ebv-miR-BHRF1-1通过抑制p53调节鼻咽癌细胞中EBV感染状态的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
miRNA(microRNA)是近年来发现的一类长约22nt的非编码小RNA分子。在胞浆内与特定蛋白形成微核酸蛋白复合体(miRNPs,micro-ribonucleouproteins),通过对靶基因mRNA的序列特异性裂解、抑制翻译的起始或延长、降解多聚腺苷酸尾或者介导肽链水解等机制在翻译水平抑制其靶基因的表达。但是,人们对miRNA在形成蛋白复合体并靶向调节基因的过程中的具体机制,仍然知之甚少。miRNAs广泛存在于从病毒到高等多细胞生物,目前采用生物信息学预测,在低等多细胞动物和植物中存在一两百条miRNAs,而在人类可能存在至少一千条。对miRNAs功能的研究提示几乎参与所有细胞内进程的调节,在包括肿瘤在内的人类所有病理过程中都能观察到其表达的异常。这一发现与生物信息学所预测的,哺乳动物中约30%蛋白编码基因受到miRNAs的调节相一致。
     病毒在感染宿主细胞后,需要调节自身和宿主两方面的基因表达,使其自身存在得以维持和复制,潜伏感染以维持自身存在,部分进入复制周期以使自身繁殖扩增,两者之间的平衡,避免了自身过多复制引起宿主细胞的死亡。这种平衡对病毒来说很重要。多数病毒也能编码miRNAs并广泛参与病毒与宿主的相互作用。EB病毒是人类疱疹病毒,与包括鼻咽癌在内的多种人类疾病密切相关。该病毒目前发现编码至少32条miRNAs,据其在基因组中的位置分为两组:BHRF1组和BART组。其中BHRF1组位于病毒复制早期基因BHRF1内,BART组则位于病毒潜伏期转录产物BART内。BART组miRNA已证实可以抑制病毒复制,维持其较低的复制水平。BHRF1组在病毒裂解复制水平增高时表达增加,提示其与病毒裂解复制的调控相关。但是,生物信息学分析并没有发现BHRF1组miRNA在病毒裂解复制期基因中存在作用位点,只有ebv-miR-BHRF1-1在人p53mRNA 3'-非编码区(3'-UTR,3'-Untranslated regions)存在两个作用靶位点。
     P53是重要的抑癌基因,在多种肿瘤中存在突变。但是,在鼻咽癌中p53基因的突变频率很低(<10%),并出现了p53蛋白积聚现象。作为调节细胞周期进程和细胞凋亡的重要基因,多数病毒在宿主细胞内进行自身复制时,需要通过不同的途径来抑制p53的功能,来使宿主细胞内环境处于类S期,并抑制细胞的凋亡,为病毒自身复制提供原料和赢得时间。而且研究发现,EB病毒裂解复制立刻早期基因蛋白Zta,作为病毒裂解复制的开关基因,在病毒进入裂解复制周期时可以和p53结合,抑制其转录激活功能。说明EB病毒在复制过程中同样需要抑制p53的功能以为其自身复制提供有利条件。那么野生型p53蛋白在鼻咽癌中的积聚,可能在鼻咽癌中EB病毒低水平复制的维持中具有重要意义。
     由此,我们推测:EBV编码的ebv-miR-BHRF1-1可能通过调节宿主细胞相关基因p53的表达,进而调节p53与Zta相互作用而参与调节EBV潜伏与裂解两种状态的转换。
     我们采用TPA诱导SUNE1内病毒裂解复制水平增高后,采用RT-PCR方法证实在病毒裂解复制水平增高后,ebv-miR-BHRF1-1的表达也随之上调,而p53蛋白水平和下游基因mdm2水平随之下调,同时细胞周期检测证实S期细胞增加而凋亡细胞减少,ebv-miR-BHRF1-1的上调与p53的下调及功能受抑有利于病毒复制,且两者之间存在联系。
     然后,我们采用反义RNA特异性抑制ebv-miR-BRHRF1-1之后,再以TPA处理SUNE1,发现病毒裂解复制早期蛋白Zta和Ea-D上调幅度减小,说明裂解复制水平提高的幅度减小,而p53蛋白水平和mdm2水平的下调也减弱,mdm2水平甚至得到逆转,说明p53功能的受抑制程度也得到了逆转。
     接下来,我们构建ebv-miR-BHRF1-1的过表达载体,转染SUNE1细胞,观察GFP蛋白表达证实转染效率,以RT-PCR检测证实成熟ebv-miR-BHRF1-1得到表达,再检测病毒复制早期蛋白Zta和Ea-D水平以及p53蛋白和mdm2蛋白水平,比较对病毒复制水平的影响和对p53的抑制作用。发现在过表达ebv-miR-BHRF1-1后,病毒裂解复制水平提高而p53蛋白水平和功能受到了抑制。
     以上研究结果表明,EB病毒编码的miR-BHRF1-1通过调节宿主细胞相关基因p53的表达参与病毒裂解复制的调节,初步阐明EBV编码的miR-BHRF1-1参与调节EBV两种感染状态的平衡以及维持EBV的持续存在中的作用机制。为EBV相关肿瘤的发生机制提供新的理论依据,并为以EBV编码的miRNAs为切入点治疗EBV相关肿瘤的实验研究提供新的理论和实验依据。
miRNAs(microRNAs)constitute a large family of approximately 22-nucleotide-long non-coding small RNAs that have been found in recent years,miRNAs have been known as key post-transcriptional regulators of gene expression through translational repression or mRNA degradation in metazoans and plants.However,the mechanistic details of the functions of miRNAs in protein synthesis repression are still poorly understood,miRNAs have been found to located from virus to multicellular organisms.About 100-200 miRNAs are expressed in lower metazoans and plants,but at least 1000 are predicted to operate in humans,miRNA are predicated to control the activity of approximately 30%of all protein-coding genes,which have been shown to participate in the regulation of almost all cellular process investigated so far and the changes in their expression are observed in human pathologies,including cancer.
     After infecting the host cell,virus regulate its and the host cell's gene expression to maintain its existence and get moderate replication,in witch,latent infectious state maintains the infection and replication results in diffusion.It is very important that the balance between the two states can avoid the host cell death caused by excessive reproduce.Most of viruses have been found to encode miRNAs that widely participate in the host-virus interaction.Epstein-Barr virus,which belongs to the human herpes virus,has high correlation with many human diseases including nasopharyngeal carcinoma.Epstein-Barr virus encodes at least 32 miRNAs within two clusters depending on their gene location in the virus' genome:the BHRF1-cluster and the BART-cluster.The BHRF1-cluster miRNAs located in the BHRF1,one of the lytic early genes,while the BART-cluster miRNAs is included in the transcripts named BART,which is a product of latent infection.It has been proved that the BART-cluster miRNAs can suppress virus reproduction to maintain the low reproduction of virus during latent infection.The high level of BHRF1-cluster miRNAs in cell lines with high level virus reproduction indicates that the BHRF1-cluster miRNAs may correlate to the regulation of lytic cycle.But bioinformatics predict that there are no potential target sites of the BHRF1-cluster miRNAs on the EBV encoded mRNAs.Interestingly,two target sites of miR-BHR1-1 lies in the 3'-UTR (3'-Untranslated regions)of p53 mRNA.
     P53 is an important tumor suppress gene which mutate in many neoplasm.But p53 mutation is infrequently observed in NPC biopsies. Meanwhile,accumulation of wild-type p53 is observed.During their reproduction many virus need to suppress the function of p53 via multiple mechanisms to provide an s-phase-like host cell environment and to prevent cell apoptosis to get enough time for their reproduction. Present investigation tells us that Zta,the product of EBV lytic immediate early gene BZLF1,can bind to p53 and suppress its transcript active function.It indicates that EBV needs to suppress the p53 function to create an advantageous environment for virus reproduction.So,the wild-type p53 with high level in NPC biopsies may have significance in the maintenance of virus latent infection in NPC.
     So we assume that the EBV encoded miR-BHRF1-1 may contribute to the induction of lytic cycle of EBV through inhibits the translation of P53 in NPC.
     First,our study showed that after being induced by TPA into lytic cycle the miR-BHRF1-1 increased while the p53 and its downstream gene production mdm2 decreased.Moreover,the percent of S-phase cell enhanced while apoptosis declined.These phenomena indicate that there may be relations between the up-regulation of miR-BHRF1-1 and the down-regulation of p53,and this relation may be involved in the lytic cycle of EBV in NPC.
     Second,after being transfected with anti-sense RNA targeted to miR-BHRF1-1,the inductive effect of TPA on EBV to lytic cycle in SUNE1 was retarded.At the same time,the suppression of the p53 and mdm2 after inducing EBV entry lytic cycle was decreased;what's more, the suppression of mdm2 even reversed.
     Then,we constructed the expression plasmid of miR-BHRF1-1 and transiently transfected SUNE1 for 48 hours.After normalizing the transfective efficiency by observing the GFP expression under fluoroscopy,and we proved the expression of mature miR-BHRF1-1 by RT-PCR.Successively,we detected the Zta and Ea-D and proved that the reproduction of EBV was enhanced.Then we detected the p53 and mdm2 simultaneously and proved that the p53 was suppressed.
     The above data indicate that EBV encoded miR-BHRF1-1 are involved in the switch between different infective states of EBV to maintain the existence of virus by inhibiting the p53.And this discovery proves a new clue for pathogenesis of EBV-related neoplasm and provides new experimental base for research of using EBV encoded miRNA for the treatment of EBV related neoplasm.
引文
1.Bartel,D.P.,MicroRNAs:genomics,biogenesis,mechanism,and function.Cell,2004.116(2):p.281-97.
    2.Filipowicz,W.,S.N.Bhattacharyya,and N.Sonenberg,Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight?,in Nat Rev Genet.2008.p.102-14.
    3.Lee,Y.,et al.,MicroRNA genes are transcribed by RNA polymerase Ⅱ.Embo J,2004.23(20):p.4051-60.
    4.Borchert,G.M.,W.Lanier,and B.L.Davidson,RNA polymerase Ⅲtranscribes human microRNAs.Nat Struct Mol Biol,2006.13(12):p.1097-101.
    5.Yi,R.,et al.,Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs.Genes Dev,2003.17(24):p.3011-6.
    6.Vasudevan,S.,Y.Tong,and J.A.Steitz,Switching from repression to activation:microRNAs can up-regulate translation.Science,2007.318(5858):p.1931-4.
    7.Yang,B.,et al.,The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2.Nat Med,2007.13(4):p.486-91.
    8.Bandres,E.,et al.,Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.Mol Cancer,2006.5:p.29.
    9.Calin,G.A.,et al.,Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.Proc Natl Acad Sci U S A,2002.99(24):p.15524-9.
    10.Calin,G.A.,et al.,MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias.Proc Natl Acad Sci U S A,2004.101(32):p.11755-60.
    11.Calin,G.A.,et al.,Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc Natl Acad Sci U S A,2004.101(9):p.2999-3004.
    12.Chen,C.Z.,MicroRNAs as oncogenes and tumor suppressors.N Engl J Med,2005.353(17):p.1768-71.
    13.Eis,ES.,et al.,Accumulation of miR-155 and BIC RNA in human B cell lymphomas.Proc Natl Acad Sci U S A,2005.102(10):p.3627-32.
    14.Esquela-Kerscher,A.and F.J.Slack,Oncomirs - microRNAs with a role in cancer.Nat Rev Cancer,2006.6(4):p.259-69.
    15.Hayashita,Y.,et al.,A polycistronic microRNA cluster,miR-17-92,is overexpressed in human lung cancers and enhances cell proliferation.Cancer Res,2005.65(21):p.9628-32.
    16.He,H.,et al.,The role of microRNA genes in papillary thyroid carcinoma.Proc Natl Acad Sci U S A,2005.102(52):p.19075-80.
    17.He,L.,et al.,A microRNA polycistron as a potential human oncogene.Nature,2005.435(7043):p.828-33.
    18.Iorio,M.V.,et al.,MicroRNA gene expression deregulation in human breast cancer.Cancer Res,2005.65(16):p.7065-70.
    19.Lee,H.J.,M.Palkovits,and W.S.Young,3rd,miR-7b,a microRNA up-regulated in the hypothalamus after chronic hyperosmolar stimulation,inhibits Fos translation.Proc Natl Acad Sci U S A,2006.103(42):p.15669-74.
    20.Metzler,M.,et al.,High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma.Genes Chromosomes Cancer,2004.39(2):p.167-9.
    21.Michael,M.Z.,et al.,Reduced accumulation of specific microRNAs in colorectal neoplasia.Mol Cancer Res,2003.1(12):p.882-91.
    22.Takamizawa,J.,et al.,Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival.Cancer Res,2004.64(11):p.3753-6.
    23.Sullivan,C.S.,et al.,SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells.Nature,2005.435(7042):p.682-6.
    24.Scaria,V.,et al.,Host-virus interaction:a new role for microRNAs.Retrovirology,2006.3:p.68.
    25.Pfeffer,S.and O.Voinnet,Viruses,microRNAs and cancer.Oncogene,2006.25(46):p.6211-9.
    26.Cullen,B.R.,Viruses and microRNAs.Nat Genet,2006.38 Suppl:p.S25-30.
    27.Pfeffer,S.,et al.,Identification of microRNAs of the herpesvirus family.Nat Methods,2005.2(4):p.269-76.
    28.Yeung,M.L.,et al.,Changes in microRNA expression profiles in HIV-1-transfected human cells.Retrovirology,2005.2:p.81.
    29.Qi,P.,et al.,Virus-encoded microRNAs:future therapeutic targets? Cell Mol Immunol,2006.3(6):p.411-9.
    30.Cai,X.,et al.,Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells.Proc Natl Acad Sci U S A,2005.102(15):p.5570-5.
    31.Gregory,R.I.and R.Shiekhattar,MicroRNA biogenesis and cancer.Cancer Res,2005.65(9):p.3509-12.
    32.Grinstein,S.,et al.,Demonstration of Epstein-Barr virus in carcinomas of various sites.Cancer Res,2002.62(17):p.4876-8.
    33.Young,L.S.and A.B.Rickinson,Epstein-Barr virus.40 years on.Nat Rev Cancer,2004.4(10):p.757-68.
    34.Kim do,N.,et al.,Expression of viral microRNAs in Epstein-Barr virus-associatedgastric carcinoma.J Virol,2007.81(2):p.1033-6.
    35.Hoshikawa,Y.,et al.,Evidence of lytic infection of Epstein-Barr virus(EBV)in EBV-positive gastric carcinoma.J Med Virol,2002.66(3):p.351-9.
    36.Wang,H.,et al.,BZLF1 controlled by family repeat domain induces lytic cytotoxicity in Epstein-Barr virus-positive tumor cells.Anticancer Res,2004.24(1):p.67-74.
    37.Brown,H.J.,et al.,NF-kappaB inhibits gammaherpesvirus lytic replication.J Virol,2003.77(15):p.8532-40.
    38.Morrison,T.E.and S.C.Kenney,BZLF1,an Epstein-Barr virus immediate-early protein,induces p65 nuclear translocation while inhibiting p65 transcriptional function.Virology,2004.328(2):p.219-32.
    39.Prince,S.,et al.,Latent membrane protein 1 inhibits Epstein-Barr virus lytic cycle induction and progress via different mechanisms.J Virol,2003.77(8):p.5000-7.
    40.Pearson,G.R.,et al.,Identification of an Epstein-Barr virus early gene encoding a second component of the restricted early antigen complex.Virology,1987.160(1):p.151-61.
    41.Dawson,C.W.,et al.,Functional differences between BHRF1,the Epstein-Barr virus-encoded Bcl-2 homologue,and Bcl-2 in human epithelial cells.J Virol,1998.72(11):p.9016-24.
    42.Chen,H.,et al.,Regulation of expression of the Epstein-Barr virus BamHI-A rightward transcripts.J Virol,2005.79(3):p.1724-33.
    43.Smith,P.R.,et al.,Structure and coding content of CST(BART)family RNAs of Epstein-Barr virus.J Virol,2000.74(7):p.3082-92.
    44.de Jesus,O.,et al.,Updated Epstein-Barr virus(EBV)DNA sequence and analysis of a promoter for the BART(CST,BARF0)RNAs of EBV.J Gen Virol,2003.84(Pt 6):p.1443-50.
    45.Pfeffer,S.,et al.,Identification of virus-encoded microRNAs.Science,2004.304(5671):p.734-6.
    46.Cai,X.,et al.,Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed.PLoS Pathog,2006.2(3):p.e23.
    47.Grundhoff,A.,C.S.Sullivan,and D.Ganem,A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses.Rna,2006.12(5):p.733-50.
    48.Lo,A.K.,et al.,Modulation of LMP1 protein expression by EBV-encoded microRNAs.Proc Natl Acad Sci U S A,2007.104(41):p.16164-9.
    49.Barth,S.,et al.,Epstein-Barr virus-encoded microRNA miR-BART2down-regulates the viral DNA polymerase BALF5.Nucleic Acids Res,2008.36(2):p.666-75.
    50.Motsch,N.,et al.,Epstein-Barr Virus-Encoded Latent Membrane Protein 1(LMP1)Induces the Expression of the Cellular MicroRNA miR-146a.RNA Biol,2007.4(3):p.131-7.
    51.Shu,K.X.,B.Li,and L.X.Wu,The p53 network:p53 and its downstream genes.Colloids Surf B Biointerfaces,2007.55(1):p.10-8.
    52.Raver-Shapira,N.,et al.,Transcriptional activation of miR-34a contributes to p53-mediated apoptosis.Mol Cell,2007.26(5):p.731-43.
    53.He,L.,et al.,A microRNA component of the p53 tumour suppressor network.Nature,2007.447(7148):p.1130-4.
    54.Tarasov,V.,et al.,Differential regulation of microRNAs by p53 revealed by massively parallel sequencing:miR-34a is a p53 target that induces apoptosis and G1-arrest.Cell Cycle,2007.6(13):p.1586-93.
    55.Deng,L.,et al.,Cells in G2/M phase increased in human nasopharyngeal carcinoma cell line by EBV-LMP1 through activation of NF-kappaB and AP-1.Cell Res,2003.13(3):p.187-94.
    56.Zhang,Q.,D.Gutsch,and S.Kenney,Functional and physical interaction between p53 and BZLF1:implications for Epstein-Barr virus latency.Mol Cell Biol,1994.14(3):p.1929-38.
    57.Kudoh,A.,et al.,Reactivation of lytic replication from B cells latently infected with Epstein-Barr virus occurs with high S-phase cyclin-dependent kinase activity while inhibiting cellular DNA replication.J Virol,2003.77(2):p.851-61.
    58.Kudoh,A.,et al.,Epstein-Barr virus lytic replication elicits ATM checkpoint signal transduction while providing an S-phase-like cellular environment.J Biol Chem,2005.280(9):p.8156-63.
    59.Mauser,A.,et al.,The Epstein-Barr virus immediate-early protein BZLF1regulates p53 function through multiple mechanisms.J Virol,2002.76(24):p. 12503-12.
    60.Greenhalgh,D.A.,et al.,12-O-tetradecanoylphorbol-13-acetate promotion of transgenic mice expressing epidermal-targeted v-fos induces rasHA-activated papillomas and carcinomas without p53 mutation:association of v-fos expression with promotion and tumor autonomy.Cell Growth Differ,1995.6(5):p.579-86.
    61.Lo,Y.M.,et al.,Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma.Cancer Res,1999.59(6):p.1188-91.
    62.Ishiyama,T.,et al.,Natural killer(NK)lymphocytosis induced by Epstein-Barr virus(EBV)reactivation in monoclonal gammopathy of undetermined significance(MGUS).Clin Exp Immunol,1996.105(1):p.46-51.
    63.Krumbholz,A.,et al.,Comparison of a LightCycler-based real-time PCR for quantitation of Epstein-Barr viral load in different clinical specimens with semiquantitative PCR.J Med Virol,2006.78(5):p.598-607.
    64.Davies,A.H.,et al.,Induction of Epstein-Barr virus lytic cycle by tumor-promoting and non-tumor-promoting phorbol esters requires active protein kinase C.J Virol,1991.65(12):p.6838-44.
    65.Scheffner,M.,et al.,The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53.Cell,1990.63(6):p.1129-36.
    66.Mietz,J.A.,et al.,The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein.Embo J,1992.11(13):p.5013-20.
    67.Wang,X.W.,et al.,Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding,transcriptional activity,and association with transcription factor ERCC3.Proc Natl Acad Sci U S A,1994.91(6):p.2230-4.
    68.Martin,M.E.and A.J.Berk,Adenovirus E1B 55K represses p53 activation in vitro.J Virol,1998.72(4):p.3146-54.
    69.Xia,T.,et al.,EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3.Cancer Res,2008.68(5):p.1436-42.
    70.Xing,L.and E.Kieff,Epstein-Barr virus BHRF1 micro- and stable RNAs during latency Ⅲ and after induction of replication.J Virol,2007.81(18):p.9967-75.
    71.Lu,C.C.,et al.,Genome-wide transcription program and expression of the Rta responsive gene of Epstein-Barr virus.Virology,2006.345(2):p.358-72.
    1.LEE R C,FEINBAUM R L,AMBROSV1 The Clelegans hetero chronic gene lin-4 encodes small RNAswith antisense comp lemen2tarity to lin-14[J]1 Cell, 1993, 75 : 843-854.
    2. REINHART B J, SLACK F J, BASSON M, et all The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditiselegans[ J ]1 Nature, 2000, 403 : 901-906.
    3. SMALLR IDGE R1 A small fortune [ J ] 1 Nat RevMol Cell Biol, 2001, 2 (12) : 867.
    4. DAV ID P B 1MicroRNAs: genomics, biogenesis, mechanism, andfunction[ J ]1 Cell, 2004,116:281-297.
    5. LEE Y, KIM M, HAN J, et al1 MicroRNA genes are transcribedby RNA polymerase II [J] EMBO J, 2004,23 (20): 4051-4060.
    6. CAL IN G A, SEV IQNAN I C, DUM ITRU C D, et al1 Human microRNA genes are frequently located at fragile sites and genomicregions involved in cancers[ J]1 Proc Natl Acad Sci USA, 2004,101 (9): 2999-3004.
    7. CAL IN G A, L IU C G, SEV IQNAN I C, et al. MicroRNA p refiling reveals distint signatures in B cell chronic lymphocytic leukemias[ J ] . Proc Natl Acad Sci USA, 2004,101 (32 ): 11755-117601
    8. ESQUELA2KERSCHER A, SLACK F J. Oncomirs ( microRNAswith a role in cancer[ J ]. Nat Rev Cancer, 2006, 6 (4): 259-2691
    9. GREGORY R I, SH IEKHATTAR R1 MicroRNA biogenesis andcancer. Cancer Res[ J ]. 2005, 65 (9): 3509-35121
    10. MARKUSM, MON IKA W, KERSTIN B, et al. High expression of p recursormicroRNA215 /B IC RNA in children with Burkitt lymphoma[J]1 Genes, Chromosomes &Cancer, 2004, 39 : 167-169.
    11. EIS P S, TAM W, SUN L, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas [ J ]. Proc Natl Acad SciUSA, 2005, 102 (10) : 3627-3632.
    12. HE L, THOMSON JM, HEMANNM T, et al. A microRNA polycistron as a potential human oncogene [J] .Nature, 2005,435:828-833.
    13. MICHAEL M Z, O, CONNOR SM, VAN HOST PELLEKAAN NG, et all Reduced accumulation of specificmicroRNAs in colorectal neoplasia[ J ].Mol Cancer Res, 2003,1 : 882-891.
    14. TAKAMIZAWA J, KON ISH I H, YANAGISAWA K, et all Reduced exoresion of the let-7 microRNAs in human lung cancers inassociation with shortened postoperative survia.[ J ]. Cancer Res,2004, 64: 3753-3756.
    15. CAL IN GA, DUMITRU C D, SH IMIZUM, et al1 Frequent deletions and down regulation of microRNA genes miR-15 and miR-16 at 13q14 in chronic lymphocytic [ J ]. Proc Natl Acad Sci USA, 2002, 99 (24): 15524-15529.
    16. CIMM INO A, CAL IN G A, FABBR IM, et al. miR-15 and miR-16 induce apop tosis by targeting BCL2 [J]. Proc Natl Acad SciUSA, 2005, 102 (39) : 13944-13949.
    17. CHENG AM, BYROMMW, SHELTON J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apop tosis [ J ]. Nucleic Acids Res,2005, 33 (4): 1290-12971
    18. KARUBE Y, TANAKA H, OSAKA H, et al. Reduced exp ressionof Dicer associated with poor p rognosis in lung cancer patients[ J ].Cancer Sci, 2005, 96 (2): 111-1151
    19. O'DONNELL K A, WENTZEL E A, ZELLER K I, et all cMyc-regulated microRNAs modulated E2F1 exp ression [ J ]. Nature,2005,435 : 839-843.
    20. PFEFFER S, ZAVOLANM, GROSSER F A, et al1 Identificationof virus-encoded microRNAs[ J ]. Science, 2004, 304 : 734-736.
    21. CA IX, LU S, ZHANG Z, et all Kaposi's sarcoma associated herpes virus exp resses an array of viralmicroRNAs in latently infectedcells[ J ]. Proc Natl Acad Sci USA, 2005,102 (15 ): 5570-5575.
    22. PFEFFER S, SEWER A, LAGOSQU INTANA M, et al. Identification of microRNAs of the herpesvirus family [ J ]. Nat methods,2005, 2 (4): 269-276.
    23. LU J, GETZ G, MISKA E A, et al. MicroRNA expression profiles classify human cancers [ J ]. Nature, 2005,435 : 834-838.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700