Ba_(1-x)Bi_xTi_(1-y)Mn_yO_3和Bi_(5-x)La_xTi_3Fe_(1-y)Co_yO_(15)多铁陶瓷的磁性、铁电性以及介电性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有两种或者两种以上的铁性性质的材料被称为多铁材料,其中铁性包括铁磁性、铁电性和铁弹性。多铁材料可能具有的磁电耦合效应有希望通过外加磁场来控制电荷或者通过外加电场来控制自旋。这种行为在设计多功能器件上具有非常诱人的应用前景,它为传统的传感器、激励器、存储器件提供了一个额外的自由度。例如,目前常用的存储材料有磁存储器和铁电存储器,磁存储器采用磁写磁读,其读取速度快但是写入慢,而铁电存储器采用电写电读,读取复杂而写入快,如果使用磁电耦合材料为记录介质,做成电写磁读,则可能同时实现超高速率的读写过程。此外,磁电材料还有可能应用在多态记忆元,电场控制的磁共振装置、磁场控制的压电传感器、电场控制的压磁传感器、磁力成像技术和检测,磁场屏蔽等各种领域中。因此对于多铁材料的研究,不仅在理论上具有重要的意义,同时在技术和应用层面上有着广阔的应用前景。
     本文对单相多铁材料的研究做了以下几个方面的工作:
     (1)使用溶胶凝胶法制备了Bi,Mn共掺杂BaTi03名义组分为Ba1-xBixTi1-yMny03(0≤y≤0.08)块材样品,成功的在不破坏铁电性的情况下,在纯的铁电体BaTi03中引入了铁磁性,形成了一个单相多铁体系。并对Bi和Mn掺杂浓度对样品磁性的影响进行了研究。研究表明,固定Mn掺杂量的样品,Bi离子的掺杂组分增加,样品的磁性增加;固定Bi的掺杂量,在Mn的掺杂量较低时(x≤0.04),样品的铁磁性较为明显。对于样品室温铁磁性的起因,我们采用晶界缺陷诱导的束缚磁极化子理论来进行解释。
     (2)研究了Ba1-xBixTi1-yMnyO3 (0≤y≤0.08)块材样品的介电性质和铁电性质。它们的介电转变峰Tm均在室温以上,具有弛豫铁电性;随着Mn掺杂组分的增加介电常数峰值向高温移动,样品的介电损耗增大。所有的样品都具有铁电性;对于Bi掺杂量为0.07和0.1的样品,当Mn的掺杂量从0增加到0.02时矫顽力和剩余极化先减小,此后随着Mn的掺杂量的增加,矫顽力和剩余极化又单调增加。分析认为以上结果均是由于Bi和Mn掺杂导致的结构变化以及氧空位浓度的变化两者共同作用所造成的。
     (3)使用溶胶凝胶法制备了名义组分为Bi5-xLaxTi3Fe0.5Co0.5O15(0≤x≤0.4)的陶瓷块材。研究了烧结温度和掺杂组分对体系磁性的影响。在不掺La的情况下,不同烧结温度时,Bi5Ti3Fe0.5Co0.5O15体系在室温下都表现出弱铁磁性;随着烧结温度的升高,10000e下的样品的ZFC和FC开始出现多个交叉点,以最高温度1000℃烧结的样品最为明显;掺La以后样品室温的磁化强度有所增强,ZFC和FC并没有出现异常的行为。这种现象认为是两种相互作用竞争作用的结果。从后面的研究可以知道,这两种相互作用分别是单离子各向异性和反对称的DM相互作用。
     (4)研究了烧结温度和La掺杂浓度对Bi5-xLaxTi3Fe0.5Co0.5O15体系的介电性以及铁电性的影响。所有的样品的介电常数和介电损耗都是随着频率的增加而减小;烧结温度增加介电性变差,剩余极化和矫顽力先增大后减小;La掺杂使得介电性增强,电滞回线矫顽力减小;对于烧结温度为850℃的样品,其剩余极化随着La掺杂量的增加而增加,而对于烧结温度为1000℃的样品,剩余极化随着La掺杂量的增加而减少。介电性能主要是受氧空位浓度的影响,铁电性的变化规律就是颗粒尺寸效应和Bi挥发两种效应竞争的结果。
     (5)在Bi5Co0.5Fe0.5Ti3O15材料体系发现了负磁化现象,研究了烧结温度、外加场大小以及B位掺杂量的变化对(0.4≤y≤0.6)材料体系的负磁化现象的影响。烧结温度达到9000C样品开始出现负磁化效应,并且烧结温度越高,负磁化的绝对值越大。对于1000℃烧结的样品,随着外加场的增加,负磁化的补偿温度向低温移动,当外加场足够大时,负磁化现象消失;随着Co掺杂量的增加,补偿温度向高温移动。结合前面的研究结果以及相关文献报道,我们认为负磁化行为是反对称的DM相互作用与单离子各向异性的相互竞争造成的,而Bi挥发导致的晶格畸变增大是这两种作用可以达到相互竞争程度的诱因。
Such materials, which combine two or more "ferroic" properties in the same phase, are known as multiferroics. These materials may exhibit magnetoelectric coupling effect, which shows the prospect of controlling charges by applied magnetic fields and spins by applied voltages, and using this to construct new forms of multifunctional devices. It can provide a more degree of freedom for conventional sensor, actuator and memory. For example, the memories we already used are magnetic storage and ferroelectric RAM (FRAM). Magnetic storage adopt magnetic read and write with low reading speed and high writing speed, while FRAM adopt electric read and write with high the reading speed and low writing speed. If we use the magnetoelectric material as storage medium and carry out magnetic read and electric write, the super-high speed of read and write could be achieved. Besides, magnetoelectric materials still have the application potential in multi-state storage medium, spin magnetic resonance controlled by applied electric field, Piezoelectric sensors controlled by applied magnetic field, magneto-elastic transducer controlled by applied electric field, magnetic shield and so on. Therefore, the research of multiferroic materials has a very important significance both in theory and in technology and commerciality.
     In this thesis, we have done the following work:
     (1) We synthesized Bi and Mn co-doped BaTiO3 ceramics with the nominal composition of Ba1-xBixTi1-yMnyO3(0     (2) We studied the dielectric and ferroelectric properties of the Ba1-xBixTi1-yMnyO3 (0≤y≤0.08), the dielectric peak of all the samples are above the room temperature, and all the samples show relaxor ferroelectric behavior. As the increasing of Mn content, the dielectric peak move to high temperature, the dielectric loss is increased. All the samples show ferroelectric properties; as for the 0.07 and 0.1 Bi content, as the Mn content increasing from 0 to 0.02, the coercive force and remnant polarization is decreased, as the Mn content further increasing, the coercive force and remnant polarization increase monotonously. We believe that all the experiment results are result from both the structure distortion and the concentration of oxygen vacancies which induced by Bi and Mn dopant.
     (3) The nominal composition of Bi5-xLaxTi3Fe0.5Co0.5015(0     (4) The effects of sintering temperature and doping content on the magnetism in Bi5-xLaxTi3Fe0.5Co0.5015(0     (5) We found negative magnetization effect in the Bi5Co0.5Fe0.5Ti3O15 ceramics, the effects of sintering temperature, applied magnetic field and doping content of B sites on negative magnetization effect have been studied. The negative magnetization effect appear when the sintering temperature achieved 900℃. As the sintering temperature increasing, the absolute value of the negative magnetization increases. As for the sample sintered at 1000℃, with increasing (positive) magnetic field, the compensation temperature decreases and the magnetization changes from negative to positive value at high-enough fields; With the Co content increasing, the compensation temperature move to high temperature.
     Consider with the magnetic effect we mentioned before and some literature, we believe the negative magnetization effect is the competition between single-ion magnetocrystalline anisotropy and antisymmetric Dzyaloshinsky-Moriya interactions. The lattice distortion induced by Bi volatilization is the important reason to make the energy of two mechanisms comparable.
引文
[1]Maxwell J. C. A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London 1865,155:459-512
    [2]Landau L. D., Lif ic E. M. Course of theoretical physics:The classical theory of fields. Pergamon Press.,2009
    [3]Aharonov Y., Casher A. Topological quantum effects for neutral particles. Physical Review Letters,1984,53 (4):319-321
    [4]Aharonov Y., Bohm D. Significance of electromagnetic potentials in the quantum theory. Physical Review,1959,115(3):485
    [5]Cheong S. W., Mostovoy M. Multiferroics:a magnetic twist for ferroelectricity. Nature materials,2007,6(1):13-20
    [6]钟维烈.铁电体物理学.科学出版社,1996
    [7]Aizu K. ecirc and itsiro, Possible Species of Ferromagnetic, Ferroelectric, and Ferroelastic Crystals. Physical Review B,1970,2(3):754
    [8]Lines M. E., Glass A. M. Principles and applications of ferroelectrics and related materials. Oxford University Press, USA,2001
    [9]Hill N. A. Why are there so few magnetic ferroelectrics. The Journal of Physical Chemistry B,2000,104(29):6694-6709
    [10]冯端,金国钧.凝聚态物理学.2003
    [11]Spaldin N. A., Fiebig M. The renaissance of magnetoelectric multiferroics. Science 2005,309(5733):391
    [12]Eerenstein W., Mathur N., Scott J. Multiferroic and magnetoelectric materials. Nature,2006,442 (7104):759-765
    [13]Jona F., Shirane G. Ferroelectric crystals. Pergamon,1962
    [14]Schmid H. Multi-ferroic magnetoelectrics. Ferroelectrics,1994,162(1):317-338
    [15]Khomskii D. unpublished,2001
    [16]Kim J. K., Kim S. S., Kim W. J. Sol-gel synthesis and properties of multiferroic BiFeO3. Materials Letters,2005,59(29-30):4006-4009
    [17]Kumar M. M., Palkar V, Srinivas K., et al. Ferroelectricity in a pure BiFeO3 ceramic. Applied Physics Letters,2000,76:2764
    [18]Kimura T., Kawamoto S., Yamada I., et al. Magnetocapacitance effect in multiferroic BiMnO3. Physical Review B,2003,67 (18):180401
    [19]Aliouane N., Prokhnenko O., Feyerherm R., et al. Magnetic order and ferroelectricity in RMnO3 multiferroic manganites:coupling between R-and Mn-spins. Journal of Physics:Condensed Matter,2008,20:434215
    [20]Sushkov A., Mostovoy M., Vald"|s Aguilar R., et al. Electromagnons in multiferroic RMn2O5 compounds and their microscopic origin. Journal of Physics:Condensed Matter,2008,20:434210
    [21]Chaudhury R., Yen F., dela Cruz C., et al. Pressure-temperature phase diagram of multiferroic Ni3V2O8. Physical Review B,2007,75(1):012407
    [22]Nakajima T., Mitsuda S., Kanetsuki S., et al. Electric polarization induced by a proper helical magnetic ordering in a delafossite multiferroic CuFe1-x AlxO2. Physical Review B,2008,77(5):052401
    [23]Choi Y, Okamoto J., Huang D., et al. Thermally or Magnetically Induced Polarization Reversal in the Multiferroic CoCr2O4. Physical Review Letters,2009, 102(6):67601
    [24]Heyer O., Hollmann N., Klassen I., et al. LETTER TO THE EDITOR:A new multiferroic material:MnWO4. Journal of Physics Condensed Matter,2006,18: L471-L475
    [25]Chai Y, Chun S., Haam S., et al. Low-magnetic-field control of dielectric constant at room temperature realized in Ba0.5Sr1.5Zn2Fe12O22. New Journal of Physics,2009, 11:073030
    [26]Lawes G, Harris A., Kimura T., et al. Magnetically Driven Ferroelectric Order in Ni3V2O8. Physical Review Letters,2005,95(8):87205
    [27]Bary(?)'achtar, Jablonskii D., Theory of inhomogeneous magnetoelectric effect. JETP Lett,1983,37:673
    [28]Stefanovskii E., Jablonskii D. Theory of electrical polarization of multisublattice orthorhombic antiferromagnets with a double-exchange superlattice. Sov. J. Low Temp. Phys,1986,12:478-480
    [29]Katsura H., Nagaosa N., Balatsky A. V. Spin current and magnetoelectric effect in noncollinear magnets. Physical Review Letters,2005,95(5):57205
    [30]Harris A., Yildirim T., Aharony A., et al. Towards a microscopic model of magnetoelectric interactions in Ni3V2O8. Arxiv preprint cond-mat/0510807,2005
    [31]Mostovoy M. Ferroelectricity in spiral magnets. Physical Review Letters,2006, 96(6):67601
    [32]Sergienko I. A., Dagotto E. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Physical Review B,2006,73(9):094434
    [33]何泓材,林元华,南策文.多铁性磁电复合薄膜.科学通报,2008,53(10):1136-1148
    [34]Fiebig M. Revival of the magnetoelectric effect. Journal of physics D:applied physics,2005,38:R123
    [35]Folen V., Rado G, Stalder E. Anisotropy of the magnetoelectric effect in Cr2O3. Physical Review Letters,1961,6:607-608
    [36]Laletsin U., Padubnaya N., Srinivasan G., et al. Frequency dependence of magnetoelectric interactions in layered structures of ferromagnetic alloys and piezoelectric oxides. Applied Physics A:Materials Science & Processing,2004, 78(1):33-36
    [37]Ryu J., Priya S., Uchino K., et al. Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. Journal of Electroceramics,2002,8(2): 107-119
    [38]Nan C. W. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Physical Review B,1994,50(9):6082
    [39]Huang Z., Cao Y., Sun Y., et al. Coupling between the ferroelectric and antiferromagnetic orders in YMnO3. Physical Review B,1997,56(5):2623
    [40]Goto T., Kimura T., Lawes G, et al. Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Physical Review Letters,2004,92(25):257201
    [41]Kimura T., Goto T., Shintani H., et al. Magnetic control of ferroelectric polarization. Nature,2003,426(6962):55-58
    [42]Goto T., Kimura T., Lawes G, et al. Ferroelectricity and Giant Magnetocapacitance in Perovskite Rare-Earth Manganites. Physical Review Letters,2004,92(25): 257201
    [43]Hur N., Park S., Sharma P. A., et al. Colossal Magnetodielectric Effects in DyMn2O5. Physical Review Letters,2004,93(10):107207
    [44]Nan C. W., Bichurin M., Dong S., et al. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, Journal of Applied Physics, 2008,103:031101
    [45]Tokura Y., Multiferroics--oward strong coupling between magnetization and polarization in a solid. Journal of Magnetism and Magnetic Materials,2007,310(2): 1145-1150
    [46]Zhai J., Xing Z., Dong S., et al. Magnetoelectric laminate composites:an overview. Journal of the American Ceramic Society,2008,91(2):351-358
    [47]Wang D., Goh W., Ning M., et al. Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO3 at room temperature, Applied Physics Letters,2006,88:212907
    [48]Wang L., Wang D., Huang H., et al. The magnetic properties of polycrystalline Bil-xSrxFeO3 ceramics. Journal of Alloys and Compounds,2009,469(1-2):1-3
    [49]Uniyal P. and Yadav K. Pr doped bismuth ferrite ceramics with enhanced multiferroic properties. Journal of Physics:Condensed Matter,2009,21:405901
    [50]Jun Y. K., Moon W. T., Chang C. M., et al. Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO3 ceramics. Solid state communications, 2005,135(1-2):133-137
    [51]Chen J., Qi Y, Shi G., et al. Diffused phase transition and multiferroic properties of 0.57(Bi1-xLax) FeO3-0.43 PbTiO3 crystalline solutions. Journal of Applied Physics, 2008,104(6):064124-064125
    [52]Kim J. K., Kim S. S., Kim W. J., et al. Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition. Applied Physics Letters,2006,88(13):132901-132903
    [53]Pandit P., Satapathy S., Gupta P., et al. Effect of coalesce doping of Nd and La on structure, dielectric, and magnetic properties of BiFeO3, Journal of Applied Physics, 2009,106(11):114105-114107
    [54]Qian F., Jiang J., Guo S., et al. Multiferroic properties of Bi1-xDyxFeO3 nanoparticles. Journal of Applied Physics,2009,106(8):084312-084316
    [55]Levin I., Karimi S., Provenzano V., et al. Reorientation of magnetic dipoles at the antiferroelectric-paraelectric phase transition of Bi1-xNdxFeO3. Physical Review B, 2010,81(2):020103
    [56]Karimi S., Reaney I., Levin I., et al. Nd-doped BiFeO3 ceramics with antipolar order. Applied Physics Letters,2009,94(11):112903-112903
    [57]Tian Z., Yuan S., Zheng X., et al. Spin-glasslike behavior and exchange bias in multiferroic Bi1/3Sr2/3FeO3 ceramics. Applied Physics Letters,2010,96(14): 142516-142513
    [58]Zhang X., Sui Y., Wang X., et al. Effect of Eu substitution on the crystal structure and multiferroic properties of BiFeO3. Journal of Alloys and Compounds,2010
    [59]Cheng Z., Wang X., Dou S., et al. Improved ferroelectric properties in multiferroic BiFeO3 thin films through La and Nb codoping. Physical Review B,2008,77(9): 092101
    [60]Haumont R., Bouvier P., Pashkin A., et al. Effect of high pressure on multiferroic BiFeO3. Physical Review B,2009,79(18):184110
    [61]Jia D. C., Xu J. H., Ke H., et al. Structure and multiferroic properties of BiFeO3 powders. Journal of the European Ceramic Society,2009,29(14):3099-3103
    [62]Wang Y., Li Z., Lin Y, et al. Magnetic-electric behaviors in BiFeO3 films grown on LaNiO3-buffered Si substrate. Journal of Applied Physics,2009,106(7): 073917-073917
    [63]Park T. J., Papaefthymiou G. C., Viescas A. J., et al. Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano letters, 2007,7(3):766-772
    [64]Selbach S. M., Tybell T., Einarsrud M. A., et al. Size-dependent properties of multiferroic BiFeO3 nanoparticles. Chemistry of Materials,2007,19(26): 6478-6484
    [65]Lee H. J., Jeong S. Y., Cho C. R., et al. Study of diluted magnetic semiconductor: Co-doped ZnO. Applied Physics Letters,2002,81:4020
    [66]Ueda K., Tabata H., Kawai T. Magnetic and electric properties of transition-metal-doped ZnO films. Applied Physics Letters,2001,79:988
    [67]Ogale S., Choudhary R., Buban J., et al. High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO2. Physical Review Letters, 2003,91(7):77205
    [68]Zhao Y., Shinde S., Ogale S., et al. Co-doped La0.5Sr0.5TiO3:Diluted magnetic oxide system with high Curie temperature. Applied Physics Letters,2003,83(11): 2199-2201
    [69]Tiwari A., Bhosle V, Ramachandran S., et al. Ferromagnetism in Co doped CeO: Observation of a giant magnetic moment with a high Curie temperature. Applied Physics Letters,2006,88:142511
    [70]Song C, Zeng F., Shen Y., et al. Local Co structure and ferromagnetism in ion-implanted Co-doped LiNbO3. Physical Review B,2006,73(17):172412
    [71]Song C., Wang C., Liu X., et al. Room Temperature Ferromagnetism in Cobalt-Doped LiNbO3 Single Crystalline Films. Crystal Growth and Design,2009, 9(2):1235-1239
    [72]Luo L., Zhao Y, Tian H., et al. Ferromagnetism and exchange bias in a diluted magnetic ferroelectric oxide. Physical Review B,2009,79(11):115210
    [73]Xu B., Yin K., Lin J., et al. Room-temperature ferromagnetism and ferroelectricity in Fe-doped BaTiO3. Physical Review B,2009,79(13):134109
    [74]Gao L., Zhai J., Yao X., The influence of Co doping on the dielectric, ferroelectric and ferromagnetic properties of Ba0.70Sr0.30TiO3 thin films. Applied Surface Science,2009,255(8):4521-4525
    [75]CHEN X., YANG F., CAO W., et al. Enhanced multiferroic characteristics in Fe-doped Bi4Ti3O12 ceramics. Solid state communications,2010,150(27-28): 1221-1224
    [76]Coey J., Venkatesan M., Fitzgerald C. Donor impurity band exchange in dilute ferromagnetic oxides. Nature materials,2005,4(2):173-179
    [77]Dong X., Wang K., Wan J., et al. Magnetocapacitance of polycrystalline Bi5Ti3Fe015 prepared by sol-gel method. Journal of Applied Physics,2008,103(9): 094101-094104
    [78]Mao X., Wang W., Chen X., et al. Multiferroic properties of layer-structured Bi5Fe0. 5Co0.5Ti3O15 ceramics. Applied Physics Letters,2009,95(8):082901-082903
    [79]Srinivas A., Kim D. W., Hong K. S., et al. Study of magnetic and magnetoelectric measurements in bismuth iron titanate ceramic--Bi8Fe4Ti3O24. Materials research bulletin,2004,39(1):55-61
    [80]Huang F., Lu X., Chen C., et al. Room-temperature multiferroic properties of Bi4. 15sNd0.85Ti3FeO15 thin films prepared by the metal-organic decomposition method. Solid state communications,2010
    [81]Srinivas A., Suryanarayana S., Kumar G., et al. Magnetoelectric measurements on Bi5FeTi3O15 and Bi6Fe2Ti3O18. Journal of Physics-Condensed Matter,1999,11(16): 3335-3340
    [82]Hervoches C. H., Snedden A., Riggs R., et al. Structural Behavior of the Four-Layer Aurivillius-Phase Ferroelectrics SrBi4Ti4O15 and Bi5Ti3FeO15. Journal of Solid State Chemistry,2002,164(2):280-291
    [83]Aurivillius B. Mixed bismuth oxides with layer lattices. Ark. Kemi,1949,1(1): 463-471
    [84]Ismailzade I., Nesterenko V., Mirishli F., et al. X-Ray and electrical studies of the system Bi4Ti3O12-BiFeO3. Soviet Phys.-Crystallography,1967,12:400-404
    [85]Ismailzade I., Yakupov R., Melik T. The magnetoelectric effect in ferroelectri(?)\ antiferromagnetic Bi5Bi4Ti3Fe5O27. physica status solidi(a),1971,6(2):K85-K87
    [86]Singh R. Ph. D. Thesis. Osmania University, Hyderabad,1996
    [87]Singh R., Bhimasankaram T., Kumar G, et al. Dielectric and magnetoelectric properties of Bi5FeTi3O15. Solid state communications,1994,91(7):567-569
    [88]Mandal P., Sundaresan A., Rao C., et al. Temperature-induced magnetization reversal in BiFe0.5Mn0.5O3 synthesized at high pressure. Physical Review B,2010, 82(10):100416
    [89]Ohkoshi S., Abe Y., Fujishima A., et al. Design and preparation of a novel magnet exhibiting two compensation temperatures based on molecular field theory. Physical Review Letters,1999,82(6):1285-1288
    [90]Manna P., Yusuf S., Shukla R., et al. Coexistence of sign reversal of both magnetization and exchange bias field in the core-shell type La0.2Ce0.8CrO3 nanoparticles. Applied Physics Letters,2010,96(24):242508-242503
    [91]Yusuf S., Kumar A., Yakhmi J. Temperature-and magnetic-field-controlled magnetic pole reversal in a molecular magnetic compound. Applied Physics Letters,2009, 95(18):182506-182503
    [92]Gorter E. W., Schulkes J. A. Reversal of Spontaneous Magnetization as a Function of Temperature in LiFeCr Spinels. Physical Review,1953,90(3):487
    [93]Pauthenet R. Spontaneous magnetization of some garnet ferrites and the aluminum substituted garnet ferrites. Journal of Applied Physics,1958,29(3):253-255
    [94]Menyuk N., Dwight K., Wickham D. G. Magnetization Reversal and Asymmetry in Cobalt Vanadate(IV). Physical Review Letters,1960,4(3):119
    [95]Nguyen H. C., Goodenough J. B. Magnetic studies of some orthovanadates. Physical Review B,1995,52(1):324
    [96]Ohkoshi S.-i., Iyoda T., Fujishima A., et al. Magnetic properties of mixed ferro-ferrimagnets composed of Prussian blue analogs. Physical Review B,1997, 56(18):11642
    [97]Kageyama H., Khomskii D. I., Levitin R. Z., et al. Weak ferrimagnetism, compensation point, and magnetization reversal in Ni(HCOO)2.2H2O, Physical Review B,2003,67(22):224422
    [98]Kageyama H., Khomskii D., Levitin R., et al. Magnetization reversal in weak ferrimagnets and canted antiferromagnets. Journal of Magnetism and Magnetic Materials,2003,262(3):445-451
    [99]Matthias B. Superconducting Compounds of Nonsuperconducting Elements. Physical Review,1953,90(3):487
    [100]Kumar A., Yusuf S., Keller L., et al. Microscopic Understanding of Negative Magnetization in Cu, Mn, and Fe Based Prussian Blue Analogues. Physical Review Letters,2008,101(20):207206
    [101]Claus H., Veal B. Apparent diamagnetic response of an inhomogeneous ferromagnet. Physical Review B,1997,56(2):872
    [102]Bartolome F., Herrero-Albillos J., Garcia L., et al. Element-specific magnetometry on negatively magnetized NdMnO3+δ. Journal of Applied Physics,2005,97(10): 510A503-503
    [103]Nordman C., Achutharaman V., Vas(?) ko V., et al. Magnetic and electrical properties of the ferrimagnet Dy0.67Ca0.30MnO3. Physical Review B,1996,54(13):9023
    [104]Troyanchuk I., Khomchenko V., Chobot G., et al. Spin-reorientational transitions in low-doped Nd1-xCaxMnO3 manganites:the evidence of an inhomogeneous magnetic state. Journal of Physics:Condensed Matter,2003,15:8865
    [105]Ang R., Sun Y., Ma Y., et al. Diamagnetism and relative Young's modulus in the perovskite manganites CaMn1-xVxO3(0≤x≤0.08). Solid state communications,2006, 140(9-10):416-421
    [106]Yoshii K. Magnetic properties of perovskite GdCrO3, Journal of Solid State Chemistry,2001,159(1):204-208
    [107]Yoshii K., Nakamura A. Reversal of magnetization in La0.5Pr0.5CrO3, Journal of Solid State Chemistry,2000,155(2):447-450
    [108]Vijayanandhini K., Simon C., Pralong V., et al. Zero magnetization in a disordered(La1-x/2Bix/2)(Fe0.5Cr0.5)O3 uncompensated weak ferromagnet. Journal of Physics:Condensed Matter,2009,21:486002
    [109]Ren Y, Palstra T., Khomskii D., et al. Magnetic properties of YVO_{3} single crystals. Physical Review B,2000,62(10):6577
    [110]Singh R., Tomy C., Grover A. Observation of tunable exchange bias in Sr2YbRuO6. Applied Physics Letters,2010,97(18):182505-182503
    [111]Singh R. P., Tomy C. Observation of magnetization reversal and negative magnetization in Sr2YbRuO6. Journal of Physics:Condensed Matter,2008,20: 235209
    [112]Gao F., Yuan Y, Wang K., et al. Preparation and photoabsorption characterization of BiFeO3 nanowires. Applied Physics Letters,2006,89(10):102506-102503
    [113]Li J. B., Huang Y., Rao G., et al. Ferroelectric transition of Aurivillius compounds Bi5Ti3FeO1i5 and Bi6Ti3Fe2O18. Applied Physics Letters,2010,96(22): 222903-222903
    [114]Lee J., Khim Z., Park Y, et al. Magnetic properties of Co-and Mn-implanted BaTiO3, SrTiO3 and KTaO3. Solid-State Electronics,2003,47(12):2225-2230
    [115]Jeong E.-K., Holzer J. C., Carlsson A. E., et al. Highly symmetric Mn sites in icosahedral Ti-Mn. Physical Review B,1990,41(3):1695
    [116]Mofor A. C., El-Shaer A., Bakin A., et al. Magnetic property investigations on Mn-doped ZnO Layers on sapphire. Applied Physics Letters,2005,87:062501
    [117]Christensen A., Ollivier G. Hydrothermal and high-pressure preparation of some BaMnO3 modifications and low-temperature magnetic properties of BaMnO3(2H). Journal of Solid State Chemistry,1972,4(1):131-137
    [118]Chou C. C., Huang C. L., Mukherjee S., et al. Multiple magnetic transitions in multiferroic BiMnO3. Physical Review B,2009,80(18):184426
    [119]Si P., Li D., Lee J., et al. Unconventional exchange bias in oxide-coated manganese nanoparticles. Applied Physics Letters,2005,87(13):133122-133123
    [120]Heiman D., Shapira Y., Foner S., et al. Exchange energy, magnetization, and Raman scattering of(Cd, Mn) Se. Physical Review B,1984,29(10):5634
    [121]Mangalam R., Ray N., Waghmare U. V., et al. Multiferroic properties of nanocrystalline BaTiO3. Solid state communications,2009,149(1-2):1-5
    [122]Garc¨aa M., Ruiz-Gonz¨(?0lez M., Quesada A., et al. Interface double-exchange ferromagnetism in the Mn-Zn-O system:New class of biphase magnetism. Physical Review Letters,2005,94(21):217206
    [123]Bahri F., Khemakhem H., Simon A., et al. Dielectric and pyroelectric studies on the Ba1-3aBi2aTiO3 classical and relaxor ferroelectric ceramics. Solid state sciences, 2003,5(9):1235-1238
    [124]Ge W., Cao H., Li J., et al. Influence of dc-bias on phase stability in Mn-doped Na0. 5Bi0.5TiO3-5.6%BaTiO3 single crystals. Applied Physics Letters,2009,95(16): 162903-162903
    [125]Bahri F., Simon A., Khemakhem H., et al. Classical or Relaxor Ferroelectric Behaviour of Ceramics with Composition Ba1-xBi2X/3TiO3. physica status solidi(a), 2001,184(2):459-464
    [126]Song C. R., Yoo H. I., Kim J. Y. Mn-doped BaTiO 3:Electrical transport properties in equilibrium state. Journal of Electroceramics,1997,1(1):27-39
    [127]Lin Y. H., Yuan J., Zhang S., et al. Multiferroic behavior observed in highly orientated Mn-doped BaTiO thin films. Applied Physics Letters,2009,95:033105
    [128]李标荣.无机电介质.华中理工大学出版社,1995
    [129]Arlt G., Hennings D. Dielectric properties of fine(?)\grained barium titanate ceramics. Journal of Applied Physics,1985,58(4):1619-1625
    [130]Hagemann H. Loss mechanisms and domain stabilisation in doped BaTiO3. Journal of Physics C:Solid State Physics,1978,11:3333
    [131]Tanaka H., Tabata H., Kawai T. Molecular-dynamics prediction of structural anomalies in ferroelectric and dielectric BaTiO3-SrTiO3-CaTiO3 solid solutions. Physical Review B,1996,53(21):14112
    [132]方俊鑫.电介质物理学.科学出版社,1989
    [133]Xiaoyong W., Yujun F., Xi Y. Dielectric relaxation behavior in barium stannate titanate ferroelectric ceramics with diffused phase transition. Applied Physics Letters,2003,83:2031
    [134]Lee W. C., Lee Y. F., Tseng M. H., et al. Crystal Structure and Ferroelectric Properties of(Bi0.5Na0.5) TiO3-Ba(Zr0.05Ti0.95)03 Piezoelectric Ceramics. Journal of the American Ceramic Society,2009,92(5):1069-1073
    [135]Chen X. M., Liu P., Zhou J. P., et al. Structure and dielectric properties of Ba(Tio. 99Ni0.01)O3-delta ceramic synthesized via high energy ball milling method. Physica B: Condensed Matter,2010,405(13):2815-2819
    [136]Shen M., Cao W. Investigation of dipolar defects in(1-x) Pb(Zn1/3Nb2/3) O3-xPbTiO3 single crystals using different poling methods. Journal of Applied Physics,2007, 101(1):014105-014105
    [137]Rout S., Sinha E., Hussian A., et al. Phase transition in ABi4Ti4O15s(A= Ca, Sr, Ba) Aurivillius oxides prepared through a soft chemical route. Journal of Applied Physics,2009,105(2):024105-024106
    [138]Kumar S., Varma K. Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics. Journal of physics D: applied physics,2009,42:075405
    [139]Ko H. H., Lim J. H., Kim H. C., et al. Coexistence of spin canting and metamagnetism in a one-dimensional Mn(Ⅲ) complex bridged by a single end-to-end azide. Inorganic chemistry,2006,45(22):8847-8849
    [140]H(?)1cker M., Kataev V., Pommer J., et al. Dzyaloshinsky-Moriya spin canting in the low-temperature tetragonal phase of La2-x-yEuySrxCuO4. Physical Review B,2004, 70(21):214515
    [141]Bai W., Gao Y., Zhu J., et al. Electrical, magnetic, and optical properties in multiferroic Bi5Ti3FeO15 thin films prepared by a chemical solution deposition route. Journal of Applied Physics,2011,109:064901
    [142]Tomar M., Melgarejo R., Hidalgo A., et al. Structural and ferroelectric studies of Bi3. 44La0.56Ti3O12 films. Applied Physics Letters,2003,83(2):341-343
    [143]Wang W., Sun J., Mao X., et al. Structural and electrical characterization of chemical-solution-derived Bi5FeTi3O15 thin films. Journal of physics D:applied physics,2008,41:155418
    [144]Arita K., Shimada Y., Uemoto Y, et al.unpublished
    [145]Sugibuchi K., Kurogi Y, Endo N. Ferroelectric field effect memory device using Bi4Ti3O12 film. Journal of Applied Physics,1975,46(7):2877-2881
    [146]Nakashima S., Fujisawa H., Ichikawa S., et al. Structural and ferroelectric properties of epitaxial Bi5Ti3FeO15 and natural-superlattice-structured Bi4Ti3O12¨CBi5Ti3FeO15 thin films. Journal of Applied Physics,2010,108(7):074106-074105
    [147]Babooram K., Chin D., Ye Z. G. Ferroelectric Bi4Ti3O12 and Bi4-xLaxTi3O12 ceramics prepared by a new sol-gel route. Journal of Electroceramics,2008,21(1-4): 43-48
    [148]Zhu J., Su D., Lu X., et al. La-doped effect on the ferroelectric properties of Bi4Ti3O12-SrBi4Ti4O15 thin film fabricated by pulsed laser deposition. Journal of Applied Physics,2002,92(9):5420-5424
    [149]Kong L., Ma J., Zhu W., et al. Preparation of Bi4Ti3O12 ceramics via a high-energy ball milling process. Materials Letters,2001,51(2):108-114
    [150]Lee S. J., Kang K. Y, Han S. K. Low-frequency dielectric relaxation of BaTiO3 thin-film capacitors. Applied Physics Letters,1999,75:1784
    [151]Narang S. B., Kaur D., Bahel S. Dielectric properties of lanthanum substituted barium titanate microwave ceramics. Materials Letters,2006,60(25-26):3179-3182
    [152]Park B., Kang B., Bu S., et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature,1999,401(6754):682-684

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700