BPDE致癌相关基因的小鼠全基因组筛选及RNAi抑制A549细胞中EFNB2基因表达的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:目前已知的与二羟环氧苯并芘(BPDE)相互作用的基因尚不能阐明BPDE的致癌分子机制,寻找出更多的BPDE致癌易感基因是个亟需解决的问题。本研究的目的是建立一种新的方法技术,在小鼠全基因组水平筛选出更多的BPDE致癌易感基因,并初步探讨筛选基因在A549肺癌细胞中的作用,为研究BPDE的致癌分子机制打下基础。
     研究方法:本研究首次应用扩增片段长度多态性(amplified fragment length polymorphism,AFLP)与免疫磁性分离(immunomagnetic separation,IMS)技术相结合的方法,对小鼠全基因组DNA与BPDE相互作用的基因位点进行筛选,对差异片段进行了回收、再扩增、克隆测序及BLAST同源相似性检索分析,获得与差异核苷酸序列同源的已知基因或未知序列,并用RNA干扰(RNA interference,RNAi)技术对筛选出的EFNB2基因在A549肺癌细胞中的作用进行初步探讨。
     研究结果:
     1、以AFLP和免疫磁性分离技术相结合,成功建立了基于小鼠全基因组的高效、特异筛选BPDE致癌相关基因的新方法。
     2、成功获得了清晰的变性聚丙烯酰胺凝胶电泳条带图谱和与BPDE作用的差异DNA片段条带图谱,并成功对差异片段进行了回收、扩增、克隆测序,共获得125条差异片段DNA的核苷酸序列。
     3、经BLAST分析发现:有193条已知基因与差异片段核苷酸序列有同源性,主要为信号转导及通路、生长发育、血管生成、免疫及炎性反应、转录调控、细胞分化等方面的基因和一些未知功能的基因。有6条未知核苷酸序列,向GenBank提交注册,已被GenBank接受为新序列并给予相应的基因登录号:分别为EF176681、EF473140、EF473141、EF473142、EF473143、EF473144。这些基因和序列有可能是与BPDE致癌相关的基因序列。
     4、经RT-PCR和免疫荧光染色证实,A549肺癌细胞中EFNB2基因mRNA和蛋白均有较高的表达水平。
     5、EFNB2基因RNAi质粒表达载体转染A549肺癌细胞后,可以抑制A549肺癌细胞中EFNB2基因mRNA和蛋白的表达。
     6、平板克隆形成实验中,以A549-mocks组形成的克隆个数最高,为45.8±3.27个,其次是A549-pGPU6/GFP/Neo-shNC阴性对照为43.6±3.21个,A549-pGPU6/GFP/Neo-shEFNB2/159克隆形成数最低(37.6±5.64个),shEFNB2/159组形成的克隆数与其他两组相比差异有统计学意义,说明RNAi对EFNB2基因表达的抑制可能对A549肺癌细胞的体外增殖能力产生了抑制作用。
     7、在与血管内皮细胞的粘附实验中,A549-mocks组的A549细胞的A值平均为0.151,shNC为0.141,shEFNB2/159组的A值最低,平均为0.081,shEFNB2/159组与两个对照组相比较差异均有统计学意义,提示EFNB2基因沉默可能抑制了A549肺癌细胞对血管内皮细胞的体外粘附能力。
     8、Transwell侵袭小室实验中,侵袭穿过微孔膜的A549细胞数在mocks对照组(59.80±5.76个)和shNC阴性对照组(54.80±4.87个)较多,在shEFNB2/159组穿膜细胞数明显减少(25.20±3.90个),shEFNB2/159组穿膜细胞数与两个对照组相比较差异有统计学意义,结果表明,EFNB2基因沉默可能抑制了A549肺癌细胞的体外侵袭能力。
     研究结论:
     1、扩增片段长度多态性(AFLP)和免疫磁性分离(IMS)技术相结合的方法,适用于在小鼠全基因组筛选BPDE致癌相关基因。
     2、应用AFLP和IMS相结合的方法,共筛选出与差异片段核苷酸序列有同源性的已知基因193条;筛选出未知核苷酸序列6条,已被GenBank接受为新序列并给予相应的基因登录号:EF176681、EF473140、EF473141、EF473142、EF473143、EF473144。这些基因和序列有可能是与BPDE致癌相关的基因序列。
     3、通过RNA干扰技术沉默EFNB2基因表达,可以显著抑制A549肺癌细胞的体外增殖、体外粘附和体外侵袭能力。
Objective The carcinogenesis mechanism of benzo[α]pyrene dihydrodiol epoxide (BPDE) is still unclear according to the known genes interaction with BPDE. So it is an urgent problem to screen more BPDE target susceptible genes. The purposes of this study were to found a new method to screen more BPDE target susceptible genes from whole genomes in mice, to make a preliminary study using RNAi to explore the role of EFNB2 gene silencing in A549 lung cancer cell lines, and to found a basis for study on carcinogenesis mechanism of BPDE.
     Methods Amplified fragment length polymorphism (AFLP) combination with immunomagnetic separation (IMS) were first used to screen, enrich and amplify the fragments of BPDE interaction with DNA in mice whole genomes. Differential fragments were displayed by polyacrylamide gel electrophoresis and Silver nitrate staining. The Differential fragments were collected, cloned, sequenced, and compared homology similarity with the known genes in GenBank BLAST. RNA interference (RNAi) was used to explore the role of EFNB2 gene silencing in A549 lung cancer cell lines.
     Results
     (1) A new effective and specific method, AFLP combination with IMS, was first successfully founded to screen BPDE target susceptible genes from whole genomes in mice.
     (2) Distinct electrophoresis patterns were obtained by denatured polyacrylamide gel electrophoresis (DPAGE) and differential bands of DNA fragments interaction with BPDE were displayed in DPAGE electrophoresis pattern. The differential bands DNA were successfully collected, cloned, sequenced, and 125 nucleotide sequences were obtained.
     (3) Homology similarity was compared.with the known genes in GenBank BLAST. 193 known genes sequences in GenBank mouse genomes database showed homology similarity with the differential bands DNA sequences, the function of these 193 genes is in different categories, such as signal transduction, development, angiogenesis, immune and inflammatory response, regulation of transcription, cell differentiation, etc; The function of some genes among 193 genes is still unknown today. 6 sequences showed no significant similarity in GenBank mouse genomes database, These 6 sequences were submitted to GenBank database, which assigned accession numbers are EF176681, EF473140, EF473141, EF473142, EF473143, EF473144, respectively. These genes and sequences may be BPDE-induced tumor associated genes or sequences.
     (4) EFNB2 mRNA and protein expressed abundantly in A549 lung cancer cell lines according to the results of RT-PCR and immunofluorescence.
     (5) Small interference RNA (siRNA) expressed by RNAi plasmid expression vector can inhibit the expression of EFNB2 mRNA and protein in A549 lung cancer cell lines.
     (6) The number of A549 lung cancer cells clone formation, A549 lung cancer cells adhesion to vascular endothelial cells, A549 lung cancer cells invasion through Matrigel micropore membrane in vitro significantly decreased when EFNB2 gene silencing compared with control groups. Silencing of EFNB2 gene expression may significantly inhibit A549 lung cancer cells' proliferation, adhesion and invasion ability in vitro.
     Conclusions
     Our data suggest that AFLP combination with IMS as a new effective and specific method can be used to screen BPDE target susceptible genes from whole genomes in mice, that the genes and sequences abtained by AFLP combination with IMS may be BPDE-induced tumor associated genes or sequences, and that EFNB2 gene silencing may significantly inhibit A549 lung cancer cells' proliferation, adhesion and invasion ability in vitro.
引文
[1] 秦涛,赵立新,徐晓白.环境致癌物风险评价和生物标记物研究[J].化学进展,1997,9(1):22-35.
    [2] 2006年中国卫生事业发展情况统计公报[R].卫生部统计信息中心.北京,2007年5月.httP://www.chinacdc.net.cn/n272442/n272530/n274625/17481.html.
    [3] 2006年中国“吸烟与健康”报告[R].中国癌症基金会,中国疾病预防控制中心,中国控制吸烟协会,中华医学会,中国健康教育协会,中国抗癌协会,全国肿瘤防治办公室.北京,2006年5月.
    [4] 李连弟,鲁凤珠,张思维.中国恶性肿瘤死亡率20年变化趋势和近期预测分析[J].中华肿瘤杂志,1997,19(1):3-9.
    [5] 杨玲,李连弟,陈育德,DMP.中国肺癌死亡趋势分析及发病、死亡的估计与预测[J].中国肺癌杂志,2005,8(4):274-278.
    [6] 陈意生,史景泉 著.肿瘤分子细胞生物学[M].北京:人民军医出版社,2002:159-175.
    [7] van Schooten FJ, Hillebrand MJ, van Leeuwen FE, Lutgerink JT, van Zandwijk N, Jansen HM, Kriek E. Polycyclic aromatic hydrocarbon-DNA adducts in lung tissue from lung cancer patients[J]. Carcinogenesis, 1990, 11(9): 1677-1681.
    [8] Mumford JL, Lee X, Lewtas J, Young TL, Santella RM. DNA adducts as biomarkers for assessing exposure to polycyclic aromatic hydrocarbons in tissues from Xuan Wei women with high exposure to coal combustion emissions and high lung cancer mortality[J]. Environ Health Perspect, 1993, 99:83-87.
    [9] Li D, Wang M, Cheng L, Spitz MR, Hittelman WN, Wei Q. In vitro induction of benzo(a)pyrene diol epoxide-DNA adducts in peripheral lymphocytes as a susceptibility marker for human lung cancer[J]. Cancer Res, 1996, 56(16):3638-3641.
    [10] WHO-IRAC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans[J]. IARC Monographs 2006, volume 92(in preparation):
    [11] McGregor WG; Wei D, Chen RH, Maher VM, McCormick JJ. Relationship between adduct formation, rates of excision repair and the cytotoxic and mutagenic effects of structurally-related polycyclic aromatic carcinogens[J]. Murat Res, 1997, 376(1-2): 143-152.
    [12] Quan T, Reiners JJ, Jr., Culp SJ, Richter P, States JC. Differential mutagenicity and cytotoxicity of (+/-)-benzo[a]pyrene-trans-7,8-dihydrodiol and (+/-)-anti-benzo[a]pyrene-trans-7,8-dihydrodiol-9,10-epoxide in genetically engineered human fibroblasts[J]. Mol Carcinog, 1995, 12(2):91-102.
    [13] Binkova B, Sram RJ. The genotoxic effect of carcinogenic PAHs, their artificial and environmental mixtures (EOM) on human diploid lung fibroblasts[J]. Mutat Res, 2004, 547(1-2):109-121.
    [14] Johnson DG, Coleman A, Powell KL, MacLeod MC. High-affinity binding of the cell cycle-regulated transcription factors E2F1 and E2F4 to benzo[a]pyrene diol epoxide-DNA adducts[J]. Mol Carcinog, 1997, 20(2):216-223.
    [15] Bitton A, Neuman MD, Barnoya J, Glantz SA. The p53 tumour suppressor gene and the tobacco industry: research, debate, and conflict of interest[J]. Lancet, 2005, 365(9458):531-540.
    [16] Hu W, Feng Z, Tang MS. Preferential carcinogen-DNA adduct formation at codons 12 and 14 in the human K-ras gene and their possible mechanisms[J]. Biochemistry, 2003, 42(33):10012-10023.
    [17] Fields WR, Desiderio JG, Leonard RM, Burger EE, Brown BG, Doolittle DJ. Differential c-myc expression profiles in normal human bronchial epithelial cells following treatment with benzo[a]pyrene, benzo[a]pyrene-4,5 epoxide, and benzo[a]pyrene-7,8-9,10 diol epoxide[J]. Mol Carcinog, 2004, 40(2):79-89.
    [18] Shen YM, Troxel AB, Vedantam S, Penning TM, Field J. Comparison of p53 mutations induced by PAH o-quinones with those caused by anti-benzo[a]pyrene diol epoxide in vitro: role of reactive oxygen and biological selection[J]. Chem Res Toxicol, 2006, 19(11):1441-1450.
    [19] Mass MJ, Jeffers AJ, Ross JA, Nelson G, Galati AJ, Stoner GD, Nesnow S. Ki-ras oncogene mutations in tumors and DNA adducts formed by benz[j]aceanthrylene and benzo[a]pyrene in the lungs of strain A/J mice[J]. Mol Carcinog, 1993, 8(3): 186-192.
    [20] Salas VM, Burchiel SW. Apoptosis in Daudi human B cells in response to benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol[J]. Toxicol Appl Pharmacol, 1998, 151(2):367-376.
    [21] Yu Z, Ford BN, Glickman BW. Identification of genes responsive to BPDE treatment in HeLa cells using cDNA expression assays[J]. Environ Mol Mutagen, 2000, 36(3):201-205.
    [22] 杨杰 著.李君文 指导.被动吸烟致小鼠肺癌模型的建立及抗氧化剂干预研究[D].军事医学科学院卫生学环境医学研究所,天津,博士学位论文,2006年5月.90-147.
    [23] Guimaraes MJ, Bazan JF, Zlotnik A, Wiles MV, Grimaldi JC, Lee F, McClanahan T. A new approach to the study of haematopoietic development in the yolk sac and embryoid bodies[J]. Development, 1995, 121(10):3335-3346.
    [24] Ryu HH, Jung S, Sun HS, Jung TY, Jin SG, Jin YH, Kim IY, Jeong YI, Kang SS. Screening for motility-associated genes in malignant astrocytoma cell lines[J]. J Neurooncol, 2007, 82(2):125-131.
    [25] Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J]. Science, 1995, 270(5235):467-470.
    [26] Bianchini M, Martinelli G, Renzulli M, Gonzalez Cid M, Larripa I. eDNA microarray study to identify expression changes relevant for apoptosis in K562 cells co-treated with amifostine and imatinib[J]. Cancer Chemother Pharmaeol, 2007, 59(3):349-360.
    [27] Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression[J]. Science, 1995, 270(5235):484-487.
    [28] Zhao Y, Raouf A, Kent D, Khattra J, Delaney A, Schnerch A, Asano J, McDonald H, Chan C, Jones S, Marra MA, Eaves CJ. A modified PCR-LongSAGE protocol identifies novel transcripts in human CD34+ bone marrow cells[J]. Stem Cells, 2007,
    [29] Lisitsyn N, Lisitsyn N, Wigler M. Cloning the differences between two complex genomes[J]. Science, 1993, 259(5097):946-951.
    [30] Nagaraja GM, Othman M, Fox BP, Alsaber R, Pellegrino CM, Zeng Y, Khanna R, Tamburini P, Swaroop A, Kandpal RP. Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics[J]. Oncogene, 2006, 25(16):2328-2338.
    [31] Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries[J]. Proc Natl Acad Sci U S A, 1996, 93(12):6025-6030.
    [32] Liu Y, Sun W, Zhang K, Zheng H, Ma Y, Lin D, Zhang X, Feng L, Lei W, Zhang Z, Guo S, Han N, Tong W, Feng X, Gao Y, Cheng S. Identification of genes differentially expressed in human primary lung squamous cell carcinoma[J]. Lung Cancer, 2007, 56(3):307-317.
    [33] Akopyants NS, Fradkov A, Diatchenko L, Hill JE, Siebert PD, Lukyanov SA, Sverdlov ED, Berg DE. PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori[J]. Proc Natl Acad Sci U S A, 1998, 95(22): 13108-13113.
    [34] Cavard C, Terris B, Grimber G, Christa L, Audard V, Radenen-Bussiere B, Simon MT, Renard CA, Buendia MA, Perret C. Overexpression of regenerating islet-derived 1 alpha and 3 alpha genes in human primary liver rumors with beta-catenin mutations[J]. Oncogene, 2006, 25(4):599-608.
    [35] 药立波 主编.医学分子生物学实验技术[M].北京:人民卫生出版社,2002,263-277.
    [36] Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, et al. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Res, 1995, 23(21):4407-4414.
    [37] Savelkoul PHM, Aarts HJM, Haas JD, Dijkshoorn L, Duim B, Otsen M, Rademaker JLW, Schouls L, Lenstra JA. Amplified-fragment length polymorphism analysis: the state of an art[J]. J Clin Microbiol, 1999, 37(10):3083-3091.
    [38] Valverde A, Okon Y, Burdman S, cDNA-AFLP reveals differentially expressed genes related to cell aggregation of Azospirillum brasilense[J]. FEMS Microbiol Lett, 2006, 265(2):186-194.
    [39] Majima S, Kajino K, Fukuda T, Otsuka F, Hino O. A novel gene "Niban" upregulated in renal carcinogenesis: cloning by the cDNA-amplified fragment length polymorphism approach[J]. Jpn J Cancer Res, 2000, 91(9):869-874.
    [40] 梁智勇,史景泉,魏泓,吴丰春,张树辉.应用AFLP法检测小鼠高、低转移性肝癌细胞株基因组的遗传差异[J].第三军医大学学报,2002,24(12):1416-1419.
    [41] 段惠莉 著.晁福寰,李君文 指导.免疫磁性纳米颗粒的制备、性能及在微生物检测中的初步应用[D].军事医学科学院卫生学环境医学研究所,天津,硕士学位论文,2005年6月.38-74.
    [42] Duan HL, Shen ZQ, Wang XW, Chao FH, Li JW. Preparation of immunomagnetic iron-dextran nanoparticles and application in rapid isolation of E.coli O157:H7 from foods[J]. World J Gastroenterol, 2005, 11(24):3660-3664.
    [43] Denissenko MF, Pao A, Pfeifer GP, Tang M. Slow repair of bulky DNA adducts along the nontranscribed strand of the human p53 gene may explain the strand bias of transversion mutations in cancers[J]. Oncogene, 1998, 16(10):1241-1247.
    [44] Zhan DJ, Heflich RH, Fu PP. Molecular characterization of mutation and comparison of mutation profiles in the hprt gene of Chinese hamster ovary cells treated with benzo[a]pyrene trans-7,8-diol-anti-9,10-epoxide, 1-nitrobenzo[a]pyrene trans-7,8-diol-anti-9,10-epoxide, and 3-nitrobenzo[a]pyrene trans-7,8- diol-anti-9,10-epoxide[J]. Environ Mol Mutagen, 1996, 27(1):19-29.
    [45] Jernstrom B, Graslund A. Covalent binding of benzo[a]pyrene 7,8-dihydrodiol 9,10-epoxides to DNA: molecular structures, induced mutations and biological consequences[J]. Biophys Chem, 1994, 49(3):185-199.
    [46] Li D, Firozi PF, Wang LE, Bosken CH, Spitz MR, Hong WK, Wei Q. Sensitivity to DNA damage induced by benzo(a)pyrene diol epoxide and risk of lung cancer: a case-control analysis[J]. Cancer Res, 2001, 61(4):1445-1450.
    [47] Weng MW, Hsiao YM, Chiou HL, Yang SF, Hsieh YS, Cheng YW, Yang CH, Ko JL. Alleviation of benzo[a]pyrene-diolepoxide-DNA damage in human lung carcinoma by glutathione S-transferase M2[J]. DNA Repair (Amst), 2005, 4(4):493-502.
    [48] Wang JJ, Marshall WD, Law B, Lewis DM. Fragmentation patterns of DNA-benzo(a)pyrene diol epoxide adducts characterized by nanoflow LC/quadrupole time-of-flight mass spectrometry [J]. Int J Mass Spectrom, 2003, 230(1):45-55.
    [49] J.萨姆布鲁克,D.W.拉塞尔 著.分子克隆实验指南[M].黄培堂,等译.第三版.北京:科学出版社,2002:1688-1689.
    [50] Yang H, Mazur-Melnyk M, de Boer JG, Glickman BW. A comparison of mutational specificity of mutations induced by S9-activated B[a]P and benzo[a]pyrene-7,8-diol-9,10-epoxide at the endogenous aprt gene in CHO cells[J]. Mutat Res, 1999, 423(1-2):23-32.
    [51] Osborne MR, Harvey RG, Brookes P. The reaction of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene with DNA involves attack at the N7-position of guanine moieties[J]. Chem Biol Interact, 1978, 20(1):123-130.
    [52] Maher VM, Patton JD, Yang JL, Wang YY, Yang LL, Aust AE, Bhattacharyya N, McCormick JJ. Mutations and homologous recombination induced in mammalian cells by metabolites of benzo[a]pyrene and 1-nitropyrene[J]. Environ Health Perspect, 1987, 76:33-39.
    [53] Maher VM, Yang JL, McCormick JJ. Ability of adducts formed in a shuttle vector by reactive metabolites of 1-nitropyrene and benzo(a)pyrene to induce mutations when the plasmid replicates in human cells[J]. Acta Biol Hung, 1990, 41(1-3):173-186.
    [54] Dong H, Bonala RR, Suzuki N, Johnson F, Grollman AP, Shibutani S. Mutagenic potential of benzo[a]pyrene-derived DNA adducts positioned in codon 273 of the human P53 gene[J]. Biochemistry, 2004, 43(50):15922-15928.
    [55] Bernelot-Moens C, Glickman BW, Gordon AJ. Induction of specific frameshift and base substitution events by benzo[a]pyrene diol epoxide in excision-repair-deficient Escherichia coli[J]. Carcinogenesis, 1990, 11(5):781-785.
    [56] Hanrahan CJ, Bacolod MID, Vyas RR, Liu T, Geacintov NE, Loechler EL, Basu AK. Sequence specific mutagenesis of the major (+)-anti-benzo[a]pyrene diol epoxide-DNA adduct at a mutational hot spot in vitro and in Escherichia coli cells[J]. Chem Res Toxicol, 1997, 10(4):369-377.
    [57] Shukla R, Liu T, Geacintov NE, Loechler EL. The major, N2-dG adduct of (+)-anti-B[a]PDE shows a dramatically different mutagenic specificity (predominantly, G --> A) in a 5'-CGT-3' sequence context[J]. Biochemistry, 1997, 36(33):10256-10261.
    [58] Israel HA. Immunomagnetic separation: a tool for microbiology[J]. Am Biotechnol Lab, 1994, 12(6):50-52.
    [59] Wright DJ, Chapman PA, Siddons CA. Immunomagnetic separation as a sensitive method for isolating Escherichia coli O157 from food samples[J]. Epidemiol Infect, 1994, 113(1):31-39.
    [60] Madonna AJ, Van Cuyk S, Voorhees KJ. Detection of Escherichia coli using immunomagnetic separation and bacteriophage amplification coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Rapid Commun Mass Spectrom, 2003, 17(3):257-263.
    [61] Tsai TY, Lee WJ, Huang YJ, Chen KL, Pan TM. Detection of viable enterohemorrhagic Escherichia coli O157 using the combination of immunomagnetic separation with the reverse transcription multiplex TaqMan PCR system in food and stool samples[J]. J Food Prot, 2006, 69(10):2320-2328.
    [62] Dziadkowiec D, Mansfield LP, Forsythe SJ. The detection of Salmonella in skimmed milk powder enrichments using conventional methods and immunomagnetic separation[J]. Lett Appl Microbiol, 1995,20(6):361-364.
    
    [63] Spanova A, Rittich B, Horak D, Lenfeld J, Prodelalova J, Sucikova J, Strumcova S. Immunomagnetic separation and detection of Salmonella cells using newly designed carriers[J]. J Chromatogr A, 2003, 1009(1-2):215-221.
    
    [64] Mercanoglu B, Griffiths MW. Combination of immunomagnetic separation with real-time PCR for rapid detection of Salmonella in milk, ground beef, and alfalfa sproutsf J]. J Food Prot, 2005,68(3):557-561.
    
    [65] Enroth H, Engstrand L. Immunomagnetic separation and PCR for detection of Helicobacter pylori in water and stool specimens[J]. J Clin Microbiol, 1995, 33(8):2162-2165.
    
    [66] Watanabe T, Tomita S, Kudo M, Kurokawa M, Orino A, Todo A, Chiba T. Detection of Helicobacter pylori gene by means of immunomagnetic separation-based polymerase chain reaction in feces[J]. Scand J Gastroenterol, 1998, 33(11):1140-1143.
    
    [67] Monceyron C, Grinde B. Detection of hepatitis A virus in clinical and environmental samples by immunomagnetic separation and PCR[J]. J Virol Methods, 1994,46(2): 157-166.
    
    [68] Grinde B, Jonassen TO, Ushijima H. Sensitive detection of group A rotaviruses by immunomagnetic separation and reverse transcription-polymerase chain reaction[J]. J Virol Methods, 1995, 55(3):327-338.
    
    [69] Kassimi LB, Gonzague M, Boutrouille A, Cruciere C. Detection of encephalomyocarditis virus in clinical samples by immunomagnetic separation and one-step RT-PCR[J]. J Virol Methods, 2002, 101(1-2):197-206.
    
    [70] Hallier-Soulier S, Guillot E. An immunomagnetic separation-reverse transcription polymerase chain reaction (IMS-RT-PCR) test for sensitive and rapid detection of viable waterborne Cryptosporidium parvum[J]. Environ Microbiol, 2003, 5(7):592-598.
    
    [71] Schmitz B, Radbruch A, Kummel T, Wickenhauser C, Korb H, Hansmann ML, Thiele J, Fischer R. Magnetic activated cell sorting (MACS)—a new immunomagnetic method for megakaryocytic cell isolation: comparison of different separation techniques[J]. Eur J Haematol, 1994, 52(5):267-275.
    
    [72] Lara O, Tong X, Zborowski M, Chalmers JJ. Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation[J]. Exp Hematol, 2004, 32(10):891-904.
    
    [73] Nakamura T, Matsunami K, Hayashi K, Ota M, Ide H, Takasaki K. Detection of bone marrow micrometastasis in esophageal cancer patients by immunomagnetic separation[J]. Oncol Rep, 2004, 11 (5):999-1003.
    
    [74] Matsunami K, Nakamura T, Oguma H, Kitamura Y, Takasaki K. Detection of bone marrow micrometastasis in gastric cancer patients by immunomagnetic separation[J]. Ann Surg Oncol, 2003, 10(2):171-175.
    
    [75] La Rosa G, De Carolis E, Sali M, Papacchini M, Riccardi C, Mansi A, Paba E, Alquati C, Bestetti G, Muscillo M. Genetic diversity of bacterial strains isolated from soils, contaminated with polycyclic aromatic hydrocarbons, by 16S rRNA gene sequencing and amplified fragment length polymorphism fingerprinting[J]. Microbiol Res, 2006, 161(2):150-157.
    [76] Lai Z, Faris JD, Weiland JJ, Steffenson BJ, Friesen TL. Genetic mapping of Pyrenophora teres f. teres genes conferring avirulence on barley[J]. Fungal Genet Biol, 2007, 44(5):323-329.
    [77] Waldenstrom J, On SL, Ottvall R, Hasselquist D, Olsen B. Species diversity of campylobacteria in a wild bird community in Sweden[J]. J Appl Microbiol, 2007,102(2):424-432.
    
    [78] Yao YX, Li M, Liu Z, Hao YJ, Zhai H. A novel gene, screened by cDNA-AFLP approach, contributes to lowering the acidity of fruit in apple[J]. Plant Physiol Biochem, 2007, 45(2):139-145.
    
    [79] Wang JP, Bughrara SS. Monitoring of gene expression profiles and identification of candidate genes involved in drought responses in Festuca mairei[J]. Mol Genet Genomics, 2007, 277(5):571-587.
    
    [80] Suprunova T, Krugman T, Distelfeld A, Fahima T, Nevo E, Korol A. Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley[J]. Plant Mol Biol, 2007, 64(1-2):17-34.
    
    [81] Wong KY, Chuan YC, Aggarwal A, Tham L, Kong WM, Tan P. Identifying patterns of DNA for tumor diagnosis using capillary electrophoresis-amplified fragment length polymorphism (CE-AFLP) screening[J]. J Bioinform Comput Biol, 2004, 2(3):569-587.
    
    [82] Fukuda T, Kido A, Kajino K, Tsutsumi M, Miyauchi Y, Tsujiuchi T, Konishi Y, Hino O. Cloning of differentially expressed genes in highly and low metastatic rat osteosarcomas by a modified cDNA-AFLP method[J]. Biochem Biophys Res Commun, 1999,261(1):35-40.
    
    [83] Vandeput F, Zabeau M, Maenhaut C. Identification of differentially expressed genes in thyrotropin stimulated dog thyroid cells by the cDNA-AFLP technique[J]. Mol Cell Endocrinol, 2005, 243(1-2):58-65.
    
    [84] Matsunaga H, Hangai N, Aso Y, Okano K, Kawamura M, Kobayashi K, Kambara H, Hoger JH, Mitsuhashi M. Application of differential display to identify genes for lung cancer detection in peripheral blood[J]. Int J Cancer, 2002, 100(5):592-599.
    
    [85]姜勇,罗深秋主编.细胞信号转导的分子基础与功能调控[M].北京:科学出版社, 2005.236—266
    
    [86] Rascher G, Fischmann A, Kroger S, Duffner F, Grote EH, Wolburg H. Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin[J]. Acta Neuropathol (Berl), 2002, 104(1):85-91.
    
    [87] Warth A, Kroger S, Wolburg H. Redistribution of aquaporin-4 in human glioblastomacorrelates with loss of agrin immunoreactivity from brain capillary basal laminae[J]. Acta Neuropathol (Berl), 2004, 107(4):311-318.
    
    [88] Tatrai P, Dudas J, Batmunkh E, Mathe M, Zalatnai A, Schaff Z, Ramadori G, Kovalszky I. Agrin, a novel basement membrane component in human and rat liver, accumulates in cirrhosis and hepatocellular carcinoma[J]. Lab Invest, 2006, 86(11): 1149-1160.
    
    [89] Macias-Silva M, Hoodless PA, Tang SJ, Buchwald M, Wrana JL. Specific activation of Smadl signaling pathways by the BMP7 type I receptor, ALK2[J]. J Biol Chem, 1998, 273(40):25628-25636.
    
    [90] Rothhammer T, Poser I, Soncin F, Bataille F, Moser M, Bosserhoff AK. Bone morphogenic proteins are overexpressed in malignant melanoma and promote cell invasion and migration[J]. Cancer Res, 2005, 65(2):448-456.
    
    [91] Yang S, Zhong C, Frenkel B, Reddi AH, Roy-Burman P. Diverse biological effect and Smad signaling of bone morphogenetic protein 7 in prostate tumor cells[J]. Cancer Res, 2005, 65(13):5769-5777.
    
    [92] Langenfeld EM, Bojnowski J, Perone J, Langenfeld J. Expression of bone morphogenetic proteins in human lung carcinomas[J]. Ann Thorac Surg, 2005, 80(3): 1028-1032.
    
    [93] Yamashita S, Tsujino Y, Moriguchi K, Tatematsu M, Ushijima T. Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2'-deoxycytidine treatment and oligonucleotide microarray[J]. Cancer Sci, 2006, 97(1):64-71.
    
    [94] Beck SE, Jung BH, Fiorino A, Gomez J, Rosario ED, Cabrera BL, Huang SC, Chow JY, Carethers JM. Bone morphogenetic protein signaling and growth suppression in colon cancer[J]. Am J Physiol Gastrointest Liver Physiol, 2006, 291(1):G135-145.
    
    [95] Alarmo EL, Kuukasjarvi T, Karhu R, Kallioniemi A. A comprehensive expression survey of bone morphogenetic proteins in breast cancer highlights the importance of BMP4 and BMP7[J]. Breast Cancer Res Treat, 2007, 103(2):239-246.
    
    [96] Myrie KA, Percy MJ, Azim JN, Neeley CK, Petty EM. Mutation and expression analysis ofhuman BUB1 and BUB10B in aneuploid breast cancer cell lines[J]. Cancer Lett, 2000, 152(2):193-199.
    
    [97] Yuan B, Xu Y, Woo JH, Wang Y, Bae YK, Yoon DS, Wersto RP, Tully E, Wilsbach K, Gabrielson E. Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability[J]. Clin Cancer Res, 2006, 12(2):405-410.
    
    [98] Scintu M, Vitale R, Prencipe M, Pia Gallo A, Bonghi L, Valori VM, Maiello E, Rinaldi M, Signori E, Rabitti C, Carella M, Dallapiccola B, Altomare V, Fazio VM, Parrella P. Genomic instability and increased expression of BUB1B and MAD2L1 genes in ductal breast carcinoma[J]. Cancer Lett, 2007, in press.
    
    [99] Hempen PM, Kurpad H, Calhoun ES, Abraham S, Kern SE. A double missense variation of the BUB1 gene and a defective mitotic spindle checkpoint in the pancreatic cancer cell line Hs766T[J]. Hum Mutat, 2003, 21(4):445.
    
    [100] Yamamoto Y, Matsuyama H, Chochi Y, Okuda M, Kawauchi S, Inoue R, Furuya T, Oga A, Naito K, Sasaki K. Overexpression of BUBR1 is associated with chromosomal instability in bladder cancer[J]. Cancer Genet Cytogenet, 2007, 174(1):42-47.
    
    [101] 詹启敏 主编.分子肿瘤学[M]。北京:人民卫生出版社,2005,306-309.
    
    [102] Blaschke S, Mueller CA, Markovic-Lipkovski J, Puch S, Miosge N, Becker V, Mueller GA, Klein G. Expression of cadherin-8 in renal cell carcinoma and fetal kidney[J]. Int J Cancer, 2002, 101(4):327-334.
    
    [103] Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K. Molecular characterization of the tumor microenvironment in breast cancer[J]. Cancer Cell, 2004, 6(1):17-32.
    
    [104] Schwarze SR, Luo J, Isaacs WB, Jarrard DF. Modulation of CXCL14 (BRAK) expression in prostate cancer[J]. Prostate, 2005,64(1):67-74.
    
    [105] Ozawa S, Kato Y, Komori R, Maehata Y, Kubota E, Hata R. BRAK/CXCL14 expression suppresses tumor growth in vivo in human oral carcinoma cells[J]. Biochem Biophys Res Commun, 2006, 348(2):406-412.
    
    [106] Kim S, Ghil SH, Kim SS, Myeong HH, Lee YD, Suh-Kim H. Overexpression of neurogeninl induces neurite outgrowth in F11 neuroblastoma cells[J]. Exp Mol Med, 2002, 34(6):469-475.
    
    [107] Li J, Kleeff J, Esposito I, Kayed H, Felix K, Giese T, Buchler MW, Friess H. Expression analysis of PMP22/Gas3 in premalignant and malignant pancreatic lesions[J]. J Histochem Cytochem, 2005, 53(7):885-893.
    [108] Huhne K, Park O, Liehr T, Rautenstrauss B. Expression analysis of the PMP22 gene in glioma and osteogenic sarcoma cell lines[J]. J Neurosci Res, 1999,58(5):624-631.
    
    [109] Tang XX, Evans AE, Zhao H, Cnaan A, London W, Cohn SL, Brodeur GM, Ikegaki N. High-level expression of EPHB6, EFNB2, and EFNB3 is associated with low tumor stage and high TrkA expression in human neuroblastomas[J]. Clin Cancer Res, 1999, 5(6): 1491-1496.
    
    [110] Takai N, Miyazaki T, Fujisawa K, Nasu K, Miyakawa I. Expression of receptor tyrosine kinase EphB4 and its ligand ephrin-B2 is associated with malignant potential in endometrial cancer[J]. Oncol Rep, 2001, 8(3):567-573.
    
    [111] Liu W, Ahmad SA, Jung YD, Reinmuth N, Fan F, Bucana CD, Ellis LM. Coexpression of ephrin-Bs and their receptors in colon carcinoma[J]. Cancer, 2002, 94(4):934-939.
    
    [112] Kataoka H, Tanaka M, Kanamori M, Yoshii S, Ihara M, Wang YJ, Song JP, Li ZY, Arai H, Otsuki Y, Kobayashi T, Konno H, Hanai H, Sugimura H. Expression profile of EFNB1, EFNB2, two ligands of EPHB2 in human gastric cancer[J]. J Cancer Res Clin Oncol, 2002, 128(7):343-348.
    
    [113] Couzin J. Breakthrough of the year. Small RNAs make big splash[J]. Science, 2002, 298(5602):2296-2297.
    
    [114] Caplen NJ. RNAi as a gene therapy approach[J]. Expert Opin Biol Ther, 2003, 3(4):575-586.
    
    [115] Ngo VN, Davis RE, Lamy L, Yu X, Zhao H, Lenz G, Lam LT, Dave S, Yang L, Powell J, Staudt LM. A loss-of-function RNA interference screen for molecular targets in cancer[J]. Nature, 2006, 441(7089):106-110.
    
    [116] Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis[J]. Genes Dev, 1999, 13(3):295-306.
    
    [117] Gerety SS, Wang HU, Chen ZF, Anderson DJ. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development[J]. Mol Cell, 1999, 4(3):403-414.
    
    [118] Conover JC, Doetsch F, Garcia-Verdugo JM, Gale NW, Yancopoulos GD, Alvarez-Buylla A. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone[J]. Nat Neurosci, 2000, 3(11):1091-1097.
    
    [119] Tang XX, Zhao H, Robinson ME, Cohen B, Cnaan A, London W, Cohn SL, Cheung NK, Brodeur GM, Evans AE, Ikegaki N. Implications of EPHB6, EFNB2, and EFNB3 expressions in human neuroblastoma[J]. Proc Natl Acad Sci U S A, 2000, 97(20): 10936-10941.
    
    [120] Noren NK, Foos G, Hauser CA, Pasquale EB. The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway[J]. Nat Cell Biol, 2006, 8(8):815-825.
    
    [121] Dennis C. Small RNAs: the genome's guiding hand?[J]. Nature, 2002, 420(6917):732.
    
    [122] Silva JM, Hammond SM, Hannon GJ. RNA interference: a promising approach to antiviral therapy?[J]. Trends Mol Med, 2002, 8(11):505-508.
    
    [123] Xu L, Chen S, Bergan RC. MAPKAPK2 and HSP27 are downstream effectors of p38MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer[J]. Oncogene, 2006, 25(21):2987-2998.
    
    [124] Tijsterman M, Ketting RF, Okihara KL, Sijen T, Plaserk RHA. RNA helicase MUT-14-dependent gene silencing triggered in C. elegans by short antisense RNAs.[J]. Science, 2002 295(5555):694-697.
    
    [125] Martinez J, Patkaniowska A, Urlaub H, luhrmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi.[J]. Cell, 2002, 110(5):563-574.
    
    [126] Masood R, Kumar SR, Sinha UK, Crowe DL, Krasnoperov V, Reddy RK, Zozulya S, Singh J, Xia G, Broek D, Schonthal AH, Gill PS. EphB4 provides survival advantage to squamous cell carcinoma of the head and neck[J]. Int J Cancer, 2006,119(6):1236-1248.
    
    [127] Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N, Lindblom P, Shani M,Zicha D, Adams RH. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly[J]. Cell, 2006,124(1):161-173.
    [1] van Schooten FJ, Hillebrand MJ, van Leeuwen FE, Lutgerink JT, van Zandwijk N, Jansen HM, Kriek E. Polycyclic aromatic hydrocarbon-DNA adducts in lung tissue from lung cancer patients[J]. Carcinogenesis, 1990, 11(9):1677-1681.
    [2] Mumford JL, Lee X, Lewtas J, Young TL, Santella RM. DNA adducts as biomarkers for assessing exposure to polycyclic aromatic hydrocarbons in tissues from Xuan Wei women with high exposure to coal combustion emissions and high lung cancer mortality[J]. Environ Health Perspect, 1993, 99:83-87.
    [3] Li D, Wang M, Cheng L, Spitz MR, Hittelman WN, Wei Q. In vitro induction of benzo(a)pyrene diol epoxide-DNA adducts in peripheral lymphocytes as a susceptibility marker for human lung cancer[J]. Cancer Res, 1996, 56(16):3638-3641.
    [4] WHO-IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans[J]. IARC Monographs 2006, volume 92(in preparation)
    [5] McGregor WG, Wei D, Chen RH, Maher VM, McCormick JJ. Relationship between adduct formation, rates of excision repair and the cytotoxic and mutagenic effects of structurally-related polycyclic aromatic carcinogens[J]. Mutat Res, 1997, 376(1-2):143-152.
    [6] Quan T, Reiners JJ, Jr., Culp SJ, Richter P, States JC. Differential mutagenicity and cytotoxicity of (+/-)-benzo[a]pyrene-trans-7,8-dihydrodiol and (+/-)-anti-benzo[a]pyrene- trans-7,8-dihydrodiol -9,10-epoxide in genetically engineered human fibroblasts[J]. Mol Carcinog, 1995, 12(2):91-102.
    [7] Binkova B, Sram RJ. The genotoxic effect of carcinogenic PAHs, their artificial and environmental mixtures (EOM) on human diploid lung fibroblasts[J]. Mutat Res, 2004, 547(1-2):109-121.
    [8] Johnson DG, Coleman A, Powell KL, MacLeod MC. High-affinity binding of the cell cycle-regulated transcription factors E2F1 and E2F4 to benzo[a]pyrene diol epoxide-DNA adducts[J]. Mol Carcinog, 1997, 20(2):216-223.
    [9] 马林,古练权 著.化学生物学导论[M].北京:化学工业出版社,2005.181-204.
    [10] 陈意生,史景泉 著.肿瘤分子细胞生物学[M].北京:人民军医出版社,2002.159-175.
    [11] Osborne MR, Harvey RG, Brookes P. The reaction of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene with DNA involves attack at the N7-position of guanine moieties[J]. Chem Biol Interact, 1978, 20(1):123-130.
    [12] Wang JJ, Marshall WD, Law B, Lewis DM. Fragmentation patterns of DNA-benzo(a)pyrene diol epoxide adducts characterized by nanoflow LC/quadrupole time-of-flight mass spectrometry [J]. Int J Mass Spectrom, 2003, 230(1):45-55.
    [13] Maher VM, Patton JD, Yang JL, Wang YY, Yang LL, Aust AE, Bhattacharyya N, McCormick JJ. Mutations and homologous recombination induced in mammalian cells by metabolites of benzo[a]pyrene and 1-nitropyrene[J]. Environ Health Perspect, 1987, 76:33-39.
    [14] Maher VM, Yang JL, McCormick JJ. Ability of adducts formed in a shuttle vector by reactive metabolites of 1-nitropyrene and benzo(a)pyrene to induce mutations when the plasmid replicates in human cells[J]. Acta Biol Hung, 1990, 41(1-3):173-186.
    [15] Dong H, Bonala RR, Suzuki N, Johnson F, Grollman AP, Shibutani S. Mutagenic potential of benzo[a]pyrene-derived DNA adducts positioned in codon 273 of the human P53 gene[J]. Biochemistry, 2004, 43(50):15922-15928.
    [16] Bernelot-Moens C, Glickman BW, Gordon AJ. Induction of specific frameshift and base substitution events by benzo[a]pyrene diol epoxide in excision-repair-deficient Escherichia coli[J]. Carcinogenesis, 1990, 11(5):781-785.
    [17] Zhan DJ, Heflich RH, Fu PP. Molecular characterization of mutation and comparison of mutation profiles in the hprt gene of Chinese hamster ovary cells treated with benzo[a]pyrene trans-7,8-diol-anti-9,10-epoxide, 1-nitrobenzo[a]pyrene trans-7,8-diol-anti-9,10-epoxide, and 3-nitrobenzo[a]pyrene trans-7,8- diol-anti-9,10-epoxide[J]. Environ Mol Mutagen, 1996, 27(1):19-29.
    [18] Jernstrom B, Graslund A. Covalent binding of benzo[a]pyrene 7,8-dihydrodiol 9,10-epoxides to DNA: molecular structures, induced mutations and biological consequences[J]. Biophys Chem, 1994, 49(3):185-199.
    [19] Hanrahan CJ, Bacolod MD, Vyas RR, Liu T, Geacintov NE, Loechler EL, Basu AK. Sequence specific mutagenesis of the major (+)-anti-benzo[a]pyrene diol epoxide-DNA adduct at a mutational hot spot in vitro and in Escherichia coli cells[J]. Chem Res Toxicol, 1997, 10(4):369-377.
    [20] Shukla R, Liu T, Geacintov NE, Loechler EL. The major, N2-dG adduct of (+)-anti-B[a]PDE shows a dramatically different mutagenic specificity (predominantly, G --> A) in a 5'-CGT-3' sequence context[J]. Biochemistry, 1997, 36(33):10256-10261.
    [21] Lavrukhin OV, Lloyd RS. Mutagenic replication in a human cell extract of DNAs containing site-specific and stereospecific benzo(a)pyrene-7,8-diol-9,10-epoxide DNA adducts placed on the leading and lagging strands[J]. Cancer Res, 1998, 58(5):887-891.
    [22] Schoket B, H.Phillips D, Kostic S, Vincze I. Smoking-associated bulky DNA adducts in bronchial tissue related to CYP1A1 MSPI and GSTM1 genotypes in lung patients[J]. Carcinogenesis, 1998, 19(5):841-846.
    
    [23] Lodovici M, Luceri C, Guglielmi F, Bacci C, Akpan V, Fonnesu ML, Boddi V, Dolara P. Benzo(a)pyrene diolepoxide (BPDE)-DNA adduct levels in leukocytes of smokers in relation to polymorphism of CYP1A1, GSTM1, GSTP1, GSTT1, and mEH[J]. Cancer Epidemiol Biomarkers Prev, 2004, 13(8): 1342-1348.
    
    [24] Weng MW, Hsiao YM, Chiou HL, Yang SF, Hsieh YS, Cheng YW, Yang CH, Ko JL. Alleviation of benzo[a]pyrene-diolepoxide-DNA damage in human lung carcinoma by glutathione S-transferase M2[J]. DNA Repair (Amst), 2005, 4(4):493-502.
    
    [25] Randerath K, Reddy MV, Gupta RC. 32P-labeIing test for DNA damage[J]. Proc Natl Acad Sci U S A, 1981, 78( 10):6126-6129.
    
    [26] Gupta RC, Reddy MV, Randerath K. 32P-postlabeling analysis of non-radioactive aromatic carcinogen-DNA adducts[J]. Carcinogenesis, 1982,3(9):1081-1092.
    
    [27] Randerath E, Agrawal HP, Weaver JA, Bordelon CB, Randerath K. 32P-postlabeling analysis of DNA adducts persisting for up to 42 weeks in the skin, epidermis and dermis of mice treated topically with 7,12-dimethylbenz[a]anthracene[J]. Carcinogenesis, 1985, 6(8):1117-1126.
    
    [28] Mourato LL, Beland FA, Marques MM. 32P-Postlabeling of N-(deoxyguanosin- 8-yl)arylamine adducts: a comparative study of labeling efficiencies[J]. Chem Res Toxicol, 1999, 12(7):661-669.
    
    [29] Gupta RC. Enhanced sensitivity of 32P-postlabeling analysis of aromatic carcinogen:DNA adducts[J]. Cancer Res, 1985, 45(11 Pt 2):5656-5662.
    
    [30] Arif JM, Dresler C, Clapper ML, Gairola CG, Srinivasan C, Lubet RA, Gupta RC. Lung DNA adducts detected in human smokers are unrelated to typical polyaromatic carcinogens[J]. Chem Res Toxicol, 2006, 19(2):295-299.
    
    [31] Reddy MV, Randerath K. Nuclease P1-mediated enhancement of sensitivity of 32P-postlabeling test for structurally diverse DNA adducts[J]. Carcinogenesis, 1986, 7(9):1543-1551.
    
    [32] Totsuka Y, Nishigaki R, Enomoto S, Takamura-Enya T, Masumura K, Nohmi T, Kawahara N,Sugimura T, Wakabayashi K. Structures and biological properties of DNA adducts derived from N-nitroso bile acid conjugates[J]. Chem Res Toxicol, 2005, 18(10):1553-1562.
    
    [33] Randerath K, Randerath E, Danna TF, van Golen L, Putman KL. A new sensitive 32P-postlabeling assay based on the specific enzymatic conversion of bulky DNA lesions to radiolabeled dinucleotides and nucleoside 5'-monophosphates[J]. Carcinogenesis, 1989, 10(7):1231-1239.
    
    [34] Dunn BP, San RH. HPLC enrichment of hydrophobic DNA-carcinogen adducts for enhanced sensitivity of 32P-postlabeling analysis[J]. Carcinogenesis, 1988,9(6): 1055-1060.
    
    [35] Shibutani S, Kim SY, Suzuki N. 32P-postlabeling DNA damage assays: PAGE, TLC, and HPLC[J]. Methods Mol Biol, 2006, 314(307-321.
    
    [36] Lloyd DR, Hanawalt PC. p53-dependent global genomic repair of benzo[a]pyrene-7,8-diol-9,10-epoxide adducts in human cells[J]. Cancer Res, 2000, 60(3):517-521.
    
    [37] Li D, Firozi PF, Wang LE, Bosken CH, Spitz MR, Hong WK, Wei Q. Sensitivity to DNA damage induced by benzo(a)pyrene diol epoxide and risk of lung cancer: a case-control analysis[J]. Cancer Res, 2001, 61(4):1445-1450.
    [38] Santella RM, Lin CD, Cleveland WL, Weinstein IB. Monoclonal antibodies to DNA modified by a benzo[a]pyrene diol epoxide[J]. Carcinogenesis, 1984, 5(3):373-377.
    
    [39] Santella RM, Hsieh LL, Lin CD, Viet S, Weinstein IB. Quantitation of exposure to benzo[a]pyrene with monoclonal antibodies[J]. Environ Health Perspect, 1985,62:95-99.
    
    [40] Cheng YW, Hsieh LL, Lin PP, Chen CP, Chen CY, Lin TS, Su JM, Lee H. Gender differencein DNA adduct levels among nonsmoking lung cancer patients[J]. Environ Mol Mutagen, 2001, 37(4):304-310.
    
    [41] Santella RM, Weston A, Perera FP, Trivers GT, Harris CC, Young TL, Nguyen D, Lee BM, Poirier MC. Interlaboratory comparison of antisera and immunoassays for benzo[a]pyrene-diol-epoxide-I-modified DNA[J]. Carcinogenesis, 1988,9(7):1265-1269.
    
    [42] Mumford JL, Williams K, Wilcosky TC, Everson RB, Young TL, Santella RM. A sensitivecolor ELISA for detecting polycyclic aromatic hydrocarbon-DNA adducts in human tissues[J]. Mutat Res, 1996, 359(3):171-177.
    
    [43] Ovrebo S, Hewer A, Phillips DH, Haugen A. Polycyclic aromatic hydrocarbon-DNA adducts in coke-oven workers[J]. IARC Sci Publ, 1990, 104:193-198.
    
    [44] van Schooten FJ, Hillebrand MJ, Scherer E, den Engelse L, Kriek E. Immunocytochemical visualization of DNA adducts in mouse tissues and human white blood cells following treatment with benzo[a]pyrene or its diol epoxide. A quantitative approach[J]. Carcinogenesis, 1991, 12(3):427-433.
    
    [45] Godschalk RW, Ostertag JU, Zandsteeg AM, Van Agen B, Neuman HA, Van Straaten H, Van Schooten FJ. Impact of GSTM1 on aromatic-DNA adducts and p53 accumulation in human skin and lymphocytes[J]. Pharmacogenetics, 2001, 11(6):537-543.
    
    [46] Weston A, Bowman ED, Shields PG, Trivers GE, Poirier MC, Santella RM, Manchester DK.Detection of polycyclic aromatic hydrocarbon-DNA adducts in human lung[J]. Environ Health Perspect, 1993, 99:257-259.
    
    [47] Andreassen A, Kure EH, Nielsen PS, Autrup H, Haugen A. Comparative synchronous fluorescence spectrophotometry and 32P-postlabeling analysis of PAH-DNA adducts in human lung and the relationship to TP53 mutations[J]. Mutat Res, 1996,368(3-4):275-282.
    
    [48] Shinozaki R, Inoue S, Choi KS. Flow cytometric measurement of benzo[a]pyrene- diol-epoxide-DNA adducts in normal human peripheral lymphocytes and cultured human lung cancer cells[J]. Cytometry, 1998, 31(4):300-306.
    
    [49] Pfeifer GP, Denissenko MF, Tang MS. PCR-based approaches to adduct analysis[J]. Toxicol Lett, 1998, 102-103:447-451.
    
    [50] Wei D, Maher VM, McCormick JJ. Effect of nuclear environment on the distribution of benzo[a]pyrene diol epoxide-induced adducts in the HPRT gene of human fibroblasts[J]. Carcinogenesis, 1996, 17(12):2695-2701.
    
    [51] Tang MS, Zheng JB, Denissenko MF, Pfeifer GP, Zheng Y. Use of UvrABC nuclease to quantify benzo[a]pyrene diol epoxide-DNA adduct formation at methylated versus unmethylated CpG sites in the p53 gene[J]. Carcinogenesis, 1999, 20(6): 1085-1089.
    
    [52] Pfeifer GP. Measuring the formation and repair of DNA damage by ligation-mediated PCR[J]. Methods Mol Biol, 2006, 314:201-214.
    
    [53] Tretyakova N, Matter B, Jones R, Shallop A. Formation of benzo[a]pyrene diol epoxide-DNA adducts at specific guanines within K-ras and p53 gene sequences: stable isotope-labeling mass spectrometry approach[J]. Biochemistry, 2002,41(30):9535-9544.
    [54] Heisig V, Jeffrey AM, McGlade MJ, Small GJ. Fluorescence-line-narrowed spectra of polycyclic aromatic carcinogen-DNA adducts[J]. Science, 1984, 223(4633):289-291.
    
    [55] Jankowiak R, Lu P, Small GJ, Nishimoto M, Varanasi U, Kim SK, Geacintov NE. Fluorescence line-narrowing spectrometry: a versatile tool for the study of chemically initiated carcinogenesis[J]. J Pharm Biomed Anal, 1990, 8(2):113-121.
    
    [56] Vahakangas K, Haugen A, Harris CC. An applied synchronous fluorescencespectrophotometric assay to study benzo[a]pyrene-diolepoxide-DNA adducts[J]. Carci5nogenesis, 1985, 6(8):1109-1115.
    
    [57] Yang T, Huang Y, Cho BP. Synthesis and characterization of enantiomeric anti-2-fluorobenzo[a]pyrene-7,8-dihydrodiol-9,10-epoxides and their 2'-deoxyguanosine and oligodeoxynucleotide adducts[J]. Chem Res Toxicol, 2006, 19(2):242-254.
    
    [58] Pavanello S, Pulliero A, Saia BO, Clonfero E. Determinants of anti-benzo[a]pyrene diolepoxide-DNA adduct formation in lymphomonocytes of the general population[J]. Mutat Res, 2006,611(1-2):54-63.
    
    [59] Beland FA, Churchwell MI, Von Tungeln LS, Chen S, Fu PP, Culp SJ, Schoket B, Gyorffy E, Minarovits J, Poirier MC, Bowman ED, Weston A, Doerge DR. High-performance liquid chromatography electrospray ionization tandem mass spectrometry for the detection and quantitation of benzo[a]pyrene-DNA adducts[J]. Chem Res Toxicol, 2005, 18(8):1306-1315.
    
    [60] Wang JJ, Marshall WD, Frazer DG, Law B, Lewis DM. Characterization of DNA adducts from lung tissue of asphalt fume-exposed mice by nanoflow liquid chromatography quadrupole time-of-flight mass spectrometry[J]. Anal Biochem, 2003, 322(1):79-88.
    
    [61] Turteltaub KW, Frantz CE, Creek MR, Vogel JS, Shen N, Fultz E. DNA adducts in model systems and humans[J]. J Cell Biochem Suppl, 1993, 17F:138-148.
    
    [62] Pandey P, Weetall H. Evanescent fluorobiosensor for the detection of polyaromatichydrocarbon based on DNA intercalation.[J]. Appl Biochem Biotechnol, 1995, 55( 2 ):87-94.
    
    [63] Duhachek S, Kenseth J, Casale G, Small G, Porter M, Jankowiak R. Monoclonal antibody—gold biosensor chips for detection of depurinating carcinogen~DNA adducts by fluorescence line-narrowing spectroscopy.[J]. Anal Chem, 2000, 72(16):3709-3716.
    
    [64] Grubor NM, Shinar R, Jankowiak R, Porter MD, Small GJ. Novel biosensor chip for simultaneous detection of DNA-carcinogen adducts with low-temperature fluorescence[J]. Biosensors and Bioelectronics, 2004 19( 6 ):547-556.
    
    [65] Kerman K, Meric B, Ozkan D, Kara P, Erdem A, Ozsoz M. Electrochemical DNA biosensorfor the determination of benzo[a]pyrene-DNA adducts[J]. Analytica Chimica Acta, 2001 450:45-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700