appl Biomat
    62. Tarrida M, Madon M, Rolland le B, Colombet P. An in-situ raman spectroscopy study of the hydration of tricalcium silicate. Advan Cem Bas Mat 1995;2:15-20.
    63. Mansoutre S, Colombet P, Damme van H. Water retention and granular rheological behavior of fresh C3S paste as a function of concentration. Cem Concr Res 1999;29:1441-1453.
    64. Nonat A, Mutin J C, Lecoq X, Jiang SP. Physico-chemical parameters determining hydration and particle interactions during the setting of silicate cements. Solid State Ionics 1997;101-103:923-930.
    65. Wu ZQ, Young JF. Formation of calcium hydroxide from aqueous suspensions of tricalcium silicate. J Am Ceram Soc 1984;67:48-51.
    66. Black L, Stumm A, Garbev K, Stemmermann P, Hallam KR, Allen GC. X-ray photoelectron spectroscopy of the cement clinker phases tricalcium silicate and β-dicalcium silicate. Cem Concr Res 2003;33:1561-1565.
    67. Méducin F, No?k C, Rivereau A, Zanni H. Complementary analyses of a tricalcium silicate sample hydrated at high pressure and temperature. Cem Concr Res 2002;32:65-70.
    68. Rahman M M, Nagasaki S, Tanaka S. A model for dissolution of CaO-SiO2-H2O gel at Ca/Si > 1. Cem Concr Res 1999;29:1091-1097.
    69. Richardson I G. The nature of the hydration products in hardened cement pastes. Cem Concr Res 2000;22:97-113.
    70. Zhao WY, Chang J. Sol-gel synthesis and in vitro bioactivity of tricalcium silicate powders. Mater Lett 2004;58:2350-2353.
    71. Zhao WY, Chang J. Preparation and characterization of novel tricalcium silicate bioceramics. J Biomed Mater Res 2005;73:86-89.
    72. Zhao WY, Wang JY, Zhai WY, et al. The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials 2005;26:6113-6121.
    1. Orchardson R, Collins WIN. Clinical features of hypersensitive teeth. Br Dent J 1987;162:253-256.
    2. Brannstrom M, Linden L A, Astrom A. The hydrodynamics of the dental tubule and of pulp fluid. A discussion of its significance in relation to dentinal sensitivity. Caries Res 1967;1:310-7.
    3. Pashley DH. Dentin permeability, dentin sensitivity, and treatment through tubule occlusion. J Endod 1986;12:465-474.
    4. Dragolich WE, Pashley DH, Brennan WA, et al. An in vitro study of dentinal tubule occlusion by ferric oxalate . J Periodontol 1993;64:1045-1051.
    5. Suda R, Andoh Y, Shionome M, et al. Clinical evaluation of the sedative effect of HEMA solution on the hypersensitivity of dentin. Dent Mater J 1990;9:163-166.
    6. José C. Pereira, Angela D. Segala, David G. Gillam. Effect of desensitizing agents on the hydraulic conductance of human dentin subjected to different surface pre-treatments-an invitro study. Dent Mater 2005;21:129-138.
    7. Imai Y, Akimoto T. A new method of treatment for dentin hypersensitivity by precipitation of calcium phosphate in situ. Dent Mater J1990;9:167-172.
    8. Ishikawa K, Suge T, Yoshiyama M, et al. Occlusion of dentinal tubules with calcium phosphate using acidic calcium phosphate solution followed by neutralization. J Dent Res 1994;73(6):1197-1204.
    9. Suge T, Ishikawa K, Kawasaki A, et al. Effects of fluoride on the calcium phosphate precipitation method for dentinal tubule occlusion. J Dent Res 1995;74(4):1079-1085.
    10. Leonard J. Litkowski, Gary D. Hack, Hollie B. Sheaffer, et al. Occlusion of dentin tubules by 45S5 bioglass?. Bioceramics 1997;10:411-414.
    11. Gillam DG, Tang JY, Mordan NJ, et al. The effects of a novel bioglass? dentifrice on dentine sensitivity: a scanning electron microscopy investigation. J Oral Reha 2002;29:305-313.
    12. Zhao WY, Wang JY, Zhai WY, et al. The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials 2005;26:6113-6121.
    13. Mordan NJ, Barber PM, Gillam DG. The dentine disc. A review of its applicability as a model for the in vitro testing of dentine hypersensitivity. J Oral Reha 1997;24:148-156.
    14. Pashley DH, et al. The effects of burnishing NbaF/kaplin/glycerine paste on dentin permeability. J Periodontol 1987;58:191-4.
    15. Zhao WY, Chang J. Sol-gel synthesis and in vitro bioactivity of tricalcium silicate powdwes. Mater Lett 2004;58:2350-2353.
    16. Amaechi BT, Higham SM. In vitro remineralisation of eroded enamel lesions by saliva. J Dentistry 2001;29:371-376.
    17. Yoshiyama M, Masada J, Uchida A, et al. Scanning electron microscopic characterization of sensitive vs. insensitive human radicular dentin. J DentRes 1989;68:1498-502.
    18. Eick JD, Wilko RA, Anderson CH, et al. Scanning electron microscopy of cut tooth surfaces and identification of debris by use of the electron microprobe. J Dent Res 1970;49:1359-364.
    19. 孙文斌. 如何评价牙本质过敏的症状. 口腔医学 1996;16(1):53-55.
    20. 陶丽雯. 牙本质过敏症的研究进展. 国外医学口腔医学分册1987;14:18-21.
    21. Kishore A, Mehrotra K K, Saimbi C S. Effectiveness of desensitizing agents. J Endod 2002;28:34-5.
    22. Gillam DG, Khan N, Mordan NJ, et al. Scanning electron microscopy (SEM) investigation of selected desensitizing agents in the dentine disc model. Endodont Dent Traumatol 1999;15:198-204.
    23. Jain P, Vargas MA, Denehy GE, et al. Dentin desensitizing agents: SEM and X-ray microanalysis assessment. Am J Dent 1997;10:21-6.
    24. Nagata T, Ishida H, Shinohara H, et al. Clinical evaluation of a potassium nitrate dentifrice for the treatment of dentinal hypersensitivity. J Clin Periodontol 1994;21:217-21.
    25. Tavares M, Depaola PF, Soparkar P. Using a fluoride-releasing resin to reduce cervical sensitivity. JADA 1994;125:1337-42.
    26. Featherstone JDB, Holmen L, Thlstrup A, et al. Chemical and histological changes during devlopment of artificial [J]. Caries Res 1985;19∶1-10.
    27. Holmen L, Thlstrup A, Featherstone JDB, et al. A scanning electron microscopic study of surface changes during devlopment of artificial caries [J]. Caries Res 1985;19∶11–21.
    28. Holmen L, Thlstrup A, Ogaacd B et al. A scanning electron microscop icstudy of progressive stages of enamel caries in vivo [ J ].Caries Res 1985;19∶355-367.
    29. 毕良佳,李虹,刘来发等. 羟磷灰石同质间吸附效果及对牙本质小管封闭效果的研究. 口腔医学研究 2006;22(5):501-3.
    30. Cavalli V, Reis AF. The effect of elapsed time following bleaching on enamel bond strength of resin composite. Operative Dentistry 2001;26:597-602.
    31. Siriphannon P, Kameshima Y, Yasumori A, et al. Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid. J Euro Ceram Soc 2002;22:511-520.
    32. Kokubo T, Kushitani C, Ohtsuki C, et al. Process of formation of bone-like apatite layer on silica gel. J Mater Sci:Mater Med 1993;4:127-131.
    33. Cho SB, Miyaji F, Kokubo T, et al. Apatite-forming ability of silicate ion dissolved from silica gels. J Biomed Mater Res 1996;32:375-381.
    34. Liu XY, Ding CX, Chu PK. Mechanism of apatite formation on wollastonite coating in simulated body fluids. Biomaterials 2004;25:1755-1761.
    35. Bhaskar SN. Orban’s oral histology and embryology. 10th ed. pp244. St Louis: Mosby,1986.
    36. Jones SJ, Boyde A. Ultrastructure of dentin and dentinogenesis, Dentin and Dentinogenesis. CRC Press,Linde.Boca Raton pp.81-134.
    37. Hennequin M, Douillard Y. Effects of citric acid treatment on the Ca, P and Mg contents of human dental roots. J Clin Periodontol 1995;22:550-557.
    38. Frydenlund SJ, Krell KV. Effects of hand instrumentation on hydraulic conductance of root surfaces. J Dent Res 1986;68:251.
    39. Haugen E, Johansen J R. Tooth hypersensitivity after periodontal treatment. J Clin Periodontol 1998;15:399.
    1. Taylor HFW. Cement chemistry. Thomas Telford, London, 1997.
    2. Tarrida M, Madon M, Rolland le B, Colombet P. An in-situ raman spectroscopy study of the hydration of tricalcium silicate. Advn Cem Bas Mat 1995;2:15-20.
    3. Mansoutre S, Colombet P, Damme van H. Water retention and granular rheological behavior of fresh C3S paste as a function of concentration. Cem Concr Res 1999;29:1441-1453.
    4. Rastou K, Damme van H, Lafuma F, Lequeux F, Colombet P, Mansoutre S, Pasquier M. A rheological study of associating polymer-particle interactions in tricalcium silicate pastes. Polym Int 2003;52:633-637.
    5. Nonat A, Mutin JC, Lecoq X, Jiang SP. Physico-chemical parameters determining hydration and particle interactions during the setting of silicate cements. Solid State Ionics 1997;101-103:923-930.
    6. Young JF, Tong HS, Berger RL. Compositions of solutions in contact with hydrating tricalcium silicate pastes. J Am Ceram Soc 1977;60:193-198.
    7. Ramachandran AR, Grutzeck MW. Effect of pH on the hydration of tricalcium silicate. J Am Ceram Soc 1993;76:72-80.
    8. Wu ZQ, Young JF. Formation of calcium hydroxide from aqueous suspensions of tricalcium silicate. J Am Ceram Soc 1984;67:48-51.
    9. Black L, Stumm A, Garbev K, Stemmermann P, Hallam KR, Allen GC. X-ray photoelectron spectroscopy of the cement clinker phases tricalcium silicate and β-dicalcium silicate. Cem Concr Res 2003;33:1561-1565.
    10. Méducin F, No?k C, Rivereau A, Zanni H. Complementary analyses of a tricalcium silicate sample hydrated at high pressure and temperature. Cem Concr Res 2002;32:65-70.
    11. Rahman MM, Nagasaki S, Tanaka S. A model for dissolution of CaO-SiO2-H2O gel at Ca/Si > 1. Cem Concr Res 1999;29:1091-1097.
    12. Richardson IG. The nature of the hydration products in hardened cement pastes. Cem Concr Res 2000;22:97-113.
    13. Thomson WJ, Wang Y. Kinetic studies of tricalcium silicate formation from sol-gel precursors. J mater Sci 1996;31:1319-1325.
    14. Li SQ, Roy DM. Preparation and characterization of high and low CaO/SiO2 ratio “pure” C-S-H for chemically bonded ceramics. J Mater Res 1988;3:380-386.
    15. Li HX, Agrawal DK, Cheng JP, Silsbee M. Formation and hydration of C3S prepared by microwave and conventional sintering. Cem Concr Res 1999;29:1611-1617.
    16. Roller PS, Ervin G. The system calcium oxide-silica-water at 30℃, the association of silicate ion in dilution solution. J Am Chem Soc 1940;62:461-471.
    17. Greenberg SA, Chang TN. Investigation of colloidal hydrated calcium silicates. I. solubility products. J Phy Chem 1960;64:1151-1156.
    18. McCurdy KG, Stein HN. Suspension hydratiob of C3S at constant pH---II. Effect of previously formed hydrated and of additives. Cem Concr Res 1973;3:509-520.
    19. Zhao WY, Chang J. Sol-gel synthesis and in vitro bioactivity of tricalcium silicate powders. Mater Lett 2004;58:2350-2353.
    20. Zhao WY, Wang JY, Zhai WY, Wang Z, Chang J. The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials 2005;26:6113-6121.
    21. Gartner EM, Young JF, Damidot DA, et al. Hydration of Portland cement, in: Bensted J, Barnes P.(Eds), The structure and performance of cements , 2nd ed, Spon Press, London, 2002. Chapter 3.
    22. Lea FM. The chemistry of cement and concrete. New York: Chemical Publishing Inc., 1971. p108.
    23. Kokubo T. Surface chemistry of bioactive glass-ceramics. J Non-Cryst Solids 1990;120:138-151.
    24. Greenspan D C, Zhong J P, LaTorre G P. Effect of surface area to volume ratio in vitro surface reactions of bioactive glass particulates. In: Bioceramics. vol. 7. Andersson ?H, Yli-Urpo A, Editors. Turku, Finland; 1994. p 55-60.
    25. 陆平 编著. 水泥材料科学导论. 上海:同济大学出版社.1991.1.p91-105
    26. Collepardi M, Massidda L. Hydration of tricalcium silicate. J Am Ceram Soc 1971;54:419-422.
    27. Collepardi M, rossi G, Usai G. Paste and ball-mill hydration of tricalcium silicate in presence of calcium chloride. Ind Ital Cem 1968;38:657-663.
    28. 陆平 编著. 水泥材料科学导论. 上海: 同济大学出版社. 1991.1. p 130-132.
    29. Kantro D L. Tricalcium silicate hydration in the presence of various salts. J Test Eval 1975; 3:312-321.
    30. Wilding CR, Walter A, Double DD. A classification of inorganic andorganic admixtures by conduction calorimetry. Cem Concr Res 1984; 14:185-194.
    31. Valerio P, Pereira MM, Goes AM, Leite M F. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 2004;25:2941-2948.
    32. Abdullah D, Pitt Ford TR, Papaioannou S, Nicholson J, McDonald F. An evaluation of accerated Portland cement as a restorative material. Biomaterials 2002;23:4001-4010.
    33. Li S Q, Roy DM, Preparation and characterizaton of high and low CaO/SiO2 ratio “pure” C-S-H for chemically bonded ceramics. J Mater Res 1988;3:380-386.
    34. .Juenger MCG, Monteiro PJM, Gartner EM, et al. A soft X-ray microscope investigation into the effects of calcium chloride on tricalcium silicate hydration. Cem Concr Res 2005;35:19-25.
    35. Suryavanshi AK, Scantlebury JD, Lyon SB. The binding of chloride ions by sulphate resistant Portland cement. Cem Concr Res 1995;25:581-592.
    36. Ana H, Guillem D V, Miguel A C, et al . Measurements of chloride activity coefficients in real Portland cement paste pore solutions. J Am Ceram Soc 2001;84:3008-12.
    37. Traetteberg A, Ramachandran VS, Grattan Bellew P E. A study of the microstructure and hydration characteristics of tricalcium silicate in the presence of calcium chloride. Cem Concr Res 1974;4:203-221.
    38. Sloane RC, Mccaughey WJ, Foster WD, et al. Effect of calcium chloride as an admixture in Portland cement concrete. Bulletin 61, The engineering experiment station, Ohio state university, 1931.
    39. Andreeva EP, Segalova EE. Kinetics of structure formation in suspensions of tricalcium and b-dicalcium silicate in presence of calcium chloride. Kolloidnyi Zhurnal, (Moscow), v22, 1960, p503
    40. Rosenberg AM. Study of the mechanism through which calcium chloride accelerates the set of Portland cement. J Am Concr Inst 1964;61:1261-1269.
    41. Young JF, Tong HS, Berger RL. Compositions of solutions in contact with hydrating tricalcium silicate pastes. J Am Ceram Soc 1977;60:193-198.
    42. Ducheyne P, Qiu Q. Bioactive ceramics:the effect of surface reactivity on bone formation and bone cell function. Biomaterials 1999;20:2287-2303.
    43. Oonishi H, Hench LL, Wilson J,et al. Quantitative comparison of bone growth behavior in granules of Bioglass, A-W glass-ceramic and hydroxyapatite. Biomaterials 2000;21:37-46.
    44. Kitsugi T, Nakamura T, Oka M, Senaha Y, et al. Bone-bonding behavior of plasma-sprayed coating of Bioglass, A-W glass ceramic and tricalcium phosphate on titanium alloy. J Biomed Mater Res 1996;30:261-269.
    45. Hench LL. Bioceramics. J Am Ceram Soc 1998;81:1705-1728.
    46. Kokubo T. Surface chemistry of bioactive glass-ceramics. J Non-Cryst Solids 1990;120:138-151.
    47. Hench LL, Wilson J. Surface-active biomaterials. Science 1984;226:630-636.
    48. Doi Y, Shibutani T, Moriwaki Y, et al. Sintered carbonate apatites as bioresorbable bone substitutes. J Biomed Mater Res 1998;39:603-610
    49. Barralet J, Akao M, Aoki H. Dissolution of dense carbonate apatite subcutaneously implanted in Wistar rats. J Biomed Mater Res2000;49:176-182
    1. Kirkpatrick CJ, Mittermayer C. Theoretical and practical aspects of testing potential biomaterials in vitro. J Mater Sci: Mater Med 1990;1:9-13
    2. Bucholz RW, Carlton A, Holmes R. Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin. Orthop 1989;240:53-62.
    3. Hench LL, Xynos I, Edgar A, Buttery L, Polak J, 钟吉品, 刘宣勇, 常江. 激活基因的玻璃. 无机材料学报 2002;17:897-909.
    4. Hench LL. Bioceramics: theory and clinical application. Bioceramics 1994;7:3-14.
    5. Bellows CG, Aubin J E, Heersche JNM, Antosz M E. Mineralised bone nodules formed in from enzymatically released rat calvaria cell populations. Calcif Tissue Int 1986; 38:143-154.
    6. Ishaug SL, Yaszemski MJ, Bizios R, Mikos AG. Osteoblast function on synthetic biodegradable polymers. J Biomed Mater Res 1994; 28:1445-53.
    7. ISO/EN 10993-5. Biological evaluation of medical devices-Part 5 Tests for cytotoxicity, in vitro methods: 8.2 tests on extract.
    8. Kim HW, Georgiou G, Knowles JC, Koh YH, Kim HE. Calcium phosphates and glass composite coating on zirconia for enhanced biocompatibility. Biomaterials 2004;25:4203-4213.
    9. EI-Ghannam A, Ducheyne P, Shapiro I M. Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix. Biomaterials 1997;18:295-303.
    10. Buttery LD, Bourne S, Xynos JD, et al. Differentiation of osteoblast and invitro bone formation from murine embryonic stem cell. Tissue Eng 2001;7(1):89.
    11. Ersev H, Schmalz G, Bayirli G, et al. Cytotoxic and mutagenic potencies of various root canal filling materials in eukaryotic and prokaryotic cells in vitro. J Endod 1999;25:359.
    12. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor mRNA expression and protein synthesis. Biomed Biophys Res Commun 2000;276:461-465.
    13. Silver IA, Deas J, Erecińska M. Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 bioglass, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomaterials 2001;22:175-185.
    14. Carlisle EM. Silicon:a possible factor in bone calcification. Science 1970;167:279-280.
    15. Schwarz K, Milne DB. Growth-promoting effects of silicon in rats. Nature 1972;239:333-334.
    16. Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, Powell JJ, Hampson GN. Orthosilicic acid stimulated collagen type ? synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 2003;32:127-135.
    17. Chou L, Al-Bazie S, Cottrell D, Giordano R, Nathason D. Atomic and molecular mechanisms underlying the osteogenic effects of bioglass? materials. Bioceramics 1998;11:265-268.
    18. Patel N, Best S M, Bonfiled W, Gibson IR, Hing KA, Damien E, Revell PA.A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci: Mater Med 2002;13:1199-1206.
    19. Phan PV, Grzanna M, Chu J, Polotsky A, El-Ghannam A, Heerden DV, Hungerford DS, Frondoza CG. The effect of silica-containing calcium-phosphate particles on human osteoblasts in vitro. J Biomed Mater Res 2003;67A:1001-1008.
    20. Valerio P, Pereira MM, Goes AM, Leite MF. The effect of ionic products from bioactive glass dissolution on osteoblast prolferation and collagen production. Biomaterials 2004;25:2941-2948.
    21. Gough JE, Notingher I, Hench LL. Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths. J Biomed Mater Res 2004;68:640-650.
    22. Gough JE, Clupper DC, Hench LL. Osteoblast responses to tape cast and sintered bioactive glass ceramics. J Biomed Mater Res 2004;69:621-628.
    23. Keeting PE, Oursler MJ, Wiegand KE, Bonde SK, Spelsberg TC, Riggs BL. Zeolite A increases proliferation, differentiation, and transforming growth factor beta production in normal adult human osteoblast-like cells in vitro. J Bone Mine Res 1992;7:1281-1289.
    24. Farley JR, Hall S L, Tanner MA, Wergedal JE. Specific activity of skeletal alkaline phosphatase in human osteoblast-like cells regulated by phosphate, phosphate in esters, and phosphate analogs and release of alkaline phosphatase activity inversely regulated by calcium. J Bone Miner Res 1994;9:497-508.
    25. Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A,Toyama Y, Taguchi T, Tanaka J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 2005;26:4847-4855.
    26. Sugimoto T, Kanatani M, Kano J, Kaji H, Tsukamoto T, Yamaguchi T, Fukase M, Chihara K. Effects of high calcium concentration on the functions and interactions of osteoblastic cells and monocytes and on the formation of osteoclast-like cells. J Bone Miner Res 1993;8:1445-1452.
    1. Tanzilli JP, Raphael D, Moodnik RM. A comparison ofthe marginal adaptation of retrograde techniques: a scanning eleetron microscopic study. Oral Surg Oral Med Oral Pathol 1980; 50:74-80.
    2. Cunningham J. The seal of root fillings at apiceetomy. Br Dent J 1975; 139: 430-5.
    3. Stabholz A, Shani J, Friedman S, Abed J. Marginal adaptation of retrograde fillings and its correlation with seal ability.J Endod 1985; 11:218-23.
    4. Szeremeta-browar TL, Vancura JE, Zaki AE. A comparison of the sealing properties of different retrograde techniques: an autoradiographic study. Oral Surg Oral Med Oral Pathol 1985; 59:82-7.
    5. Delivanis P, Tabibi A. A comparative sealability study of different retro-filling materials. Oral Surg Oral Med Oral Pathol 1978; 45:273-81.
    6. Abdal AK, Retief HH, Jamison HC. The apical seal via the retro-surgical approach: an evaluation of retro-fillinging materials. Oral Surg Oral Med Oral Pathol 1982;54:213-8.
    7. Kos WL, Aulozzi DP, Gerstein H. A comparative baeterial microleakage study of retrofilling materials. J Endod 1982; 8:355-8.
    8. Luomanen M, Tuompo H. Study of titanium screws as retrograde fillings using bacteria and dye. Scand J Dent Res 1985;93:555-9.
    9. Kaplan SD, Tanzilli JP, Raphael D, Moodnik RM. A comparison of the marginal leakage of retrograde techniques. Oral Surg Oral Med Oral Pathol 1982; 54:583-5.
    10. Bramwell J D, Hicks M L. Sealing ability of four retrofiUing techniques. J Endod 1986; 12:95-100.
    11. Jacquot B, Panighi M, Steinmetz P, G’Sell C. Evaluation of temporary restorations by means of electrochemical impedance measurements. J Endod 1996;22:586-9.
    12. Pommel L, Camps J. In vitro apical leakage of system B compared with other filling techniques. J Endod 2001;27:449-51.
    13. Wu M-K, Wesselink P R. Endodontic leakage studies reconsidered.Part I Methodology, application and relevance. Int Endod J 1993;26:37-43.
    14. Spanberg L, Agiero T, Gha B Y. Influence of entrapped air on the accuracy of leakage study using dye penetration method. J Endod 1989; 75:548-51.
    15. Goldman M, Simmonds S, Rush R. The use of dye-penetration studies reexamined. Oral Surg Oral Med Oral Pathol 1989; 67:327-32.
    16. Pollard BK, Weller RN, Kulild JG. A standardized technique for linear dye leakage studies:immediate versus delayed immersion times. Int Endod J 1990;23:250-3.
    17. Limkang S, Abbott PV, Sandler AB. Apical dye penetration with four root canal sealers and gutta-percha using longitudinal sectioning. J Endod 1992; 18:535-9.
    18. Roda RS, Glhtmann J L. Reliability of apical dye sealability studies withand without vacuum removal of air inclusions. J Endod 1994; 20: 190, Abstract No. 7.
    19. Goldman LB, Goldman M, Kronman JH, Letourneau J M.Adaptation and porosity of poIy-HEMA in a model system using two microorganisms. J Endod 1980; 6:683-6.
    20. Qiong X, Ming W F, Bing F. A new quantitative method using glucose for analysis of endodontic leakage. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;99:107-11.
    21. Petersson K, Petersson A, Olsson B, et al. Technical quality of root fillings in an adult Swedish population. Endod Dent Traumatol 1986:99-102.
    22. Pommel L, Jacquot B, Camps G. Lack of correlation among three methods for evaluation of apical leakage [J]. J Endod 2001;27(5):347-350.
    23. Pashley DH, Andringa HJ, Derkson GD, et al. Regional variability in the permeability of human dentine [J]. Archives of Oral Biology 1987;32(7):519-523.
    24. Derkson GD, Pashley DH, Derkson ME. Microleakage measurement of selected restorative material:a new in vitro method. J Prosthet Dent 1986;56:435-40.
    25. Wu M-K, De Gee AJ, Wesselink PR, Moorer WR. Fluid transport and bacterial penetration along root canal fillings. Int Endod J 1993;26:203-8.
    26. Pommel L, Camps J. Effects of pressure and measurement time on the fluid filtration method in endodontics. J Endod 2001;27:256-8.
    27. Friedman. Retrograde approaches in endodontic therapy. Endod Dent Traumatol 1991;7:97-107.
    28. Thoma L. Labor and diagnose. 4th editon. Die Mediainischeverlagsgesellschaft. Marburg,1992,169.
    29. Zhou XL, Li JY. The progress of testing methods of filling material microleakage [J]. Guowai Yixue.Kouqiang Yixue Fence(Foreign Med Sci Stomatol),1996,23(5):262-264.
    30. Orstavik D, Nordahl I, Tibballs J E. Dimmension change following setting of root canal sealer materials [J]. Dent Mater 2001;17(6):512-519.
    1. 樊明文主编. 牙体牙髓病学[M]. 北京:人民卫生出版社,2000. 173-181.
    2. Bystro¨m A, Sundqvist G. Bacteriologic evaluation of the effect of 0.5 percent sodium hypochlorite in endodontic therapy. Oral Surg Oral Med Oral Pathol 1983;55:307–12.
    3. ?rstavik D. Antibacterial properties of root canal sealers, cements and pastes. Int Endod J 1981;14:125–33.
    4. Chavez De Paz L E, Dahlen G, Molander A,et al. Bacteria recovered from teeth with apical periodontitis after antimicrobial endodontic treatment. Int Endod J 2003;36(7):500-508.
    5. Grossman L. Antimicrobial effect of root canal cements. J Endod 1980; 6:594-7.
    6. Leonardo MR, Salgado AA, Silva LA, Tonomaru FM. Apical and periapical repair of dog’s teeth with periapical lesions after endodontic treatment with different root canal sealers. Pesquisa Odontolo′gica Brasileira 2003;17:69–74.
    7. ?rstavik D, Qvist V, Stoltze K. A multivariate analysis of the outcome of endodontic treatment. Eur J Oral Sci 2004; 112:224–30.
    8. Kaplan AE, Picca M, Gonzalez MI, et al . Antimicrobial effect of sixendodontic sealers :an in vitro evaluation [J]. Endod Dent Traumatol 1999;15(1): 42-45.
    9. Lai CC , Huang FM, Chan Y, et al . Antibacterial effects of resinous retrograde root filling material [J]. J Endod 2003;29(2):118-120.
    10. Leonardo MR ,de Silva LA ,Tanomaru FM, et al . In vitro evaluation of antimicrobial activity of sealers and pastes used in endodontics [J]. J Endod 2000;26(7):391-394.
    11. Barry AL, Thomsberry C. Susceptibility test procedures: diffusion test procedures in: Linette EH,ed. Manual of clinical microbiology. 3rd ed. Washington, DC: American Society for Microbiology, 1980:463-469.
    12. Torabinejad M, Hong C U ,Pitt Ford T R , et al . Antibacterial effects of some root end filling materials [J]. J Endod 1995;21(8):403-406.
    13. Canalda C, Pumarola J. Bacterial growth inhibition produced by root canal sealer cements with a calcium hydroxide base. Oral Surg Oral Med Oral Pathol 1989; 68:99-102.
    14. Al-Khatib ZZ, Baum RH, Morse DR, et al. The antimicrobial effect of various endodontic sealers. Oral Surg Oral Med Oral Pathol 1990;70:784-90.
    15. Holland R, Souza V, Nery MJ, et al. Reaction of rat connective tissue to implanted dentin tubes filled with mineral trioxide aggregate or calcium hydroxide [J]. J Endod 1999;25(3):161–166.
    16. Siqueira JR, Lopes HP. Mechanisms of antimicrobial activity of calcium hydroxide: a critical review. Inter Endod J 1999;32:361-369.
    17. Suzuki K, Higuchi N, Horiba N, Matsumoto T, Kanamura H. Antimicrobial effect of calcium hydroxide on bacteria isolated from infected root canals.Dentistry Japan 1999;35:43-47.
    18. Estrela C, Holland R. Calcium hydroxide: study based on scientific evidences [J].J Appl Oral Sci 2003;11(4):269-282.
    19. Torabinejad M, Hong CU, McDonald F, et al. Physical and chemical properties of a new root-end filling material [J]. J Endod 1995 ;21(7):349-353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700