掺杂铋层状无铅铁电材料的电学与光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于铋层状钙钛矿结构的铁电材料具有高的剩余极化、低的矫顽场强以及高的居里温度、低的介电损耗等优点,因而在非挥发性铁电随机存储器和高温高频压电器件方面具有广阔的应用空间。在铋层状钙钛矿结构的铁电材料中,Bi4Ti3O12和CaBi4Ti4O15的高居里温度的特性而受材料科学工作者的高度关注。而稀土元素独特的电子层结构,表现出许多优异的光、电功能,尤其是稀土元素具有一般元素所无法比拟的光谱性质,有关稀土发光离子掺杂铋层状铁电材料的研究已引起广泛的关注和兴趣。本文主要研究内容如下:
     1.采用溶胶-凝胶法在Pt/Ti/SiO2/Si衬底上制得Eu掺杂的CaBi4Ti4O15 :Nd铁电薄膜。分别在不同的退火温度和Eu掺杂浓度下研究了薄膜的光致发光性和铁电性。所制得的CaBi3.75-xEuxNd0.25Ti4O15薄膜都为多晶结构,且有正交相和四方相共存的准同型相界存在。当铕的掺杂浓度不超过x=0.2时,薄膜的晶粒大小及分布均匀,且表面致密光滑。而当铕的掺杂浓度超过x=0.2时,薄膜的表面开始变得粗造。薄膜的光致发光强度明显地依赖于退火温度和Eu的掺杂浓度。当铕离子掺杂浓度分别为0,0.2,0.5时,其薄膜所对应的剩余极化值2Pr分别为13.2,30.7和25.3μC/cm2。
     2.采用溶胶-凝胶法成功在导电玻璃FTO衬度上制备了具有高度c轴取向的Bi4Ti3O12薄膜,并对其表面光伏响应进行了研究。Au/BiT/FTO结构的剩余极值2Pr和矫顽场分别为98.8μC/cm2和212 kV/cm。在偏置电压从-1V到+1V中,其最大的表面光电压值为1.8 mV,是在零偏置电压下值的三倍。薄膜的表面光电压的强度随着正电场的增加而增强,随着负电场的增强而减弱,甚至其方向发生一个偏转,这表明Bi4Ti3O12薄膜的表面光电压强度明显的依赖铁电薄膜的极化状态。
     3.采用溶胶-凝胶法成功制备了不同Eu3+离子掺杂浓度的CaBi4Ti4O15 :Nd(CBENT)材料。分别用XRD、拉曼谱和扫描电镜对其结构和表面形貌进行测量。结果表明在CaBi3.75-xEuxNd0.25Ti4O15中,x在0.3和0.6之间,存在正交相和四方相共存的准同型相界。我们用350 nm激发光对Eu3+掺杂CBENT陶瓷时行了光致发光性质的研究,结果表明Bi3+可以作为Eu3+发光离子的敏化剂;其光致发光是由于Bi3+可以有效地把能量传递给Eu3+发光离子和Eu3+离子所处局部对称位置的改变;并且材料在准同型相界处有最好的光致发光性。随着Eu3+离子的增加,陶瓷的居里温度逐渐从785°C减小到765°C。此外,和CBNT陶瓷相比,Eu离子的掺入退化了CBENT陶瓷的铁电性。
     4.用溶胶-凝胶法制备了Er3+掺杂的Bi4Ti3O12粉末,利用X射线衍射仪和扫描电子显微镜对样品进行表征,发现Eu3+的引入并没有改变基质Bi4Ti3O12的晶体结构,制备得到的样品仍为纯的正交相结构。对掺杂Er3+的Bi4Ti3O12材料实验中观测到了在520、540和662 nm波长的上转换发射,这些发射峰来自于激发态2H11/2、4S3/2、4F9/2到基态4I15/2的电子跃迁。并证实了绿色和红色上转换发射都为双光子过程。Er3+单掺Bi4Ti3O12材料体系的上转换发光表明铋层状铁电材料也能够提高Er3+的上转换发光强度。且亦有较好的铁电性。
Bismuth layer-structured ferroelectric (BLSF) ceramics are potential candidate lead-free materials in nonvolatile random access memories, especially at high temperatures and high frequencies device application due to their high remnant polarization, low coercive electric field and low dielectric constant, high Curie temperature etc. In Bi-layer structure ferroelectric material, Bi4Ti3O12 and CaBi4Ti4O15 have been widely investigated in view of the characteristic of high Curie temperature. Otherwise, rare-earth doped powders display many excellent properties based on photoluminescence (PL) and electrical properties due to the unique electron structure of rare-earth, especially photoluminescence properties. In this thesis, the main results are listed as follows.
     Chapter 2 reports ferroelectric and Eu-doped CaBi4Ti4O15: Nd thin films prepared on Pt/Ti/SiO2/Si substrates by a sol-gel method. All the CBENT films have a polycrystalline bismuth-layered perovskite structure, and a morphotropic phase boundary between orthorhombic phase and tetragonal phase was shown to exist. The thin films are dense and smooth with uniformly distributed grains when x is less than 0.2. When x is larger 0.2, a roughened surface with some pores was obtained. The PL intensity of the CBENT films are significantly dependent on annealing temperature and Eu concentration. The remnant polarization 2Pr values of the Eu-doped CaBi4Ti4O15: Nd thin films with Eu concentrations of x=0, 0.2, 0.5 were approximately 13.2, 30.7 and 25.3μC/cm2, respectively.
     In chapter 3, the surface photovoltage (SPV) responses was investigated in sol-gol derived Bi4Ti3O12(BiT) thin films of highly c-axis orientation. The remnant polarization (2Pr) and coercive electric field (Ec) of the Au/BiT/FTO capacitor were about 98.8μC/cm2 and 212 kV/cm, respectively. The maximal surface photovoltage value 1.8 mV of the device of FTO/BiT/ITO with dc bias voltage (from -1V to +1V) was observed at room temperature, and it is three times larger than that under the zero bias. The SPV intensity increased with the positive field increasing, and became weaker with a reverse response with the negative field increasing. It is suggested that the SPV with respect to the unpoled and poled films are largely depend on the ferroelectric polarization.
     Chapter 4 mainly introduces photoluminescence and dielectric properties of CaBi3.75-xEuxNd0.25Ti4O15 ferroelectric ceramics. Their structures and surface morphology were examined by X-ray diffraction, Raman spectrum and scanning electron microscopy, respectively. The morphotropic phase boundary (MPB) between orthorhombic and tetragonal was found located in the range of 0.3     Chapter 5 reports the Er-doped Bi4Ti3O12 ferroelectric powders prepared by a sol-gel method. Their structures and surface morphology were examined by X-ray diffraction, Raman spectrum, and scanning electron microscopy, respectively. The results suggest that Er doping have no change the crystal structure of Bi4Ti3O12 of orthorhombic phase. It can be observed that upconversion emission bands with the peak centred at 520 nm, 540 nm and 662 nm are due to the electron transitions of 2H11/2→4I15/2、4S3/2→4I15/2 and 4F9/2→4I15/2 of the Er-doped Bi4Ti3O12, respectively. Moreover, the upconversion green and red luminescence of the Er-doped Bi4Ti3O12 powder is the process of two photon absorption. The upconversion luminescence of the Er-doped Bi4Ti3O12 suggest that Bi-layer structure ferroelectric material can improve the intensity of upconversion luminescence of the Er3+ ions, which have a promising value of for applications to multifunctional ferroelectric materials.
引文
[1] C.M. Wang, J.F. Wang, Aurivillius Phase Potassium Bismuth Titanate: K0.5Bi4.5Ti4O15, J. Am. Ceram. Soc., 2008, 91: 918.
    [2] K.W. Kwok, H.Y. Wong, Piezoelectric and pyroelectric properties of Cu-doped CaBi4Ti4O15 lead-free ferroelectric ceramics, J. Phys. D: Appl. Phys., 2009, 42: 095419.
    [3]方俊鑫,陆栋,固体物理学。上海科学技术出版社,1987。
    [4] M.A. Zurbuchen,G. Asayama, D.G. Schlom, S.K. Streiffer, Ferroelectric domain structure of SrBi2Nb2O9 epitaxial thin films,Phys.Rev.Let., 2002, 88: 107601.
    [5] Y. Ding, J.S. Liu, MacLaren, Y.N. Wang, Ferroelectrics witching mechanism in SrBi2Ta2O9, Appl. Phys.Let., 2001, 79: 1015.
    [6] Y.Ding, J.S. Liu, H.X. Qin, J. S. Zhu, Y.N. Wang, Why lanthanum-substituted bismuth titanate becomes fatigue free in a ferroelectric capacitor with platinum electrodes, Appl. Phys. Let., 2001, 78: 4175.
    [7] D. Su, J.S .Zhu, Y.N. Wang, Q.Y. Xu, J.S. Liu, Different domain structures and their effects on fatigue behaviorin Bi3TiTaO9 and SrBi2Ta2O9 ceramics, Appl. Phys. Let., 2003, 93: 4784.
    [8]郑伟涛,薄膜材料与薄膜技术。化学工业出版社,2003。
    [9]黄剑锋,溶胶-凝胶原理与技术。化学工业出版社,2005。
    [10] I. Mar, et al., Factors affecting the electrical conductivity of donor-doped Bi4Ti3O12 piezoelectric ceramics, J am Ceram Soc, 1999, 82: 2411.
    [11] I. Megr, Lebrunl, Troccazm, et al. Materials of Bi4Ti3O12 type for high temperature acoustic piezo-sensors, Sensors and Actuatos, 1999, 78: 88.
    [12] P.S. Pizant, E.R. Leite, F.M. Pontes, et al, Photoluminescence of disordered ABO3 perovskites, Appl. Phys. Lett., 2000, 77: 824.
    [13] C.Q. Sun, D. Jin, J. Zhou, et a1., Intense and stable blue-light emission ofPb(ZrxTi1-x)O3, Appl. Phys. Lett. 200l, 79: 1082.
    [14] G.C.Yi, B.A. Block, G.M. Ford, et al., Luminescence quenching in Er-doped BaTiO3 thin films, Appl. Phys. Lett., 1998, 73: 1625.
    [15] M.O. Ramirez, D. Jaque, L. Ivleva, et a1., Evaluation of ytterbium doped strontium barium niobate as a potential tunable laser crystal in the visible, J. Appl. Phys., 2004, 95: 6185.
    [16] M.O. Ramirez, L.E. Bausa, et a1., Thermal hysteresis in the luminescence of Yb3+ ions in Sr0.6Ba0.4Nb2O6, Phys. Rev. B, 2006, 73: 035119.
    [17] K. Aizawa, Y. Ohtani, Ferroelectric luminescent properties of Eu-doped SrBi2Ta2O9 films, Jpn. J. Appl. Phys., 2007, 46: 6944.
    [18] K. Toda, Y. Kameo, M. Ohta, et a1. Luminescence properties of layered perovskites activated by Eu3+ ions. J. Alloys Compd., 1995, 218: 228.
    [19] K. Toda, T. Honma, M. Sato, Unusual concentration quenching of europium luminescence in new layered perovskite compound,RbLal-xEuxTaO7(0≤x≤1) J. Lumin., 1997, 71: 71.
    [20] K.B. Ruan, X.M. Chen, T. Liang, et al., Photoluminescence and electrical properties of highly transparent (Bi,Eu)4Ti3O12 ferroelectric thin films on indium-tin-oxide-coated glass substrates, J. Appl. Phys. 2008, 103: 074101.
    [21] K.B. Ruan, X.M. Chen, T. Liang, G.H. Wu, D.H. Bao, Improved photoluminescence and electrical properties of Eu- and Gd-codoped bismuth titanate ferroelectric thin films, J. Appl. Phys., 2008, 103: 086104.
    [22] F. Gao, G.H. Wu, H. Zhou, D.H. Bao, Strong upconversion luminescence properties of Yb3+ and Er3+ codoped Bi4Ti3O12 ferroelectric thin films, J. Appl. Phys., 2009, 106: 126104.
    [23] K. Nonaka, M. Akiyama, T. Hagio, A. Takase, Bulk Photovoltaic Effect in Reduced/Oxidized Lead Lanthanum Titanate Zirconate Ceramics, Jpn. J. Appl. Phys. Part 1, 1995, 34: 2344.
    [24] A.M. Glass, D. V. Linde, et al., High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3, Appl. Phys. Lett., 1974, 25: 233.
    [25] P.S. Brody, B.J. Rod, Decay of remanent polarization in ferroelectric films using polarization-dependent photovoltages, Integr. Ferroelectr., 1993, 3: 245.
    [26] Z.Q. Lv, K. Zhao, H. Liu, N. Zhou, H. Zhao, L. Gao, S.Q. Zhao, A. J. Wang, Fast lateral photovoltaic effect in ferroelectric LiNbO3 single crystals, Chin. Opt. Lett., 2009, 7: 718.
    [27] M. Qin, K. Yao, Y.C. Liang, High efficient photovoltaics in nanoscaled ferroelectric thin films, Appl. Phys. Lett., 2008, 93: 122904.
    [28] X.Y. Liu, K. Kitamura, K. Terabe, H. Hatano, N. Ohashi, Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect, Appl. Phys. Lett., 2007, 91: 044101.
    [29] M. Qin, et al., Photovoltaic characteristics in polycrystalline and epitaxial (Pb0.97La0.03)(Zr0.52Ti0.48)O3 ferroelectric thin films sandwiched between different top and bottom electrodes, J. Appl. Phys., 2009, 105: 061624.
    [30] T. Choi, S. Lee, Y.J. Choi, et al., Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3, Science, 2009, 324: 63.
    [31] L. Pintilie, M. Alexe, A. Pignolet, D. Hesse, Bi4Ti3O12 ferroelectric thin film ultraviolet detectors, Appl. Phys. Lett., 1998, 73: 342.
    [32] L. Pintilie, I. Pintilie, M. Alexe, Photoconductive Properties of Bi4Ti3O12/Si Heterostructures with diferent thickness of the Bi4Ti3O12 film, J. Eur. Ceram. Soc., 1999, 19: 1473.
    [1] B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Lanthanum substituted bismuth titanate for use in nonvolatile memories. Nature, 1999, 401: 682.
    [2] Y.H. Wang, S. Gong, H.L. Pan, Preparation and waveguide properties of Bi3.15Nd0.85Ti3O12 thin films. J. Phys. D: Appl. Phys., 2008, 41: 105409.
    [3] J. Zhu, X.B. Chen, W.P. Lu, X.Y. Mao, R. Hui, Properties of lanthanumdoped Bi4Ti3O12–SrBi4Ti4O15 intergrowth ferroelectrics, Appl. Phys. Lett., 2003, 83: 1818.
    [4] K.Y. Ko, Y.K. Lee, Y.R. Do, Y.D. Huh, Structural effect of a two-dimensional SiO2 photonic crystal layer on extraction efficiency in sputter deposited Y2O3:Eu3+ thin film phosphors, J. Appl. Phys., 2007, 102: 013509.
    [5] K. Aizawa, Y. Ohtani, Ferroelectric and Luminescent Properties of Eu-Doped SrBi2Ta2O9 Films, Jpn. J. Appl. Phys. Part 1., 2007, 46: 6944.
    [6] K.B. Ruan, X.M. Chen, T. Liang, et al., Photoluminescence and electrical properties of highly transparent (Bi,Eu)4Ti3O12 ferroelectric thin films on indium-tin-oxide-coated glass substrates, J. Appl. Phys. 2008, 103: 074101.
    [7]张盈,Sm3+,Eu3+掺杂稀土化合物纳米晶的光致光性能研究,2009。
    [8] G.Y Chen, et al., Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystals, Phys. Rev. B., 2007, 75: 195204.
    [9] B.J. Kennedya, Q.D. Zhoua, Ismunandarb, et al., Cation disorder and phase transitions in the four-layer ferroelectric Aurivillius phases ABi4Ti4O15 (A=Ca, Sr, Ba, Pb), J. Solid State Chem., 2008, 181: 1377.
    [10] Q.B. Yang, Y.X. Lia, Q.G. Yin, et al., Bi4Ti3O12 nanoparticles prepared by hydrothermal synthesis, J. Eur. Ceram. Soc., 2003, 23: 161.
    [11] R.Z. Hou, X.M. Chen, Neodymium substituted CaBi4Ti4O15 bismuth layered compound, J. Eur. Ceram. Soc., 2006, 26: 1379.
    [12] K.B. Ruan, X.M. Chen, T. Liang, G.H. Wu, D.H. Bao, Improvedphotoluminescence and electrical properties of Eu- and Gd-codoped bismuth titanate ferroelectric thin films, J. Appl. Phys., 2008, 103: 086104.
    [13] C.J. Jia, L.D. Sun, F. Luo, X.C. Jiang, L.H. Wei, C.H. Yan, Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals, Appl. Phys. Lett., 2004, 84: 5305.
    [14] H.W. Song, L.X. Yu, S.Z. Lu, T. Wang, et al., Remarkable differences in photoluminescent properties between LaPO4:Eu one-dimensional nanowires and zero-dimensional nanoparticles, Appl. Phys. Lett., 2004, 85: 470.
    [15] X.P. Fan, X.P. Wu, M.Q. Wang, J.B. Qiu, Y. Kawamoto, Luminescence behaviors of Eu3+β-diketonate complexes in sol–gel-derived host materials, Mater. Lett., 2004, 58: 2217.
    [16] J.W. Wang, H.W. Song, X.G. Kong, H.S. Peng, B.J. Sun, B.J. Chen, J.H. Zhang, W. Xu, H.P. Xia, Fluorescence properties of trivalent europium doped in various niobate codoped glasses, J. Appl. Phys. 2003, 93: 1482.
    [17] J.T. Zeng, Y.X. Lia, et al., Electrical properties of neodymium doped CaBi4Ti4O15 ceramics, Solid State Commun., 2005, 133: 553.
    [18] K. Toda, T. Honma, M. Sato, Luminescence properties of layered perovskites activated by Eu3+ ions, J. Alloys Compd., 1995, 218: 228.
    [19] B.R. Judd, Optical Absorption Intensities of Rare-Earth Ions, Phys. Rev., 1962, 127: 750.
    [20] W. Chen, A.G. Joly, C. Kowalchuk, J. Malm, Y. Huang, J. Bovin, Structure, Luminescence, and Dynamics of Eu2O3 Nanoparticles in MCM-41, J. Phys. Chem. B, 2002, 106: 7034.
    [21] K. Riwotzki, M. Haase, Wet-Chemical Synthesis of Doped Colloidal Nanoparticles: YVO4:Ln (Ln ) Eu, Sm, Dy), J. Phys. Chem. B, 1998, 102: 10129.
    [22] T. Berger, M. Sterrer, O. Diwald, E. Knozinger, Charge Trapping and Photoadsorption of O2 on Dehydroxylated TiO2 Nanocrystals - An ElectronParamagnetic Resonance Study, ChemPhysChem., 2005, 6: 2104.
    [23] J.M. Xue, A. Huang, J. Wang, Ferroelectric Properties of CaBi4Ti4O15 Thin Films Derived from Magnatron Sputtering, J. Ceram. Soc. Jpn., 2004, 112: S461.
    [24] A.Z. Sim?es, C.S. Riccardi, M.A. Ramírez, L.S. Cavalcante, et al., Synthesis and characterization of CaBi4Ti4O15 thin films annealed by microwave and conventional furnaces, Solid State Sci., 2007, 9: 756.
    [25] X.L. Zhong, J.B. Wang, X.J. Zheng, et al., Structure evolution and ferroelectric and dielectric properties of Bi3.5Nd0.5Ti3O12 thin films under a moderate temperature annealing, Appl. Phys. Lett., 2004, 85: 5661.
    [26] K. Aizawa, H. Ishiwara, Correlation between Ferroelectricity and Grain Structures of Face-to-Face Annealed Strontium Bismuth Tantalate Thin Films, Jpn. J. Appl. Phys., 2000, 39: L1191.
    [27] A. Toshihiro, K. Yasumasa, Ferroelectric domain structures around the morphotropic phase boundary of the piezoelectric material PbZr1?xTixO3, Phys. Rev. B, 2007, 75: 214111.
    [28] T. Takenaka, K. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics, Jpn. J. Appl. Phys., 1991, 30: 2236.
    [29] Y. Hiruma, H. Nagata, T. Takenaka, Phase diagrams and electrical properties of (Bi1/2Na1/2) TiO3-based solid solutions, J. Appl. Phys., 2008, 104: 124106.
    [1] K. Nonaka, M. Akiyama, T. Hagio, A. Takase, Bulk Photovoltaic Effect in Reduced/Oxidized Lead Lanthanum Titanate Zirconate Ceramics, Jpn. J. Appl. Phys. Part 1, 1995, 34: 2344.
    [2] A.M. Glass, D. von der Linde, T.J. Negran, High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3, Appl. Phys. Lett., 1974, 25: 233.
    [3] P.S. Brody, B.J. Rod, Decay of remanent polarization in ferroelectric films using polarization-dependent photovoltages, Integr. Ferroelectr., 1993, 3: 245.
    [4] M. Qin, K. Yao, Y.C. Liang, S. Shannigrahi, Thickness effects on photoinduced current in ferroelectric (Pb0.97La0.03)(Zr0.52Ti0.48)O3 thin films, J. Appl. Phys., 2007, 101: 014104.
    [5] M. Qin, K. Yao, Y.C. Liang, High efficient photovoltaics in nanoscaled ferroelectric thin films, Appl. Phys. Lett., 2008, 93: 122904.
    [6] X.Y. Liu, K. Kitamura, K. Terabe, H. Hatano, N. Ohashi, Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect, Appl. Phys. Lett., 2007, 91: 044101.
    [7] M. Qin, K. Yao, Y.C. Liang, Photovoltaic characteristics in polycrystalline and epitaxial (Pb0.97La0.03)(Zr0.52Ti0.48)O3 ferroelectric thin films sandwiched between different top and bottom electrodes, J. Appl. Phys., 2009, 105: 061624.
    [8] M. Ichiki, Y. Morikawa, T. Nakada, R. Maeda, Photovoltaic properties of lead lanthanum zirconate titanate ceramics in a layered film structure design, Ceram. Int., 2004, 30: 1831.
    [9] L. Pintilie, I. Pintilie, T. Botila, Photoelectric properties of sandwich Au/Bi4Ti3O12/Si/Al heterostructures Semicond. Sci. Technol., 1999, 14: 928.
    [10] A. Zomorrodian, N.J. Wu, Y. Song, S. Stahl, A. Ignatiev, E. Brady Trexler, C.A. Garcia, Micro Photo Detector Fabricated of Ferroelectric–Metal Heterostructure,Jpn. J. Appl. Phys. Part 1, 2005, 44: 6105.
    [11] M. Qin, K. Yao, Y.C. Liang, B.K. Gan, Stability of photovoltage and trap of light-induced charges in ferroelectric WO3-doped (Pb0.97La0.03)(Zr0.52Ti0.48)O3 thin films, Appl. Phys. Lett., 2007, 91: 092904.
    [12] L. Pintilie, M. Alexe, A. Pignolet, D. Hesse, Bi4Ti3O12 ferroelectric thin film ultraviolet detectors, Appl. Phys. Lett., 1998, 73: 342.
    [13] Y.F. Zhang, H.R. Zhang, Y.F. Wang, W.F. Zhang, Efficient Visible Spectrum Sensitization of BaSnO3 Nanoparticles with N719, J. Phys. Chem. C, 2008, 112: 8553.
    [14] U. Chon, J.S. Shim, H.M. Jang, Compositional dependence of ferroelectric properties of highly c-axis oriented Bi4-xNdxTi3O12 film capacitors, Solid State Commun., 2004, 129: 465.
    [15] K.H. Xue, J. Celinska, C.A.P. Araujo, Low temperature preparation of ferroelectric bismuth titanate thin films, Appl. Phys. Lett., 2009, 95: 052908.
    [16] X.J. Zheng, W.M. Yi, Y.Q. Chen, Q.Y. Wu, L. He, the effects of annealing temperature on the properties of Bi3.15Nd0.85Ti3O12 thin films, Scr. Mater., 2007, 57: 675.
    [17] J.W. Tang, Z.G. Zou, J.H. Ye, Substitution Effects of Ca2+ by Sr2+ and Ba2+ on Structural Properties and Photocatalytic Behaviors of CaIn2O4, Chem. Mater., 2004, 16: 1644.
    [18] M.A. Butler, Photoelectrolysis and physical properties of the semiconducting electrode WO2,?J. Appl. Phys., 1977, 48: 1914.
    [19] L. Pintilie, I. Pintilie, M. Alexe, Photoconductive Properties of Bi4Ti3O12/Si Heterostructures with diferent thickness of the Bi4Ti3O12 film, J. Eur. Ceram. Soc., 1999, 19: 1473.
    [20] B. Dulieu, J. Bullot, J. Wery, M. Richard, L. Brohan, Dispersive photoconductivity in the layered perovskite Nd2Ti3O9, Phys. Rev. B, 1996, 53: 10641.
    [21] L. Kronik, Y. Shapira, Surface photovoltage phenomena: theory, experiment, and applications, Surf. Sci. Rep., 1999, 37: 1.
    [22] L.L. Peng, T.F. Xie, Z.Y. Fan, Q.D. Zhao, D.J. Wang, D. Zheng, Surface photovoltage characterization of an oriented a-Fe2O3 nanorod array, Chem. Phys. Lett., 2008, 459: 159.
    [23] Y.H. Lin, D.J. Wang, Q.D. Zhao, M. Yang, Q.L. Zhang, A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy, J. Phys. Chem. B, 2004, 108: 3202.
    [24] H.S. Majumdar, S. Majumdar, D. Tobj?rk, R. ?terbacka, Ferromagnetism in indium tin-oxide (ITO) electrodes at room temperature, synthetic Met., 2010, 60: 303.
    [25] Park B H, Kang B S, Bu S D, Noh T W, Lee J and Jo W, Lanthanum substituted bismuth titanate for use in nonvolatile memories. Nature, 1999, 401: 682.
    [26] F. Jona, G. Shirane, Ferroelectric Crystals, Pergamon Press, 1962.
    [27] Y.H. Lin, D.J. Wang, Q.D. Zhao, M. Yang, Q.L. Zhang, A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy, J. Phys. Chem. B, 2004, 108: 3202.
    [28] A.V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, Influence of Adsorbed Oxygen on the Emission Properties of Nanocrystalline ZnO Particles, J. Phys. Chem. B, 2000, 104: 4355.
    [29] T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.W. Cheong, Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3, Science, 2009, 324: 63.
    [30] H.T. Huang, Ferroelectric photovoltaics, Nat. Photonics, 2010, 4: 134.
    [31] S.Y. Yang, L. W. Martin, S. J. Byrnes, T. E. Conry, S. R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.-H. Chu, C.-H. Yang, J. L. Musfeldt, D. G. Schlom, J. W. Ager, et al., Photovoltaic effects in BiFeO3, Appl. Phys. Lett., 2009, 95: 062909.
    [32] D.W. Cao, J. Xu, L. Fang, W. Dong, F.G. Zheng, M.R. Shen, Interface effect on thephotocurrent: A comparative study sandwiched (Bi3.7Nd0.3)Ti3O12 and Pb(Zr0.2Ti0.8)O3 films, Appl. Phys. Lett., 2010, 96: 192101.
    [33] F.G. Zheng, J. Xu, L. Fang, M.R. Shen, X.L Wu, Separation of the Schottky barrier and polarization effects photocurrent of Pt sandwiched Pb(Zr0.20Ti0.80)O3 films, Appl. Phys. Lett., 2008, 93: 172101.
    [34] A. Andersson, N. Johansson, P. Broms, N. Yu, D. Lupo, W.R. Salaneck, Fluorine Tin Oxide as an Alternative to Indium Tin Oxide in Polymer LEDs, Adv. Mater., 1998, 10: 859.
    [35] Y. Park, V. Choong, Y. Gao, B. R. Hsieh, C. W. Tang, Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy, Appl. Phys. Lett., 1996, 68: 2699.
    [36] F.F. Liu, X.Y. Liu, Q.D. Zhao, Y. Hou, X. Quan, G.H. Chen, Structural and photovoltaic properties of highly ordered ZnFe2O4 nanotube arrays fabricated by a facile sol–gel template method, Acta Mater., 2009, 57: 2684.
    [1] B. H. Park, B. S. Kang, S. D. Bu, T.W. Noh, J. Lee, W. Jo, Lanthanum substituted bismuth titanate for use in nonvolatile memories. Nature, 1999, 401: 682.
    [2] C.A. Araujo, J. D. Cuchlaro, L. D. Mcmillan, M. C. Scott, J. F. Scott, Nature, 1995, 374: 627.
    [3] R. Z. Hou, X. M, Chen, Neodymium substituted CaBi4Ti4O15 bismuth layered compound, J. Eur. Ceram. Soc, 2006, 26: 1379.
    [4] J.T. Zeng, Y. X. Li, Q. B. Yang, Q. G. Yin, Ferroelectric and piezoelectric properties of vanadium-doped CaBi4Ti4O15 ceramics, Mater. Sci. Eng., B, 2005, 117: 241.
    [5] S. Murakami, M. Herren, M. Morita, Excitation energy transfer and low-temperature anomaly in luminescence of RE3+ codoped PLZT ceramics, J. Lumin., 1998, 76–77: 460.
    [6] S. Murakami, M. Morita, M. Herren, T. Sakurai, D. Rau, Near-infrared luminescence and spectral anomaly in PLZT ceramics doped with Nd3+, Er3+, Yb3+ and Cr5+ ions at low temperatures, J. Lumin., 2000, 87–89: 694.
    [7] C. J. Lu, X. L. Liu, X. Q. Chen, C. J. Nie, Anisotropic ferro- and piezoelectric properties of sol-gel-grown Bi3.15Nd0.85Ti3O12 films with two different orientations on Pt/Ti/SiO2/Si, Appl. Phys. Lett., 2006, 89: 062905.
    [8] A. Z. Sim?es, A. Ries, F. M. Filho, C. S. Riccardi, J. A. Varela, Fatigue-free behavior of Bi3.25La0.75Ti3O12 thin films grown on several bottom eletrodes by the polymeric precursor method, Appl. Phys. Lett., 2004, 85: 5962.
    [9] J.T. Zeng, Y. X. Lia, D. Wang, Q. R. Yin, Electrical properties of neodymium doped CaBi4Ti4O15 ceramics, Solid State Commun., 2005, 133: 553.
    [10] K. B. Ruan, X. M. Chen, T. Liang, G. H. Wu, D. H. Bao, Photoluminescence and electrical properties of highly transparent (Bi,Eu)4Ti3O12 ferroelectric thin films on indium-tin-oxide-coated glass substrates, J. Appl. Phys., 2008, 103: 074101.
    [11] K. Aizawa, Y. Ohtani, Ferroelectric and Luminescent Properties of Eu-Doped SrBi2Ta2O9 Films, Jpn. J. Appl. Phys. Part 1, 2007, 46: 6944.
    [12] B. J. Kennedya, Q. D. Zhoua, Ismunandarb, Y. Kubotac, K. Katod, Cation disorder and phase transitions in the four-layer ferroelectric Aurivillius phases ABi4Ti4O15 (A=Ca, Sr, Ba, Pb), J. Solid State Chem., 2008, 181: 1377.
    [13] Q. B. Yang, Y. X. Lia, Q. G. Yin, P. L. Wang, Y. B. Cheng, Bi4Ti3O12 nanoparticles prepared by hydrothermal synthesis, J. Eur. Ceram. Soc., 2003, 23: 161.
    [14] S. Kojima, R. Imaizumi, S. Hamazaki, M. Takashige, Raman Scattering Study of Bismuth Layer-Structure Ferroelectrics, Jpn. J. Appl. Phys., Part 1, 1994, 33: 5559.
    [15] A. Tanwar, K. Sreenivas, V. Gupta, Effect of orthorhombic distortion on dielectric and piezoelectric of CaBi4Ti4O15 ceramics, J. Appl. Phys., 2009, 105: 084105.
    [16] M.W. Chu, M. Ganne, M.T. Galdes, et al. X-ray photoelectron spectroscopy and high resolution electron microscopy studies of Aurivillius compounds:Bi4-xLaxTi3O12(x=0, 0.5, 0.75, 1.0, 1.5, and 2.0), J. Appl. Phys., 2002, 91: 3178.
    [17]赵伟,郭玉献,冯雪飞,张亮,张文华,朱俊发,Ca与共轭聚合物P3HT界面处的电子结构和化学反应,科学通报,2009,54:1154。
    [18]李正法,葛洪良,王春雷,Ba6 - 3xEu8+2xTi18O54介电陶瓷XRD及XPS研究,压电与声光,2008,30:328。
    [19]姜洪泉,王鹏,线恒泽,低量Yb3+掺杂的TiO2复合纳米粉体的制备及光催化活性。化学学报,2006,64:145。
    [20] K. B. Ruan, X. M. Chen, T. Liang, G. H. Wu, D. H. Bao, Improved photoluminescence and electrical properties of Eu- and Gd-codoped bismuth titanate ferroelectric thin films, J. Appl. Phys., 2008, 103: 086104.
    [21] X. Fan, X. Wu, M. Wang, J. Qiu, Y. Kawamoto, Luminescence behaviors of Eu3+β-diketonate complexes in sol–gel-derived host materials, Mater.Lett., 2004, 58: 2217.
    [22] W. C. Wang, H. W. Zheng, Y. F. Liu, Z. H. Li, T. Zhang, W. F. Zhang,Photoluminescence and ferroelectric properties of sol–gel-grown Eu-doped CaBi4Ti4O15 :Nd films, J. Phys. D: Appl. Phys., 2009, 42: 105411.
    [23] Q.H. Yang, L. Fang, F.G. Zheng, M.R. Shen, Structural, electrical, luminescent, and magnetic properties of Ba0.77Ca0.23TiO3:Eu ceramics, Mater. Chem. Phys., 2009, 118: 484.
    [24] E.C. Subbarao, A family of ferroelectric bismuth compounds, J. Phys. Chem. Solids, 1962, 23: 665 .
    [25] D.Y. Suarez, I.M. Reaney, W.E. Lee, Relation between tolerance factor and Tc in Aurivillius compounds, J. Mater. Res., 2001, 16: 3139.
    [26] C.M. Wang, J.F. Wang, High performance Aurivillius phase sodium-potassium bismuth titanate lead-free piezoelectric ceramics with lithium and cerium modification, Appl. Phys. Lett., 2006, 89: 202905.
    [1] F. Vet rone, J.C. Boyer , et al., Effect of Yb3+ Co-doping on the Upconversion Emission in Nanocrystalline Y2O3:Er3+, J. Phys. Chem. B, 2003, 107: 1107.
    [2] J.A. Capobianco, F. Vetrone, J.C. Boyer, et al., Enhancement of Red Emission via Upconversion in Bulk and Nanocrystalline Cubic Y2O3:Er3+, J. Phys. Chem. B, 2002, 106: 1181.
    [3] A. Patra, C.S. Friend, R. Kapoor, et al., Excited-state kinetics of the carotenoid S1 state in LHC II and two-photon excitation spectra of lutein and -carotene in solution: efficient Car S1 Chl electronic energy transfer via hot S1 states, J. Phys. Chem. B, 2002, 106: 1909.
    [4] H.X. Zhang, C.H. Kam, Y. Zhou, et al., Green upconversion luminescence in Er3+:BaTiO3 films, Appl. Phys. Lett., 2000, 77: 609.
    [5]王文华,程建波,祝洪杰,掺杂Er3+的TiO2的发射光谱研究,光谱学与光谱分析,2006,26:991。
    [6] H. Eilers, Synthesis and characterization of nanophase yttria co-doped with erbium and ytterbium, Mater Lett, 2006, 60: 214.
    [7] L.M. Yang, H.W. Song, L.X. Yu, et al., Unusual power-dependent and time-dependent upconversion luminescence in nanocrystals Y2O3: Ho3+/Yb3+, J Lumin, 2006 , 116: 101.
    [8] H. Guo, Y.F. Li, D.Y. Wang, et al., Blue upconversion of cubic Gd2O3:Er produced by green laser, J Alloys Compd, 2004, 376: 23.
    [9] Y.H. Li, G.Y. Hong, et al., Red and green upconversion luminescence of Gd2O3:Er3+, Yb3+ nanoparticles, J Alloys Compd, 2008, 456: 247.
    [10] H. Guo, N. Dong, M. Yin, et al., Green and red upconversion luminescence in Er3+-doped and Er3+/Yb3+-codoped SrTiO3 ultrafine powders, J Alloys Compd, 2006, 415: 280.
    [11] I. K. Battisha, Y. Badr, et al., Detection of up-conversion in nano-structure BaTiO3 co-doped with Er3+ and Yb3+ ions, J Sol-Gel Sci Technol, 2010, 53: 543–550.
    [12] K.Y. Ko, Y.K. Lee, et al., Structural effect of a two-dimensional SiO2 photonic crystal layer on extraction efficiency in sputter deposited Y2O3:Eu3+ thin film phosphors, J. Appl. Phys., 2007, 102: 013509.
    [13] K.B. Ruan, X.M. Chen, T. Liang, et al., Photoluminescence and electrical properties of highly transparent (Bi,Eu)4Ti3O12 ferroelectric thin films on indium-tin-oxide-coated glass substrates, J. Appl. Phys. 2008, 103: 074101.
    [14] K.B. Ruan, X.M. Chen, T. Liang, G.H. Wu, D.H. Bao, Improved photoluminescence and electrical properties of Eu- and Gd-codoped bismuth titanate ferroelectric thin films, J. Appl. Phys., 2008, 103: 086104.
    [15] W. C. Wang, H. W. Zheng, Y. F. Liu, Z. H. Li, T. Zhang, W. F. Zhang, Photoluminescence and ferroelectric properties of sol–gel-grown Eu-doped CaBi4Ti4O15 :Nd films, J. Phys. D: Appl. Phys., 2009, 42: 105411.
    [16] K. Aizawa, and Y. Ohtani, Ferroelectric and Luminescent Properties of Eu-Doped SrBi2Ta2O9 Films, Jpn. J. Appl. Phys. Part 1, 2007, 46: 6944.
    [17] F. Gao, G.H. Wu, H. Zhou, D.H. Bao, Strong upconversion luminescence properties of Yb3+ and Er3+ codoped Bi4Ti3O12 ferroelectric thin films, J. Appl. Phys., 2009, 106: 126104.
    [18] P.R. Graves, G. Hua, S. Myhra, J.G. Thompson, The Raman Modes of the Aurivillius Phases: Temperature and Polarization Dependence, J. Solid State Chem., 1995, 144: 112.
    [19] S. Kojima, R. Imaizumi, et al., Raman Scattering Study of Bismuth Layer-Structure Ferroelectrics, Jpn. J. Appl. Phys. Part 1, 1994, 33: 5559.
    [20] H. Idink, V. Srikanth, et al., Raman Study of Low Temperature Phase Transitions in Bismuth Titanate Bi4Ti3O12, J. Appl. Phys., 1994, 76: 1819.
    [21]孙坚,刘粤惠,杨中民,陈东丹,Er3+离子掺杂氧氟碲酸盐玻璃的上转换发光,稀有金属材料与工程,2008,37:76。
    [22]郑会龙,曹望和,Er3+单掺与Er3+/Yb3+共掺Y2SiO5的上转换发光,动能材料,2008,39:883。
    [23] A.H. Li, Z.R. Zheng, et al., Red upconversion emission in LiNbO3 codoped with Er3+ and Eu3+, Opt. Express, 2009, 17: 3878.
    [24] A. Kanjilal, L. Rebohle, M. Voelskow, W. Skorupa, and M. Helm, Enhanced blue-violet emission by inverse energy transfer to the Ge-related oxygen deficiency centers via Er3+ ions in metal-oxide semiconductor structures, Appl. Phys. Lett., 2009, 94: 051903.
    [25] J.B. Gruber, S. Chandra, D.K. Sardar, U.V. Valiev, N.I. Juraeva, and G.W. Burdick, Modeling optical spectra and Van Vleck paramagnetism in Er3+:YAlO3, J. Appl. Phys., 2009, 105: 023112.
    [26] V. Singh, V.K. Rai, I. Ledoux-Rak, S. Watanabe, T.K.G. Rao, J.F.D. Chubaci, L. Badie, F. Pelle and S. Ivanova, NIR to visible up-conversion, infrared luminescence, thermoluminescence and defect centres in Y2O3 : Er phosphor J. Phys. D: Appl. Phys., 2009, 42: 065104.
    [27] W. Sakamoto, K. Imada, et al., Fabrication and characterization of intergrown Bi4Ti3O12-based thin films using a metal-organic precursor solution, J. Eur. Ceram. Soc., 2007, 27: 3765.
    [28]王宁章,李兴教,掺钕钛酸铋铁电陶瓷靶的研制,电子元件及材料,2005, 24:27。
    [29] B.D. Stojanovic, et al., Effect of processing route on the phase formation and properties of Bi4Ti3O12 ceramics. Ceram. Intern., 2006, 32: 707.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700