TiO_2复合光催化材料的微结构调控及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前全球正面临着环境恶化和能源短缺的严峻挑战。我国既是当今世界经济增长最快的大国,也是当今世界环境污染最为严重的大国之一。我国既是能源短缺国,又是能源消耗大国。解决环境问题和能源问题,成为我国实现可持续发展、提高人民生活质量、保障国家安全的迫切需要。国内外大量研究表明,光催化技术能分解空气和水中的多种污染物。太阳能光分解水技术可望获得廉价的氢气,得到理想的清洁能源。光催化材料在空气净化、自洁净、超亲水性等方面也取得了初步成功,在环境保护方面的应用市场正在逐步形成。我国能源结构面临经济发展和环境保护的双重压力,加强光催化材料的基础研究意义十分重大。
     目前对光催化材料的研究十分广泛。其中,半导体TiO2是最早发现也是目前公认的性能优良的光催化材料。TiO2以其化学性能稳定、吸收紫外线能力强、量子效率和催化效率高、无毒无味、来源丰富及价格低廉等众多优点得到了广泛研究和实际使用。但TiO2光催化技术在实际应用过程中还存在着光谱响应范围窄、量子效率偏低、粉末的分散与回收等问题。本文针对目前TiO2应用中的不足,选择了几种载体对TiO2进行了负载,制备了TiO2复合光催化材料,希望能实现TiO2的有效回收和循环利用,同时对负载的TiO2进行微结构调控和修饰改性,以期拓展光响应范围,提高光催化活性。主要内容如下:
     第一章主要介绍了光催化材料的研究背景和发展概况,及TiO2光催化材料的晶体结构、催化机理、目前存在的问题和改进的方法。提出了本文的研究思路和实验内容。
     第二章使用氧化锆多晶纤维实现了TiO2的负载,在四方相的纤维表面生成了锐钛矿TiO2微晶,且微晶暴露出具有高反应活性的{001}晶面,通过控制反应条件,可以进一步利用ZrO2纤维作为模板,生成TiO2微米管。实验中首先对ZrO2纤维进行预处理,然后选择钛酸丁酯、P25、氟钛酸铵作为不同的钛源,利用溶胶-凝胶、水热等不同方法进行TiO2的负载。对负载情况较好的氟钛酸铵作钛源的水热反应,进行了详细研究。在不同的初始浓度、不同的反应时间和反应温度下,负载的TiO2呈现出不同的形貌特征。特别是在一定条件下能够将ZrO2纤维载体完全消耗掉,使得ZrO2纤维成为制备TiO2微米管的模板。TiO2微米管表面由暴露高反应活性的{001}晶面的TiO2微晶组成,在光催化、光电子学等领域都有重要的潜在应用价值。通过改变前躯体溶剂的组分、掺杂金属离子、贵金属沉积等方式,来进行表面修饰和微结构调控,对TiO2的光响应范围向可见光拓展,提高光催化效率,进行了积极的探索。
     根据氧化锆纤维与TiO2复合的结果,本文在第三章又选择了一些其他形状和大小的氧化锆微球作为载体,进行TiO2的负载研究。使用微米级大小的氧化锆微球、氧化锆空心球、含锆的玻璃微珠作为载体,选择不同配比的氟钛酸铵溶液作为钛源,进行水热反应,得到了不同形貌的负载TiO2的复合材料,并对其光催化性能进行了测试。使用自己制备的ZrO2纳米粉体替代较大的氧化锆微球,水热反应后,ZrO2纳米粉体被完全消耗,得到了TiO2纳米晶。TiO2纳米晶暴露出高比例的{001}晶面,具有较高的光催化活性。
     BiFeO3等多铁材料是近年来的研究热点,以其丰富的物理现象和具大的应用潜力受到广泛关注和研究。同时BiFeO3的带隙较窄,为2.2eV左右,对可见光的吸收能力强。第四章采用水热法、熔盐法和燃烧法制备出了纯相的BiFeO3粉体,对比三种制备方法及所得粉体的粒度、分散性等结果,选择燃烧法所得BiFeO3进行了TiO2的负载。使用钛酸丁酯作为钛源,采用溶胶-凝胶法在BiFe03颗粒的外层负载上了TiO2,产物具有良好的光催化性质。
     第五章对本论文的工作做了总结,并对实验和结果中存在的问题进行了分析和讨论,对下一步的研究工作提出了计划与展望。
The whole world is facing the challenges from the degradation of the environment and energy shortage at present. China is not only a great country with the fast-growing economy, but also one of the countries that are heavily affected by the environment pollution. In addition, China is not only a country with energy shortage but also a big country with high energy consumption. It is urgent to solve the environmental problems and the energy problems because they are bottlenecks for China to realize the sustainable development, improve the quality of people's lives, and ensure the security of the whole country. According to domestic and overseas research results, various pollutants in air and water can be decomposed by using the photocatalytic technology. It is expected to get cheap and clean hydrogen by using the solar water splitting technology. Photocatalytic materials show their advantages in air purification, self-clean, and super-hydrophilicity, and the market of photocatalytic materials used for the environmental protection is shaping. The energy structure of our country faces challenges from both the economic development and the environmental protection, and thus it is of great significance to focus on the basic researches of photocatalytic materials.
     At present, researches for photocatalytic materials are widely conducted. According to the research results, the semiconductor TiO2 is the first type of photocatalytic materials discovered. In addition, TiO2 has excellent performance and this has been widely accepted. TiO2 has been widely used for researches and practical conditions because of its advantages such as chemical stability, strong UV absorption, high quantum efficiency and catalytic efficiency, non-toxic and tasteless, rich sources, and low price. However, problems are exposed during the practical application of the TiO2 photocatalytic technology. These problems include narrow spectral response, low quantum efficiency, and dispersion and recycling issues of powders. In this paper, focused on the disadvantages of TiO2 in the practical application, several carriers were chosen to load TiO2, and some TiO2 composite materials were prepared. The purpose is to effectively reclaim TiO2 photocatalyst materials. Besides, the loaded TiO2 were modified with microstructure and surface modification in order to expand the spectral response scope and improve the photocatalytic activity. Main contents of this paper are listed as follows:
     In Chapter 1, we introduced the research background and development overview of photocatalytic materials; crystal structure, catalytic mechanism, existing problems, and methods for improving of TiO2 photocatalyst. Research ideas and contents of experiments were put forward.
     In Chapter 2, zirconium oxide polycrystalline fibers were used for loading TiO2. Anatase TiO2 microcrystallines were generated on the surface of tetragonal phase fibers exposing high reactivity{001} facets. We can further use ZrO2 fibers as a template to produce TiO2 microtubes by controlling reaction conditions. First, pretreated the ZrO2 fibers, and then chose the tetrabutyl titanate, P25, or titanium ammonium fluoride as different titanium sources. After that, loaded TiO2 with different ways of sol-gel and hydrothermal reaction. Then, selected better titanium ammonium fluoride as titanium sources and hydrothermal reaction, and conducted detailed research. At different initial concentration, reaction time, and reaction temperature, the load of TiO2 presented different morphology. In particular, ZrO2 fibers can be completely consumed, and become a template for prepare TiO2 microtubes. The surface of anatase TiO2 tubular structures were made up of microcrystallites with a high percentage of{001} facets, which may have promising applications in photocatalysis and photoelectronics. Surface modification and microstructure controlling were realized through methods such as changes of solvent components, doping of metal ions, noble metal deposition. The purpose is to expand the spectral response to visible light, and improve the photocatalytic activity.
     According to the compounded results of zirconium oxide fibers and TiO2, in Chapter 3, we chose some other shapes and sizes of zirconium oxide as carriers to load TiO2. We used micron-sized zirconium oxide spheres, zirconium oxide hollow spheres, and glass beads containing zirconium as carriers, and different concentration of titanium ammonium fluoride solution as titanium source, to conduct the hydrothermal reaction. After that, we got composite photocatalytic materials loaded of TiO2 with different morphology, and their photocatalytic properties were tested. In this chapter, we used ZrO2 nanopowders prepared by ourselves instead of micron-sized zirconium oxide spheres. After the hydrothermal reaction, ZrO2 nanopowders were completely consumed and TrO2 nanocrystals were obtained. TiO2 nanocrystals revealed a high percentage of{001} planes, and high photocatalytic activity.
     Researches on multiferroic materials such as BiFeO3 are becoming a hot spot in recent years. Their rich physical phenomena and great potential applications are widely concerned in many fields. With narrow band gap (about 2.2eV), BiFeO3 gets strong absorbability in visible light. In Chapter 4, we prepared pure BiFeO3 powders by using the hydrothermal method, molten salt method, and the combustion synthesis method. After comparing the three methods as well as the granularity and dispersiveness of the powders, we selected the BiFeO3 obtained from the combustion method to load TiO2. We used tetrabutyl titanate as a titanium source, and loaded TiO2 with the sol-gel method. The product had good photocatalytic properties.
     In Chapter 5, a concise summary of the contents was given, and the experimental results and the problems were analyzed and discussed. Besides, suggestions and prospects were proposed for further researches.
引文
[1]刘春艳,纳米光催化及光催化环境净化材料,化学工业出版社,2008年2月。
    [2]刘守新,刘鸿,光催化及光电催化基础与应用,化学工业出版社,2006年1月。
    [3]Akira Fujishima and Kenichi Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature,1972,238,37-39.
    [4]S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO2, Solar Energy Materials & Solar Cells,2003,77,65-82.
    [5]N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, Journal of Photochemistry and Photobiology A: Chemistry,2004,162,317-322.
    [6]Jia Long Yang, Sung Jin An, Won II Park, Gyu-Chul Yi, and Wonyong Choi, Photocatalysis Using ZnO Thin Films and Nanoneedles Grown by Metal-Organic Chemical Vapor Deposition, Adv. Mater.,2004,16(18),1661-1664.
    [7]Frank E. Osterloh, Inorganic Materials as Catalysts for Photochemical Splitting of Water, Chem. Mater.2008,20(1),35-54.
    [8]Kudo Akihiko and Miseki Yugo, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev.,2009,38,253-278.
    [9]吴越,催化化学,科学出版社,2000年。
    [10]Makoto Kobayashi, Valery V. Petrykin, and Masato Kakihana, One-Step Synthesis of TiO2(B) Nanoparticles from a Water-Soluble Titanium Complex, Chem. Mater.,2007,19(22), 5373-5376.
    [11]Fazila Seker, Kathleen Meeker, Thomas F. Kuech, and Arthur B. Ellis, Surface Chemistry of Prototypical Bulk Ⅱ-Ⅵ and Ⅲ-Ⅴ Semiconductors and Implications for Chemical Sensing, Chemical Reviews,2000,100(7),2505-2536.
    [12]Xueqing Gong, Annabella Selloni, and Andrea Vittadini, Density Functional Theory Study of Formic Acid Adsorption on Anatase TiO2(001):Geometries, Energetics, and Effects of Coverage, Hydration, and Reconstruction, J. Phys. Chem. B,2006,110(6),2804-2811.
    [13]Nikolai Kislov, Jayeeta Lahiri, Himanshu Verma, D. Yogi Goswami, Elias Stefanakos, and Matthias Batzill, Photocatalytic Degradation of Methyl Orange over Single Crystalline ZnO: Orientation Dependence of Photoactivity and Photostability of ZnO, Langmuir,2009,25(5), 3310-3315.
    [14]Zhaoke Zheng, Baibiao Huang, Zeyan Wang, Meng Guo, Xiaoyan Qin, Xiaoyang Zhang, Peng Wang, and Ying Dai, Crystal Faces of Cu2O and Their Stabilities in Photocatalytic Reactions, J. Phys. Chem. C,2009,113(32),14448-14453.
    [15]Masaya Matsuoka, Takashi Kamegawa, Rumi Takeuchi, Masakazu Anpo, In situ characterization of the highly dispersed Mo6+ -oxide species supported onto various oxides and their photocatalytic reactivities, Catalysis Today,2007,122,39-45.
    [16]Zhigang Zou, Jinhua Ye, Kazuhiro Sayama and Hironori Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature,2001,414(6864), 625-627.
    [17]Jiang Yin, Zhigang Zou, and Jinhua Ye, A Novel Series of the New Visible-Light-Driven Photocatalysts MCo1/3Nb2/3O3(M=Ca,Sr, and Ba) with Special Electronic Structures, J. Phys.Chem. B,2003,107(21),4936-4941
    [18]Wei F. Yao, Hong Wang, Xiao H. Xu, Jing T. Zhou, Xue N. Yang, Yin Zhang, Shu X. Shang, Photocatalytic property of bismuth titanate Bi2Ti2O7, Applied Catalysis A:General,2004,259, 29-33.
    [19]W. Feng Yao, Hong Wang, X. Hong Xu, X. Feng Cheng, Ji Huang, S. Xia Shang, X. Na Yang, Min Wang, Photocatalytic property of bismuth titanate Bi12TiO20 crystals, Applied Catalysis A:General,2003,243,185-190.
    [20]Wei Feng Yao, Xiao Hong Xu, Hong Wang, Jing Tao Zhou, Xue Na Yang, Yin Zhang, Shu Xia Shang, Bai Biao Huang, Photocatalytic property of perovskite bismuth titanate, Applied Catalysis B:Environmental,2004,52,109-116.
    [21]W. Feng Yao, Hong Wang, X. Hong Xu, X. Na Yang, Yin Zhang, S. Xia Shang, Min Wang, Preparation and photocatalytic property of La (Fe)-doped bismuth titanate, Applied Catalysis A: General,2003,251,235-239.
    [22]Hengbo Yin, Yuji Wada, Takayuki Kitamura, and Shozo Yanagida, Photoreductive Dehalogenation of Halogenated Benzene Derivatives Using ZnS or CdS Nanocrystallites as Photocatalysts, Environ. Sci. Technol.,2001,35(1),227-231.
    [23]Dengwei Jing and Liejin Guo, A Novel Method for the Preparation of a Highly Stable and Active CdS Photocatalyst with a Special Surface Nanostructure, J. Phys. Chem. B,2006,110(23), 11139-11145.
    [24]Takayuki Hirai, Yoko Bando, and Isao Komasawa, Immobilization of CdS Nanoparticles Formed in Reverse Micelles onto Alumina Particles and Their Photocatalytic Properties, J. Phys. Chem. B,2002,106(35),8967-8970.
    [25]许根慧,姜恩永,盛京,等离子体技术与应用,化学工业出版社,2006年5月。
    [26]Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, P. N. Provencio, Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass, Science,1998,282(5391), 1105-1107.
    [27]Snyder H.R., Fleddermann C.B., Gahl J.M., Destruction of acetone using a small-scale arcjet plasma torch, Waste Management,1996,16(4),289-294.
    [28]Peng Wang, Baibiao Huang, Xiaoyan Qin, Xiaoyang Zhang, Ying Dai, JiyongWei, and Myung-Hwan Whangbo, Ag@AgCl:A Highly Efficient and Stable Photocatalyst Active under Visible Light, Angew. Chem. Int. Ed.,2008,47,1-4.
    [29]Peng Wang, Baibiao Huang, Xiaoyang Zhang, Xiaoyan Qin, Hao Jin, Ying Dai, Zeyan Wang, Jiyong Wei, Jie Zhan, Shaoying Wang, Junpeng Wang, and Myung-Hwan Whangbo, Highly Efficient Visible-Light Plasmonic Photocatalyst Ag@AgBr, Chem. Eur. J.,2009,15, 1821-1824.
    [30]张金龙,陈锋,何斌,光催化,华东理工大学出版社,2004年10月。
    [31]Tracy L.Thompson and John T. Yates, Jr., Surface Science Studies of the Photoactivation of TiO2-New Photochemical Processes, Chem. Rev.,2006,106(10),4428-4453.
    [32]Jeremy K. Burdett, Electronic Control of the Geometry of Rutile and Related Structures, Inorg. Chem.,1985,24(14),2244-2253.
    [33]Dmitry V. Bavykin, Jens M. Friedrich, and Frank C. Walsh, Protonated Titanates and TiO2 Nanostructured Materials:Synthesis, Properties, and Applications, Adv. Mater.,2006,18(21), 2807-2824.
    [34]Ulrike Diebold, The surface science of titanium dioxide, Surface Science Reports,2003,48, 53-229.
    [35]Amy L. Linsebigler, Guangquan Lu, and John T. Yates, Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev.,1995,95(3),735-758.
    [36]黄雪梅,王苑娜,成晓玲,胡社军,曾鹏,谢光荣,二氧化钛可见光光催化技术研究进展,材料导报,2008,8(22),47-51。
    [37]薛韩玲,葛岭梅,李建伟,纳米TiO2光催化剂负载及改性技术研究进展,纳米科技,2004,3(1),5-9。
    [38]Masaya Matsuoka, Masaaki Kitano, Masato Takeuchi, Koichiro Tsujimaru, Masakazu Anpo, John M. Thomas, Photocatalysis for new energy production recent advances in photocatalytic water splitting reactions for hydrogen production, Catalysis Today,2007,122,51-61.
    [39]Y. Bessekhouad, D. Robert, J-V Weber, N. Chaoui, Effect of alkaline-doped TiO2 on photocatalytic efficiency, Journal of Photochemistry and Photobiology A:Chemistry,2004,167(1), 49-57.
    [40]Ji-Chuan Xu, Yan-Li Shi, Ji-Er Huang, Bo Wang, Hu-Lin Li, Doping metal ions only onto the catalyst surface, Journal of Molecular Catalysis A:Chemical,2004,219,351-355.
    [41]Wang TH, Li YX, Peng SQ, Lu GX, Li SB, Activity of rare earth doped TiO2 deposited with Pt for photocatalytic hydrogen generation, Acta Chimica Sinica,2005,63(9),797-801.
    [42]Teruhisa Ohno, Zenta Miyamoto, Kazumoto Nishijima, Hidekazu Kanemitsu, Feng Xueyuan, Sensitization of photocatalytic activity of S-or N-doped TiO2 particles by adsorbing Fe3+ cations, Applied Catalysis A:General,2006,302,62-68.
    [43]S. Yin, K. Ihara, Y. Aita, M. Komatsu, T. Sato, Visible-light induced photocatalytic activity of TiO2-xAy (A=N, S) prepared by precipitation route, Journal of Photochemistry and Photobiology A:Chemistry,2006,179,105-114.
    [44]Clemens Burda, Yongbing Lou, Xiaobo Chen, Anna C. S. Samia, John Stout, and James L. Gole, Enhanced Nitrogen Doping in TiO2 Nanoparticles, Nano Letters,2003,3(8),1049-1051.
    [45]Jimmy C. Yu, Jiaguo Yu, Wingkei Ho, Zitao Jiang, and Lizhi Zhang, Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders, Chem. Mater., 2002,14(9),3808-3816.
    [46]Amy Dawson and Prashant V. Kamat, Semiconductor-metal nanocomposites Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/Gold) nanoparticles, J. Phys. Chem. B,2001, 105(5),960-966.
    [47]Dan I. Enache, Jennifer K. Edwards, Philip Landon, Benjamin Solsona-Espriu, Albert F. Carley, Andrew A. Herzing, Masashi Watanabe, Christopher J. Kiely, David W. Knight, Graham J. Hutchings, Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts, Science,2006,311,362-365.
    [48]Vaidyanathan Subramanian, Eduardo Wolf, and Prashant V. Kamat, Semiconductor-Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films, J. Phys. Chem. B,2001,105(46),11439-11446.
    [49]S. Sakthivel, M.V. Shankar, M. Palanichamy, Banumathi Arabindoo, D.W. Bahnemann, V. Murugesan, Enhancement of photocatalytic activity by metal deposition:characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Research,2004,38, 3001-3008.
    [50]Yoji Sunagawa, Katsutoshi Yamamoto, Hideyuki Takahashi, Atsushi Muramatsu, Liquid-phase reductive deposition as a novel nanoparticle synthesis method and its application to supported noble metal catalyst preparation, Catalysis Today,2008,132,81-87.
    [51]Yong Xu and Martin A. A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals, American Mineralogist,2000,85,543-556.
    [52]A. V. Emeline, G. V. Kataeva, V. K. Ryabchuk, and N. Serpone, Photostimulated generation of defects and surface reactions on a series of wide band gap metal-oxide solids, J. Phys. Chem. B., 1999,103(43),9190-9199.
    [53]Y. Bessekhouad, D. Robert, J.V. Weber, Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant, Journal of Photochemistry and Photobiology A:Chemistry,2004,163(3),569-580.
    [54]贺飞,唐怀军,赵文宽,方佑龄,纳米TiO2光催化剂负载技术研究,2001,2(2),47-58。
    [55]Li Luo, Lei Miao, Sakae Tanemura, Masaki Tanemura, Photocatalytic sterilization of TiO2 films coated on Al fiber, Materials Science and Engineering B,2008,148,183-186.
    [56]Jiaguo Yu, Huogen Yu, Bei Cheng, Xiujian Zhao, Qingjie Zhang, Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method, Journal of Photochemistry and Photobiology A:Chemistry,2006,182,121-127.
    [57]Liwu Zhang, Hongbo Fu, and Yongfa Zhu, Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite-like Carbon, Adv. Funct. Mater.,2008,18, 2180-2189.
    [58]K. Sayama and H. Arakawa, Photocatalytic Decomposition of Water and Photocatalytic Reduction of Carbon Dioxide over ZrO2 Catalyst, The Journal of Physical Chemistry,1993,97(3), 531-533.
    [59]潘梅,刘久荣,孟凡青,吕孟凯,袁多荣,许东,由醋酸锆前躯体制备ZrO2连续纤维的过程及研究,无机材料学报,2001,16(4),729-733。
    [60]L. Y. Zhu, X. Q. Wang, G. Yu, X. Q. Hou, X. J. Liu, J. Sun, Z. H. Sun, H. L. Fan, D. Xu, Preparation and photoluminescent properties of Ni2+ -doped ZrO2 fibers, Optics Communications, 2008,281,2548-2551.
    [61]M. Williams, C. A. Pineda-Vargas, E. V. Khataibe, B. J. Bladergroen, A. N. Nechaev, V. M. Linkov, Surface functionalization of porous ZrO2-TiO2 membranes using y-aminopropyltriethoxysilane in palladium electroless deposition, Applied Surface Science,2008, 254,3211-3219.
    [62]Kangjian Tang, Jianan Zhang, Wenfu Yan, Zhonghua Li, Yangdong Wang, Weimin Yang, Zaiku Xie, Taolei Sun, and Harald Fuchs, One-Step Controllable Synthesis for High-Quality Ultrafine Metal Oxide Semiconductor Nanocrystals via a Separated Two-Phase Hydrolysis Reaction,2008,130(8),2676-2680.
    [63]Sue-min Chang and Ruey-an Doong, The Effect of Chemical States of Dopants on the Microstructures and Band Gaps of Metal-Doped ZrO2 Thin Films at Different Temperatures, J. Phys. Chem. B,2004,108(46),18098-18103.
    [64]王中林,曹茂盛著,李金刚译,纳米材料表征,化学工业出版社,2005年6月。
    [65]Brian G Trewyn, Igor I. Slowing, Supratim Giri, Hung-Ting Chen, and Victor S.-Y. Lin, Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol-Gel Process and Applications in Controlled Release, Acc. Chem. Res.,2007,40(9),846-853.
    [66]Rachel A. Caruso and Markus Antonietti, Sol-Gel Nanocoating:An Approach to the Preparation of Structured Materials, Chem. Mater.,2001,13(10),3272-3282.
    [67]Gerhard Schottner, Hybrid Sol-Gel-Derived Polymers:Applications of Multifunctional Materials, Chem. Mater.,2001,13(10),3422-3435.
    [68]K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology, Progress in Crystal Growth and Characterization of Materials,2007,53,117-166.
    [69]S. Iijima, Helical microtubules of graphitic carbon, Nature,1991,354,56-58.
    [70]W. P. Hoffman, H. T. Phan, P. G Wapner, The far-reaching nature of microtube technology, Mat Res Innovat,1998,2,87-96.
    [71]D. T. Bong, T. D. Clark, J. R. Granja, M. R. Ghadiri, Self-Assembling Organic Nanotubes, Angew. Chem. Int. Ed.,2001,40,988-1011.
    [72]P. Wang, B. B. Huang, J. Y. Wei, X. Y. Qin, S. S. Yao, Q. Zhang, Preparation of Cu nanoparticles on carbon nanotubes by solution infusion method and calcining in ambient atmosphere, Materials Letters,2007,61,5255-5257.
    [73]G. P. Celata, M. Cumo, S. McPhail, G Zummo, Characterization of fluid dynamic behaviour and channel wall effects in microtube, Heat and Fluid Flow,2006,27,135-143.
    [74]J. P. Cheng, Y. J. Zhang and R. Y. Guo, ZnO microtube ultraviolet detectors, Journal of Crystal Growth,2008,310,57-61.
    [75]G. S. Huang, Y. F. Mei, D. J. Thurmer, E. Coric, O. G Schmidt, Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells, Lab Chip, 2009,9,263-268.
    [76]C. Rosenfeld, C. Serra, C, Brochon, G. Hadziioannou, High-temperature nitroxide-mediated radical polymerization in a continuous microtube reactor:Towards a better control of the polymerization reaction, Chemical Engineering Science,2007,62,5245-5250.
    [77]R. Li, X. Y. Xiao, A. W. Czarnik, Merrifield Microtube Reactors for Solid Phase Synthesis, Tetrahedron Letters,1998,39,8581-8584.
    [78]E. Kaneko, J. Isoe, T. Iwabuchi, S. Hoshi, K. Akatsuka, T. Yotsuyanagi, In-vessel extraction using a microtube and its application to the fluorimetric determination of trace lead, Analyst,2002, 127,219-222.
    [79]J. X. Wang, X. W. Sun, H. Huang, Y. C. Lee, O. K. Tan, M. B. Yu, G. Q. Lo, D. L. Kwong, A two-step hydrothermally grown ZnO microtube array for CO gas sensing, Appl. Phys. A,2007,88, 611-615.
    [80]Y. P. Rakovich, S. Balakrishnan, J. F. Donegan, T. S. Perova, R. A. Moore, Y. K. Gun'ko, The Fabrication, Fluorescence Dynamics, and Whispering Gallery Modes of Aluminosilicate Microtube Resonators, Adv. Funct. Mater.,2007,17,1106-1114.
    [81]J. J. Schneider, J. Engstler, S. Franzka, K. Hofmann, B. Albert, J. Ensling, P. Gutlich, P. Hildebrandt, S. Dopner, W. Pfleging, B. Gunther, G. Muller, Carbon Nanotube Bags:Catalytic Formation, Physical Properties, Two-Dimensional Alignment and Geometric Structuring of Densely Filled Carbon Tubes, Chem. Eur. J.,2001,7,2888-2895.
    [82]J. Q. Hu, Y. Bando, F. F. Xu, Y. B. Li, J. H. Zhan, J. Y Xu, D. Golberg, Growth and Field-Emission Properties of Crystalline, Thin-Walled Carbon Microtubes, Adv. Mater.,2004, 16(2),153-156.
    [83]N. Shi, G Yin, H. B. Li, M. Han, Z. Xu, Uncommon hexagonal microtubule based gel from a simple trimesic amide, New J. Chem.,2008,32,2011-2015.
    [84]Z. J. Liang, A. S. Susha, Mesostructured Silica Tubes and Rods by Templating Porous Membranes, Chem. Eur. J.,2004,10,4910-4914.
    [85]Wugang Fan, Lian Gao, Qinghong Zhang, Synthesis of tapered TiO2 tubes by replication of ZnO, Materials Letters,2007,61,3689-3691.
    [86]Z. Y. Liu, L. J. Ci, N. Y. Jin-Phillipp, M. Ruhle, Graphite-like carbon-encapsulated iron nanoparticle self-assembly into macroscopic microtube structures, J. Mater. Chem.,2007,17, 4619-4625.
    [87]G Zou, Z. Liu, D. Wang, C. Jiang, Y. Qian, Selected-Control Solvothermal Synthesis of Nanoscale Hollow Spheres and Single-Crystal Tubes of PbTe, Eur. J. Inorg. Chem.,2004, 4521-4524.
    [88]J. M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts, Small,2007,3(2),300-304.
    [89]D. Q. Zhang, G. S. Li, X. F. Yang, J. C. Yu, A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets, Chem. Commun.,2009,4381-4383.
    [90]H. G Yang, C. H. Sun, S. Z. Qiao, J, Zou, G, Liu, S. C. Smith, H. M. Cheng, G Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets, Nature,2008,453, 638-641.
    [91]H. G Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, G Q. Lu, Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant{001} Facets, J. Am. Chem. Soc.,2009,131,4078-4083.
    [92]X. G. Han, Q. Kuang, M. S. Jin, Z. X. Xie, L. S. Zheng, Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties, J. Am. Chem. Soc.,2009,131,3152-3153.
    [93]Z. K. Zheng, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, M. H. Jiang, M.-H. Whangbo, Highly Efficient Photocatalyst:TiO2 Microspheres Produced from TiO2 Nanosheets with a High Percentage of Reactive{001} Facets, Chem. Eur. J.,2009,15,12576-12579.
    [94]Taketo Taguchi, Yui Saito, Koji Sarukawa, Teruhisa Ohno and Michio Matsumura, Formation of new crystal faces on TiO2 particles by treatment with aqueous HF solution or hot sulfuric acid, New J. Chem.,2003,27,1304-1306.
    [95]U.S. Patent,5082523,1992,1,21.
    [96]路晓艳,刘玉岚,王彪,多重铁性材料的研究进展,材料导报,2007,21(3),17-20。
    [97]苗兰冬,宋功保,王美丽,李健,浅谈多铁性材料,中国陶瓷工业,2006,13(6),39-42。
    [98]Claude Ederer, Nicola A. Spaldin, Recent progress in first-principles studies of magnetoelectric multiferroics, Current Opinion in Solid State and Materials Science,2005,9, 128-139.
    [99]Gustau Catalan and James F. Scott, Physics and Applications of Bismuth Ferrite, Adv. Mater.,2009,21,2463-2485.
    [100]T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, S.-W. Cheong, Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3, Science,2009,324(5923),63-66.
    [101]M. Fiebiga, Th. Lottermoser, Th. Lonkai, A.V. Goltsev, R.V. Pisarev, Magnetoelectric effects in multiferroic manganites, Journal of Magnetism and Magnetic Materials,2005,290, 883-890.
    [102]A. Reyes, C. de la Vega, Ma. E. Fuentes, L. Fuentes, BiFeO3:Synchrotron radiation structure refinement and magnetoelectric geometry, Journal of the European Ceramic Society, 2007,27,3709-3711.
    [103]M. Fiebig, Th. Lottermoser, D. Frohlich, A. V. Goltsev, R. V. Pisarev, Observation of coupled magnetic and electric domains, Nature,2002,419(6909),818-820.
    [104]Yinghao Chu, Lane W. Martin, Mikel B. Holcomb, and Ramamoorthy Ramesh, Controlling magnetism with multiferroics, Materials Today,2007,10(10),16-23.
    [105]Jyoti Ranjan Sahu, C.N.R. Rao, Beneficial modification of the properties of multiferroic BiFeO3 by cation substitution, Solid State Sciences,2007,9,950-954.
    [106]K.S. Nalwa, A. Garg, A. Upadhyaya, Effect of samarium doping on the properties of solid-state synthesized multiferroic bismuth ferrite, Materials Letters,2008,62,878-881.
    [107]Sverre M. Selbach, Mari-Ann Einarsrud, Thomas Tybell, and Tor Grande, Synthesis of BiFeO3 by Wet Chemical Methods, J. Am. Ceram. Soc.,2007,90(11),3430-3434.
    [108]V. L. Mathe, K. K. Patankar, R. N. Patil, C. D. Lokhande, Synthesis and dielectric properties of Bi1-xNdxFeO3 perovskites, Journal of Magnetism and Magnetic Materials,2004,270,380-388.
    [109]G. L. Yuan, K. Z. Baba-Kishi, J.-M. Liu, and Siu Wing Or, Multiferroic Properties of Single-Phase Bi0.85La0.15FeO3 Lead-Free Ceramics, J. Am. Ceram. Soc.,2006,89(10),3136-3139.
    [110]R. K. Mishra, Dillip K. Pradhan, R. N. P. Choudhary, A. Banerjee, Dipolar and magnetic ordering in Nd-modified BiFeO3 nanoceramics, Journal of Magnetism and Magnetic Materials, 2008,320,2602-2607.
    [111]Sergei V. Kalinin, Matthew R. Suchomel, Peter K. Davies, and Dawn A. Bonnell, Potential and Impedance Imaging of Polycrystalline BiFeO3 Ceramics, J. Am. Ceram. Soc.,2002,85(12), 3011-3017.
    [112]Matjaz Valant, Anna-Karin Axelsson, and Neil Alford, Peculiarities of a Solid-State Synthesis of Multiferroic Polycrystalline BiFeO3, Chem. Mater.,2007,19(22),5431-5436.
    [113]Jun Chen, Ranbo Yu, Lihong Li, Ce Sun, Teng Zhang, Houwen Chen, and Xianran Xing, Structure and Shape Evolution of Bi1-xLaxFeO3 Perovskite Microcrystals by Molten Salt Synthesis, Eur. J. Inorg. Chem.,2008,23,3655-3660.
    [114]Monica Popa, Daniel Crespo, and Jose M. Calderon-Moreno, Synthesis and Structural Characterization of Single-Phase BiFeO3 Powders from a Polymeric Precursor, J. Am. Ceram. Soc.,2007,90(9),2723-2727.
    [115]Jie Wei, Desheng Xue, Low-temperature synthesis of BiFeO3 nanoparticles by ethylenediaminetetraacetic acid complexing sol-gel process, Materials Research Bulletin,2008, 43(12),3368-3373.
    [116]Feng Gao, Xinyi Chen, Kuibo Yin, Shuai Dong, Zhifeng Ren, Fang Yuan, Tao Yu, Zhigang Zou, and Junming Liu, Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles, Adv. Mater.,2007,19,2889-2892.
    [117]Jong Kuk Kim, Sang Su Kim, Won-Jeong Kim, Sol-gel synthesis and properties of multiferroic BiFeO3, Materials Letters,2005,59,4006-4009.
    [118]Jie Wei, Desheng Xue and Yan Xu, Photoabsorption characterization and magnetic property of multiferroic BiFeO3 nanotubes synthesized by a facile sol-gel template process, Scripta Materialia,2008,58,45-48.
    [119]M. C. Li, Judith Driscoll, L. H. Liu, L. C. Zhao, The phase transition and phase stability of magnetoelectric BiFeO3, Materials Science and Engineering A,2006,438,346-349.
    [120]Tae-Jin Park, Georgia C. Papaefthymiou, Arthur J. Viescas, Arnold R. Moodenbaugh, and Stanislaus S. Wong, Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO3 Nanoparticles, Nano Lett.,2007,7(3),766-772.
    [121]X. Y. Zhang, J. Y. Dai, C. W. Lai, Synthesis and characterization of highly ordered BiFeO3 multiferroic nanowire arrays, Progress in Solid State Chemistry,2005,33,147-151.
    [122]Jiantao Han, Yunhui Huang, Xiaojing Wu, Changliang Wu, Weiwei, Bo Peng, Wei Huang, and John B. Goodenough, Tunable Synthesis of Bismuth Ferrites with Various Morphologies, Adv. Mater.,2006,18,2145-2148.
    [123]Chin Moo Cho, Jun Hong Noh, In-Sun Cho, Jae-Sul An, and Kug Sun Hong, Low-Temperature Hydrothermal Synthesis of Pure BiFeO3 Nanopowders Using Triethanolamine and Their Applications as Visible-Light Photocatalysts, J. Am. Ceram. Soc.,2008,91(11), 3753-3755.
    [124]Yonggang Wang, Gang Xu, Linlin Yang, Zhaohui Ren, Xiao Wei, Wenjian Weng, Piyi Du, Ge Shen, and Gaorong Hanw, Alkali Metal Ions-Assisted Controllable Synthesis of Bismuth Ferrites by a Hydrothermal Method, J. Am. Ceram. Soc.,2007,90(11),3673-3675.
    [125]Yonggang Wang, Gang Xu, Zhaohui Ren, Xiao Wei, Wenjian Weng, Piyi Du, Ge Shen, Gaorong Han, Low temperature polymer assisted hydrothermal synthesis of bismuth ferrite nanoparticles, Ceramics International,2008,34,1569-1571.
    [126]Jun Chen, Xianran Xing, Andrew Watson, Wei Wang, Ranbo Yu, Jinxia Deng, Lai Yan, Ce Sun, and Xiaobing Chen, Rapid Synthesis of Multiferroic BiFeO3 Single-Crystalline Nanostructures, Chem. Mater.,2007,19(15),3598-3600.
    [127]Chao Chen, Jinrong Cheng, Shengwen Yu, Lingjuan Che, Zhongyan Meng, Hydrothermal synthesis of perovskite bismuth ferrite crystallites, Journal of Crystal Growth,2006,291,135-139.
    [128]Yonggang Wang, Gang Xu, Zhaohui Ren, Xiao Wei, Wenjian Weng, Piyi Du, Ge Shen, and Gaorong Han, Mineralizer-Assisted Hydrothermal Synthesis and Characterization of BiFeO3 Nanoparticles, J. Am. Ceram. Soc.,2007,90(8),2615-2617.
    [129]S. R. Shannigrahia, A. Huang, D. Tripathy, A. O. Adeyeye, Effect of Sc substitution on the structure, electrical, and magnetic properties of multiferroic BiFeO3 thin films grown by a sol-gel process, Journal of Magnetism and Magnetic Materials,2008,320(18),2215-2220.
    [130]Hongri Liu, Bowu Yan, Xiuzhang Wang, Study on the Ce substitution effects of BiFeO3 films on ITO/glass substrates, Journal of Crystal Growth,2008,310,2934-2937.
    [131]Seung U. Lee, Sang Su Kim, Mun Heum Park, Jin Won Kim, Hyeun Kyung Jo, Won-Jeong Kim, Effects of co-substitution on the electrical properties of BiFeO3 thin films prepared by chemical solution deposition, Applied Surface Science,2007,254,1493-1497.
    [132]Ashok Kumar, N. M. Murari and R. S. Katiyar, Probing the ferroelectric phase transition in sol-gel-derived polycrystalline bismuth ferrite thin films, J. Raman Spectrosc.,2008,39, 1262-1267.
    [133]R. Ramesh and Nicola A. Spaldin, Multiferroics:progress and prospects in thin films, Nature Materials,2007,6,21-29.
    [134]Sung Hwan Lim, Makoto Murakami, Wendy Lynn Sarney, Shen Qiang Ren, The Effects of Multiphase Formation on Strain Relaxation and Magnetization in Multiferroic BiFeO3 Thin Films, Adv. Funct. Mater.,2007,17,2594-2599.
    [135]顾峰,半导体纳米材料的制备及发光性质的研究,山东大学博士学位论文,2005,95-97。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700