用户名: 密码: 验证码:
miR-34a在骨肉瘤转移中的作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
miRNAs(microRNAs)是一类内源性、非编码蛋白的单链小分子RNA。其大小约为20~25nt,编码基因约占整个基因组的1%。miRNA参与基因的转录后调节,对基因表达具有重要调控作用。研究表明miRNA在各种真核细胞中广泛存在,参与生物体的生长发育、信号转导、组织分化、疾病发生等过程,还决定其它很多生物体发育和行为的变化。同时, miRNA在多种肿瘤的发生、发展中也扮演着相当重要的角色。
     miR-34a最早在C. elegans(Caenorhabditis elegan,秀丽隐杆线虫)中被发现,是一个进化保守miRNA家族miR-34s中的一员。Welch等最早将miR-34a与肿瘤发生发展联系起来。他们发现miR-34a的编码基因位于染色体1p36,并常在人神经母细胞瘤中缺失。miR-34a受经典抑癌基因p53的直接调控,在miR-34a上游约30kb区域部位有p53高度保守的结合位点。miR-34a通过下调CDK4、CDK6、E2F3、E2F5、c-Met等癌基因发挥其肿瘤抑制作用。在p53引起细胞周期的G1期阻滞、细胞衰老、凋亡等生物学行为中,miR-34a同样扮演着重要的角色。miR-34a的失活或缺失可能与多种肿瘤的发病机理有关,但目前miR-34a在骨肉瘤中的功能鲜有报道。因此,研究miR-34a在骨肉瘤中的功能、作用机制并进一步探索其临床应用具有重要意义。
     在前期的研究中,我们通过microRNA基因芯片技术对不同转移能力骨肉瘤细胞系(E10、H9)中差异表达的miRNA进行分析发现,miR-34a在E10细胞中的表达下调,所以本实验将在此基础上对miR-34a与骨肉瘤之间的关系进行更进一步的研究。
     研究目的:
     验证在不同转移能力骨肉瘤细胞系(E10、H9)中miR-34a的差异表达;研究miR-34a的在骨肉瘤SOSP-9607细胞中的生物学功能并进一步研究其作用机制,为miR-34a在骨肉瘤预后判断和治疗等方面的临床应用提供理论基础。
     研究方法:
     1.采用Realtime RT-PCR和Northern blotting分析的方法,对前期用miRNA基因芯片筛选出来的在不同转移能力骨肉瘤细胞系(E10、H9)中差异表达的miR-34a基因进行验证。
     2.构建人miR-34a的真核表达载体,用其转染SOSP-9607细胞,并用G418筛选miR-34a稳定表达细胞系,为进一步研究miR-34a在骨肉瘤中的功能及基因调控机制奠定实验基础。
     3.用pcDNA-miR34a或pcDNA3.1(+)转染骨肉瘤SOSP-9607细胞,观察其在骨肉瘤SOSP-9607细胞增殖,侵袭和迁移等方面的作用。构建裸鼠的骨肉瘤原位成瘤肺转移模型,并进一步研究miR-34a对骨肉瘤细胞原位成瘤能力和肺转移能力的影响。
     4.通过miRanda,TargetScan和PicTar等生物信息学计算方法,分析miR-34a可能的靶基因,并结合靶基因的功能最终确定待验证的靶基因。
     研究结果:
     1.分别用Northern blotting和Realtime RT-PCR的方法对miR-34a在E10、H9细胞中的表达进行验证,结果显示miR-34a在E10中的表达明显降低,与芯片检测的结果一致。
     2.成功构建了人miR-34a的真核表达载体pcDNA-miR34a。pcDNA-miR34a可于骨肉瘤SOSP-9607细胞中上调miR-34a的表达。获得了miR-34a高表达骨肉瘤细胞系。
     3.在体外,外源性miR-34a对SOSP-9607细胞的增殖,侵袭和迁移能力有明显的抑制作用。动物实验中,miR-34a对骨肉瘤的原位成瘤能力和肺转移能力同样有显著的抑制作用。
     4.通过miRanda、TargetScan和PicTar等生物信息学计算方法,分析miR-34a可能的靶基因,并结合靶基因的功能最终选出了几个待验证的miR-34a功能相关靶基因。分别为:c-Met、Bcl2、Notch -1和Notch-2。
     结论:
     1. miR-34a在不同转移能力骨肉瘤细胞系中差异表达,与骨肉瘤转移具有相关性。有必要对miR-34a在骨肉瘤转移中的功能及基因调控机制作进一步的深入研究。
     2.成功构建了人miR-34a的真核表达载体pcDNA-miR34a,并在骨肉瘤细胞SOSP-9607细胞中有效表达,为进一步研究miR-34a在骨肉瘤中的功能及基因调控机制奠定了实验基础。
     3. miR-34a具有显著的抑癌生物活性,将有可能成为骨肉瘤治疗的新靶点。
     4.通过生物信息学方法,初步确定了与miR-34a功能有可能相关的靶基因,为进一步验证miR-34a的靶基因指明了方向、奠定了基础。
miRNA (microRNA) is a class of endogenous non-protein-coding single-stranded small RNA, which is about 20-25 nt in length. Its coding genes account for approximately 1% of the entire genome. miRNA plays an important role in the post-transcriptional regulation of gene expression. Studies showed that miRNA expression is prevalent in a variety of eukaryotic cells and involved in the regulation of growth and development of organisms, signal transduction, tissue differentiation, disease occurrence and so on. Meanwhile, studies also showed that miRNA plays an important role in the occurrence and development of a variety of tumors.
     miR-34a, which was initially found in C. elegans (Caenorhabditis elegans), is a member of an evolutionarily conserved miRNA family, miR-34s. miR-34a, whose encoding gene is on chromosome 1p36, is correlated with tumor occurrence and frequently missed in human neuroblastoma. miR-34a is directly regulated by p53 tumor suppressor. There is a highly conserved p53 binding site which is approximately 30kb above the miR-34a encoding gene. miR-34a plays the tumor inhibitory role by down-regulating its targets such as CDK4, CDK6, E2F3, E2F5, c-Met and so on. miR-34a also plays an important role in the p53-induced G1 phase arrest of cell cycle, cell senescence, apoptosis and other biological behavior. The inactivation and absence of miR-34a may be related to the pathogenesis of a variety of tumors. However, the relationship between osteosarcoma and miR-34a has been reported rarely. Therefore, it is of great significance to study the fuction and mechanism and to further explore the clinical application of miR-34a in osteosarcoma.
     Previously, we have evaluated the expression of miR-34a in osteosarcoma with different metastatic capacities by using microRNA microarray assay. The results show that the expression of miR-34a was down-regulated in high-metastatic osteosarcoma cell lines E10. Therefore, in this study, we will further study the function and mechanism of miR-34a in osteosarcoma.
     Objective:
     To verify the differential expression of miR-34a in the osteosarcoma cell lines with different metastatic capacities (E10, H9); To study the function and mechanism of miR-34a in osteosarcoma SOSP-9607 cells in order to further promote the clinical application of miR-34a in osteosarcoma prognosis and treatment.
     Methods:
     1. To verify the differential expression of miR-34a in the osteosarcoma cell lines with different metastatic capacities (E10, H9) by using Northern blotting and Realtime RT-PCR.
     2. To construct a recombinant eukaryotic expression plasmid of miR-34a, pcDNA-miR34a. To transfect it into osteosarcoma SOSP-9607 cells, and obtain G418-selected stable cell lines.
     3. To evaluate the effects of miR-34a on proliferation, invasion and migration of osteosarcoma in vitro. To construct an osteosarcoma in situ tumor formation and pulmonary metastasis model, and then evaluate the effects of miR-34a on the capacities of in situ tumor formation and pulmonary metastasis.
     4. To predict miR-34a target genes by using bioinformatics calculation methods, such as miRanda, TargetScan and PicTar in combining with the fuctions of target genes. Ultimately, to selected the potential target genes that will be further verified.
     Results:
     1. We evaluated the differential expression of miR-34a in the osteosarcoma cell lines with different Metastatic capacities (E10, H9) by using Northern blotting and Realtime RT-PCR. The results showed that miR-34a was lower expressed in E10 cells as compared with H9 cells, which were consistent with the previous results from microRNA microarray assay.
     2. The human miR-34a eukaryotic expression vector pcDNA-miR34a was successfully constructed. pcDNA-miR34a can up-regulate the expression of miR-34a in osteosarcoma SOSP-9607 cells. Finally, we obtained stable osteosarcoma cells which expressed a high level of miR-34a.
     3. In vitro, miR-34a significantly inhibits the proliferation, invasion and migration of SOSP-9607 cells. And in vivo, miR-34a also remarkably inhibits the capacities of in situ tumor formation and pulmonary metastasis.
     4. We predicted miR-34a target genes by using bioinformatics methods, such as miRanda, TargetScan and PicTar in combining with the fuctions of target genes. Ultimately, we selected potential target genes that would be further verify. They are c-Met, Bcl2, Notch1 and Notch2.
     Conclusion:
     1. The expression of miR-34a in osteosarcoma cells, which is different in E10 and H9 cells, is closely correlated with the capacity of metastasis. Thus, it is of great significance to to further study the fuction and mechanism of miR-34a in osteosarcoma.
     2. The eukaryotic expression plasmid of miR-34a was successfully constructed and effectively expressed in osteosarcoma SOSP-9607 cells. This facilitated the further investigations of function and mechanism of miR-34a in osteosarcoma.
     3. Functioning as a tumor suppressor, miR-34a can be used as a potential target for the treatment of osteosarcoma.
     4. We predicted miR-34a target genes by using bioinformatics methods, and initially chosed three target genes that may correlate to the fuction of miR-34a. This facilitated the further verification of miR-34a target genes.
引文
[1] Clark J C, Dass C R, Choong P F. A review of clinical and molecular prognostic factors in osteosarcoma.[J]. J Cancer Res Clin Oncol,2008,134(3):281-297.
    [2] Kansara M, Thomas D M. Molecular pathogenesis of osteosarcoma.[J]. DNA Cell Biol,2007,26(1):1-18.
    [3] Berman S D, Calo E, Landman A S, et al. Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage.[J]. Proc Natl Acad Sci U S A,2008,105(33):11851-11856.
    [4] Walkley C R, Qudsi R, Sankaran V G, et al. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease.[J]. Genes Dev,2008,22(12):1662-1676.
    [5]蔡郑东,李国东.肿瘤转移机制研究新热点——ezrin蛋白[J].中华肿瘤杂志,2005,27(6):322-325.
    [6] Mankin H J, Hornicek F J, Rosenberg A E, et al. Survival data for 648 patients with osteosarcoma treated at one institution.[J]. Clin Orthop Relat Res,2004(429):286-291.
    [7] Leonard P, Sharp T, Henderson S, et al. Gene expression array profile of human osteosarcoma.[J]. Br J Cancer,2003,89(12):2284-2288.
    [8] Couzin J. Breakthrough of the year. Small RNAs make big splash.[J]. Science,2002,298(5602):2296-2297.
    [9] Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.[J]. Cell,1993,75(5):843-854.
    [10] Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.[J]. Nature,2000, 403(6772):901-906.
    [11] Berezikov E, Guryev V, van de Belt J, et al. Phylogenetic shadowing and computational identification of human microRNA genes.[J]. Cell,2005,120(1):21-24.
    [12]刘珍,盛秋菊. MiRNA的研究进展[J].继续医学教育,2006,20(32):70-72.
    [13] Chen C Z, Li L, Lodish H F, et al. MicroRNAs modulate hematopoietic lineage differentiation.[J]. Science,2004,303(5654):83-86.
    [14] Kim V N. MicroRNA precursors in motion: exportin-5 mediates their nuclear export.[J]. Trends Cell Biol,2004,14(4):156-159.
    [15] Lee Y S, Nakahara K, Pham J W, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways.[J]. Cell,2004,117(1):69-81.
    [16] Tijsterman M, Plasterk R H. Dicers at RISC; the mechanism of RNAi.[J]. Cell,2004,117(1):1-3.
    [17] Gregory R I, Chendrimada T P, Cooch N, et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing.[J]. Cell,2005, 123(4):631-640.
    [18] Sontheimer E J, Carthew R W. Molecular biology. Argonaute journeys into the heart of RISC.[J]. Science,2004,305(5689):1409-1410.
    [19] Zhang W, Dahlberg J E, Tam W. MicroRNAs in tumorigenesis: a primer.[J]. Am J Pathol,2007,171(3):728-738.
    [20] Llave C, Xie Z, Kasschau K D, et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA.[J]. Science, 2002,297(5589):2053-2056.
    [21] Ambros V. The functions of animal microRNAs.[J]. Nature, 2004,431(7006): 350-355.
    [22] Bagga S, Bracht J, Hunter S, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation.[J]. Cell,2005,122(4):553-563.
    [23] Lim L P, Lau N C, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.[J]. Nature,2005,433(7027):769-773.
    [24] Lewis B P, Shih I H, Jones-Rhoades M W, et al. Prediction of mammalian microRNA targets.[J]. Cell,2003,115(7):787-798.
    [25]吴丹,胡兰. miRNA及其研究进展[J].中国畜牧兽医,2006,33(1):40-42.
    [26] Carrington J C, Ambros V. Role of microRNAs in plant and animal development.[J]. Science,2003,301(5631):336-338.
    [27] Xia T, O'Hara A, Araujo I, et al. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3.[J]. Cancer Res,2008, 68(5): 1436-1442.
    [28] Kumar M S, Lu J, Mercer K L, et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis.[J]. Nat Genet,2007, 39(5):673-677.
    [29] Ma L, Teruya-Feldstein J, Weinberg R A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer.[J]. Nature,2007, 449(7163):682-688.
    [30] Cimmino A, Calin G A, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2.[J]. Proc Natl Acad Sci U S A,2005, 102(39):13944-13949.
    [31] Johnson S M, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family.[J]. Cell,2005,120(5):635-647.
    [32] Kluiver J, Haralambieva E, de Jong D, et al. Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma.[J]. Genes Chromosomes Cancer,2006,45(2):147-153.
    [33] Metzler M, Wilda M, Busch K, et al. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma.[J]. Genes Chromosomes Cancer,2004,39(2):167-169.
    [34] Gironella M, Seux M, Xie M J, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development.[J]. Proc Natl Acad Sci U S A,2007, 104(41):16170-16175.
    [35] Shreeram S, Hee W K, Demidov O N, et al. Regulation of ATM/p53- dependent suppression of myc-induced lymphomas by Wip1 phosphatase.[J]. J Exp Med,2006,203(13):2793-2799.
    [36] Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA- 155 for normal immune function.[J]. Science,2007,316(5824):608-611.
    [37] Voorhoeve P M, le Sage C, Schrier M, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors.[J]. Cell,2006,124(6):1169-1181.
    [38] Cheng A M, Byrom M W, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis.[J]. Nucleic Acids Res,2005,33(4):1290-1297.
    [39] Chan J A, Krichevsky A M, Kosik K S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells.[J]. Cancer Res,2005,65(14):6029-6033.
    [40] Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer.[J]. Gastroenterology,2007,133(2):647-658.
    [41] Enright A J, John B, Gaul U, et al. MicroRNA targets in Drosophila.[J]. Genome Biol,2003,5(1):R1.
    [42] Baranwal S, Alahari S K. miRNA control of tumor cell invasion and metastasis.[J]. Int J Cancer,2010,126(6):1283-1290.
    [43] Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis.[J]. Nat Cell Biol,2008,10(2):202-210.
    [44] Zhu S, Si M L, Wu H, et al. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1).[J]. J Biol Chem,2007,282(19):14328-14336.
    [45] Huang T H, Wu F, Loeb G B, et al. Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion.[J]. J Biol Chem,2009, 284(27): 18515-18524.
    [46] Schmittgen T D. miR-31: a master regulator of metastasis?[J]. Future Oncol,2010,6(1):17-20.
    [47] Segura M F, Hanniford D, Menendez S, et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor.[J]. Proc Natl Acad Sci U S A,2009,106(6):1814-1819.
    [48] Blenkiron C, Goldstein L D, Thorne N P, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumorsubtype.[J]. Genome Biol,2007,8(10):R214.
    [49] Calin G A, Ferracin M, Cimmino A, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia.[J]. N Engl J Med,2005,353(17):1793-1801.
    [50] Feber A, Xi L, Luketich J D, et al. MicroRNA expression profiles of esophageal cancer.[J]. J Thorac Cardiovasc Surg,2008,135(2):255-260, 260.
    [51] Mishima T, Akagi I, Miyashita M, et al. Study of MicroRNA expression profiles of esophageal cancer.[J]. J Nippon Med Sch,2009,76(1):43.
    [52] Lu J, Getz G, Miska E A, et al. MicroRNA expression profiles classify human cancers.[J]. Nature,2005,435(7043):834-838.
    [53] He L, He X, Lim L P, et al. A microRNA component of the p53 tumour suppressor network.[J]. Nature,2007,447(7148):1130-1134.
    [54] Hermeking H. p53 enters the microRNA world.[J]. Cancer Cell,2007, 12(5):414-418.
    [55] He X, He L, Hannon G J. The guardian's little helper: microRNAs in the p53 tumor suppressor network.[J]. Cancer Res,2007,67(23):11099-11101.
    [56] Raver-Shapira N, Marciano E, Meiri E, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis.[J]. Mol Cell,2007,26(5): 731-743.
    [57] Sun F, Fu H, Liu Q, et al. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest.[J]. FEBS Lett,2008,582(10):1564-1568.
    [58] Tazawa H, Tsuchiya N, Izumiya M, et al. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells.[J]. Proc Natl Acad Sci U S A,2007,104(39):15472-15477.
    [59] Yan D, Zhou X, Chen X, et al. MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met.[J]. Invest Ophthalmol Vis Sci,2009,50(4):1559-1565.
    [60] Cho W C. OncomiRs: the discovery and progress of microRNAs in cancers.[J]. Mol Cancer,2007,6:60.
    [61]陈雪,李子坚,李力力,等.抑癌基因p53调控的微RNA——miR-34基因家族[J].生命的化学,2008,28(5):544-548.
    [62] Hermeking H. p53 enters the microRNA world.[J]. Cancer Cell,2007,12(5):414-418.
    [63] Asangani I A, Rasheed S A, Nikolova D A, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer.[J]. Oncogene,2008,27(15):2128-2136.
    [64] Li Y, Vandenboom T N, Wang Z, et al. miR-146a suppresses invasion of pancreatic cancer cells.[J]. Cancer Res,2010,70(4):1486-1495.
    [65] Negrini M, Calin G A. Breast cancer metastasis: a microRNA story.[J]. Breast Cancer Res,2008,10(2):203.
    [66] Musiyenko A, Bitko V, Barik S. Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCaP cells.[J]. J Mol Med,2008,86(3):313-322.
    [67] Efeyan A, Garcia-Cao I, Herranz D, et al. Tumour biology: Policing of oncogene activity by p53.[J]. Nature,2006,443(7108):159.
    [68] Vousden K H. Functions of p53 in metabolism and invasion.[J]. Biochem Soc Trans,2009,37(Pt 3):511-517.
    [69] Li N, Fu H, Tie Y, et al. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells.[J]. Cancer Lett,2009,275(1):44-53.
    [70] Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA- mediated gene silencing.[J]. Cell,2008,132(1):9-14.
    [71] Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function.[J]. Cell,2004,116(2):281-297.
    [72] Kloosterman W P, Plasterk R H. The diverse functions of microRNAs in animal development and disease.[J]. Dev Cell,2006,11(4):441-450.
    [73] Tang X, Muniappan L, Tang G, et al. Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulintranscription.[J]. RNA,2009,15(2):287-293.
    [74] Welch C, Chen Y, Stallings R L. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells.[J]. Oncogene,2007,26(34):5017-5022.
    [75] Yang N, Kaur S, Volinia S, et al. MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer.[J]. Cancer Res,2008,68(24):10307-10314.
    [76] Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans.[J]. Science,2001,294(5543):862-864.
    [77] Varkonyi-Gasic E, Wu R, Wood M, et al. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs.[J]. Plant Methods,2007,3:12.
    [78] Varallyay E, Burgyan J, Havelda Z. Detection of microRNAs by Northern blot analyses using LNA probes.[J]. Methods,2007,43(2):140-145.
    [79] Pall G S, Codony-Servat C, Byrne J, et al. Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot.[J]. Nucleic Acids Res, 2007,35(8):e60.
    [80] Sun Y, Koo S, White N, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs.[J]. Nucleic Acids Res,2004,32(22):e188.
    [81] Chen C, Ridzon D A, Broomer A J, et al. Real-time quantification of microRNAs by stem-loop RT-PCR.[J]. Nucleic Acids Res,2005, 33(20): e179.
    [82] Krichevsky A M, King K S, Donahue C P, et al. A microRNA array reveals extensive regulation of microRNAs during brain development.[J]. RNA,2003,9(10):1274-1281.
    [83] Thomson J M, Parker J, Perou C M, et al. A custom microarray platform for analysis of microRNA gene expression.[J]. Nat Methods, 2004,1(1): 47-53.
    [84] Wu J, Bonsra A N, Du G. pSM155 and pSM30 vectors for miRNA andshRNA expression.[J]. Methods Mol Biol,2009,487:205-219.
    [85] Shan Z X, Lin Q X, Deng C Y, et al. [Plasmid-mediated miRNA-1-2 specifically inhibits Hand2 protein expression in H9C2 cells][J]. Nan Fang Yi Ke Da Xue Xue Bao,2008,28(9):1559-1561, 1567.
    [86] Lodygin D, Tarasov V, Epanchintsev A, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer.[J]. Cell Cycle,2008, 7(16):2591-2600.
    [87] Zenz T, Mohr J, Eldering E, et al. miR-34a as part of the resistance network in chronic lymphocytic leukemia.[J]. Blood,2009, 113(16): 3801-3808.
    [88] Zenz T, Mohr J, Edelmann J, et al. Treatment resistance in chronic lymphocytic leukemia: the role of the p53 pathway.[J]. Leuk Lymphoma, 2009,50(3):510-513.
    [89] Yan D, Zhou X, Chen X, et al. MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met.[J]. Invest Ophthalmol Vis Sci,2009,50(4):1559-1565.
    [90] He L, He X, Lim L P, et al. A microRNA component of the p53 tumour suppressor network.[J]. Nature,2007,447(7148):1130-1134.
    [91] Cho W C. OncomiRs: the discovery and progress of microRNAs in cancers.[J]. Mol Cancer,2007,6:60.
    [92] He X, He L, Hannon G J. The guardian's little helper: microRNAs in the p53 tumor suppressor network.[J]. Cancer Res,2007,67(23):11099-11101.
    [93] Yamakuchi M, Lowenstein C J. MiR-34, SIRT1 and p53: the feedback loop.[J]. Cell Cycle,2009,8(5):712-715.
    [94] Hermeking H. The miR-34 family in cancer and apoptosis.[J]. Cell Death Differ,2010,17(2):193-199.
    [95] Maziere P, Enright A J. Prediction of microRNA targets.[J]. Drug Discov Today,2007,12(11-12):452-458.
    [96] Krek A, Grun D, Poy M N, et al. Combinatorial microRNA target predictions.[J]. Nat Genet,2005,37(5):495-500.
    [97] Li Y, Guessous F, Zhang Y, et al. MicroRNA-34a inhibits glioblastomagrowth by targeting multiple oncogenes.[J]. Cancer Res,2009,69(19): 7569-7576.
    [98]曾心一. PCNA和Bcl-2在骨肉瘤组织中的表达及临床意义[J].亚太传统医药,2009,5(9):12-13.
    [99]龚旭,张玉诺,刘方欣,等. RNA干扰bcl-2基因对人骨肉瘤细胞株MG63增殖影响的实验研究[J].重庆医学,2009,38(4):441-442, 446页.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700