准同型相界附近PMN-BS-PT高温压电陶瓷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学技术的飞速发展对压电器件在高温环境下的使用提出了要求,目前商业化应用的锆钛酸铅体系压电陶瓷材料的居里温度较低,安全使用温度被限制在150℃以内,因此开发具有优良压电性能的高居里温度压电陶瓷材料成为国内外研究的热点。BiScO3-PbTiO3体系在准同型相界处具有很高的居里温度和优良的压电性能,是一类出色的高温压电陶瓷材料;Pb(Mg1/3Nb2/3)O3-PbTiO3体系压电陶瓷在准同型相界处的压电性能非常优异,但是居里温度很低只有150℃。
     本论文针对上述问题,向BSPT体系中引入PMN,以PMN-BS-PT三元体系为研究对象,控制PMN的引入量为10mol.%和5mol.%,分别研究了0.1PMN-BS-PT和0.05PMN-BS-PT两个体系在准同型相界附近的结构与性能,探讨了PMN的引入对体系的影响。
     研究发现,O.1PMN-BS-PT体系在PT含量较低时表现出明显的铁电弛豫特性,随着PT含量的增加,逐渐转变为正常铁电体;而0.05PMN-BS-PT体系由于PMN的含量较低并没有表现出明显的铁电弛豫特性。随着PT含量的增加,两个体系的居里温度均逐渐升高,矫顽场逐渐增大,剩余极化强度先增大后减小。0.1PMN-BS-PT体系在PT含量为56%处获得准同型相界区域性能最优点,其性能为:压电常数d33=387pC/N,机电耦合系数kp=0.49,居里温度Tc=361℃,矫顽场Ec=20.64kV/cm,剩余极化强度Pr=31.88μC/cm2; 0.05PMN-BS-PT体系在PT含量为59%处获得准同型相界区域性能最优点,其性能为:压电常数d33=487pC/N,机电耦合系数kp=0.59,居里温度Tc=404℃,矫顽场Ec=22.31kV/cm,剩余极化强度Pr=34.73μC/cm2。可见,PMN的引入降低了体系的居里温度;10%的引入量使得体系变“硬”,降低了体系的压电性能;而减少引入量至5%时软化作用占优,增加了体系的压电性能。
With the rapid development of science and technology, more piezoelectric devices should be used in high-temperature environment. Commercial PZT piezoelectric ceramics have a low curie temperature, whose working temperature(< 150℃) is too low to be used in practice. So the current researches are focused on investigating and developing high curie temperature piezoelectric ceramics. As a kind of excellent high curie temperature piezoelectric ceramics, BiScO3-PbTiO3 system ceramics at MPB exhibit high curie temperature and piezoelectric properties. Pb(Mg1/3Nb2/3)O3-PbTiO3 system ceramics have excellent piezoelectric properties at MPB with low curie temperature(150℃).
     Addressed these issues, we introduce PMN to BSPT system, and the PMN-BS-PT ternary system ceramics with 10mol.%PT and 5mol.%PT were studied in this paper. Through the research of structure and properties near the two MPBs, we discussed the affect of PMN as a third component to the system.
     The results show that 0.1 PMN-BS-PT system with low PT content indicate a typical character of relaxor ferroelectrics, and it is transformed into normal ferroelectrics as increasing of PT content. Because of the low PMN content, 0.05PMN-BS-PT system doesn't indicate a typical character of relaxor ferroelectrics. With the growing of PT content, the curie temperature and coercive field of the two system increase, but the remanent polarization firstly increase and then decreasing. When the PT content is 56mol.%, the 0.1 PMN-BS-PT system show the optimal piezoelectric properties with d33=3/7pC/N, kp=0.49, Tc=361℃,Ec=20.64kV/cm, Pr=31.88μC/cm2. The 0.05PMN-BS-PT system with 59mol.% PT indicate the optimal piezoelectric properties with d33=487pC/N,kp=0.59, Tc=404℃, Ec=22.31kV/cm,Pr=34.73μC/cm2. So the introduction of PMN reduce the curie temperature; 10mol.% PMN indicate the“hard”behavior as a functon of reducing the piezoelectric properties; 5mol.% PMN indicate the“soft”behavior with increasing the piezoelectric properties.
引文
[1]曲远方.功能陶瓷的物理性能.北京:化学工业出版社,2007:170-171
    [2]张金升,王美婷,许凤秀.先进陶瓷导论.北京:化学工业出版社,2007:87-88
    [3]文海,王晓慧,赵巍等.高温压电陶瓷研究进展.硅酸盐学报,2006,34(11):1367-1372
    [4]R.S.Weis, T.K.Gaylord. Lithium niobate:Summary of physical properties and crystal structure. Appl. Phys. A:Materials Science & Processing,1985,37:191-203
    [5]晏海学,李承恩等.高Tc铋层状压电陶瓷结构与性能.无机材料学报,2000,15(2):209-220
    [6]Lopatin S S, Lupeiko T G, Vasisova T L, et al. Properties of bismuth titanate ceramic modified with group-V and group-VI Elements. Inorg Mater,1988,24(9):1328-1330
    [7]Korzunova L, Shebanov L A. New perovskite-like high-temperature ferroelectrics. Ferroelectrics,1989,93:111-115
    [8]黄宣威,李承恩.Ca-(Na,Ce)-Bi-Ti系列高温压电陶瓷材料及其压电性能的研究.无机材料学报,1998,13(2):59-64
    [9]B.Frit, J.P.Mercurio. The crystal chemistry and dielectric properties of the Aurivillius family of complex bismuth oxides with perovskite-like layered structures. J. Alloys Compounds, 1992,188(1-2):27-35
    [10]H.Yan, C.Li, Ji.Zhou, et al. A-Site Substitution Effects on the Structures and Properties of CaBi4Ti4O15 Ceramics. Jpn.J.Appl.Phys.,2000,39(11):6339-6342
    [11]贺连星,李毅,李广成等.无铅压电陶瓷材料研究进展.电子元件与材料,2004,23(11):52-55
    [12]钱逸泰.结晶化学.合肥:中国科学技术大学出版社,1988:269-272
    [13]张高科,欧阳世翕,吴金东等.掺杂对一些钨青铜铌酸盐晶体结构及性能影响.武汉理工大学学报,2002,24(2):9-10
    [14]E.C.Subbarao. X ray study of phase transition in ferroelectric PbNb2O6 and related materials. J. Am. Ceram. Soc.,1960,43:439-442
    [15]李承恩,薛军民,周家光等.改性偏铌酸铅高温压电陶瓷材料的研究.无机材料学报,1995,10(4):452-453
    [16]Kunihiro N, Junichiro S. Preparation and properties of Ba and La substituted PbNb2O6 ceramics for broad-band ultrasonic transducers. Ferroelectrics,2002,273:77-82
    [17]赁敦敏,肖定全,朱建国等.LiNbO3基无铅压电陶瓷的研究与进展.功能材料,2004,1(35):18-19
    [18]陈强,肖定全,吴家刚等.Pechini法制备铌酸锂陶瓷的结晶性能研究.功能材料,2004,4(35):477-482
    [19]董敦灼,陈旭明.高居里点压电陶瓷材料.电子元件与材料,1988,7(5):20-23
    [20]L.Nibou, M.Manier, J.P.Mercurio. LiNbO3-based piezoelectric ceramics prepared from sol-gel derived powders. Ann. Chim. Sci. Mater.,1998,23(1-2):135-138
    [21]Guo Y, Kakimoto K, Ohsato H. Phase transitional behavior and piezoelectric properties of Na0.5K0.5NbO3-LiNbO3 ceramics. Appl Phys Lett.,2004,85(18):4122-4124
    [22]钟维烈.铁电体物理学.北京:科学出版社,1996:360-365
    [23]曲远方.功能陶瓷及应用.北京:化学工业出版社,2003:342-343
    [24]Jaffe B, Roth R S, Marzullo S. Piezoelectric properties of lead zirconate-titanate solid solution ceramics. J Appl Phys,1954,25(6):809-810
    [25]Eitel R E, Randall C A, Shrout T R, et al. New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3-PbTiO3 ceramics. Jpn J Appl Phys, 2001,40(10):5999-6002
    [26]Eitel R E, Randall C A, Shrout T R, et al. Preparation and characterization of high temperature perovskite ferroelectrics in the solid-solution (1-x)BiScO3-xPbTiO3. Jpn J Appl Phys,2002,41(4A):2099-2104
    [27]Cheng J R, Zhu W, Li N, et al. Fabrication and characterization of xBiGa03-(1-x)PbTi03:a high temperature reduced Pb-content piezoelectric ceramic. Mater. Lett.,2003,57:2090-2094
    [28]T.P.Comyn, S.P. McBride, A.J. Bell. Processing and electrical properties of BiFeO3-PbTiO3 ceramics. Mater. Lett.,2004,58:3844-3846
    [29]Duan R,Speyer R F,Alberta E,et al. High curie temperature perovskite BiInO3-PbTiO3 ceramics. J Mate Res,2004,19(7):2185-2193
    [30]C.J. Stringer, T.R. Shrout, C.A. Randall. Classification of transition temperature behavior in ferroelectric PbTiO3-Bi(Me′Me″)O3 solid solutions. J. Appl. Phys.,2006,99:024106
    [31]Ryu J, Priya S, Sakaki C, et al. High power piezoelectric characteristics of BiScO3-PbTiO3-Pb(Mn1/3Nb2/3)O3. Jpn J Appl Phys,2002,41(10):6040-6044
    [32]Song T H, Eitel R E, Shrout T R, et al. Piezoelectric properties in the perovskite BiScO3-PbTiO3-(Ba,Sr)TiO3 ternary system. Jpn J Appl Phys,2003,42(8):5181-5184
    [33]Sawaguchi E. Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3. J.Phys.Soc.Jpn.,1953,8:615-620
    [34]Jaffe B, Roth R S, Marzullo S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J.Appl.Phys.,1954,25:809-810
    [35]Yamashita Y. Large electromechanical coupling factors in perovskite binary material system. Jpn.J.Appl.Phys.,1994,33:5328-5331
    [36]Kuwata J, Uchino K, Nomura S. Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals. Jpn.J.Appl.Phys.,1982,21:1298-1302
    [37]Park S E, Shrout T R. Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control,1997,44:1140-1147
    [38]Saito Y, Takao H, Tani T, et al. Lead-free piezoelectric ceramics. Nature,2004,432:84
    [39]Guo Y, Kakimoto K, Ohsato H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNb03 cermaics. Appl.Phys.Lett.,2004,85(18):4121
    [40]Takenakat, Uzumia, Hatat, et al. Mechanical properties of NBT based piezoelectric ceramies. Silic Ind,1993,7(8):136-142
    [41]Jaffe B, Jaffe H, Cook W R. Piezoelectric Ceramics. London:Academic Press,1971,119
    [42]Cao W, Cross L E. Theoretical model for the morphotropic phase boundary in lead zirconate-titanate solid solution. Phys.Rev.B,1993,47:4825-4830
    [43]钟海胜,李强,赵世玺等.弛豫铁电材料的准同型相界研究.硅酸盐通报,2004,3:41-43
    [44]Noheda B,Cox D E,Shirance G,et al. A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution. Appl Phys Lett,1999,74(14):2059-2061
    [45]Noheda B, Gonzalo J A, Cross L E, et al. Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite:the structure of PbZr0.52Ti0.48O3. Phys.Rev.B,2000,61:8687-8695
    [46]Guo R, Cross L E, Park S E, et al. Origin of the high piezoelectric response in PbZr1-xTixO3. Phys.Rev.Lett.,2000,23:5423-5426
    [47]Cox D E, Noheda B, Shirane G, et al. Universal Phase diagram for high piezoelectric perovskite system. Appl Phys Lett,2001,79(3):400-402
    [48]Noheda B, Cox D E, Shirane G, et al. Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZn1/3Nb2/3O3-8%PbTiO3. Phys.Rev.Lett.,2001,86:3891-3894
    [49]Fu H X, Cohen R E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature,2000,403:281-283
    [50]George A M, Iniguez J, Bellaiche L. Anomalous properties in ferroelectrics induced by atomic ordering. Nature,2001,413:54-57
    [51]Swartz S L, Shrout T R. Fabrication of perovskite lead magnesium niobate. Mater.Res.Bull., 1982,17:1245-1250
    [52]刘维良.先进陶瓷工艺学.武汉:武汉理工大学出版社,2004:102-104
    [53]曲远方.功能陶瓷材料.北京:化学工业出版社,2003:56-59
    [54]龙毅.材料物理性能.长沙:中南大学出版社,2009:176-179
    [55]张延平.电子陶瓷材料物化基础.北京:电子工业出版社,1996:230-231
    [56]张玉龙,马建平.实用陶瓷材料手册.北京:化学工业出版社,2006:623-627
    [57]K. Okazaki, K. Sakata. Space charge polarization and aging of barium titanate ceramics. Electrotech. J. Jpn..,1962,7:13-18
    [58]Lei C, Chen K P, Zhang X W. Dielectric and ferroelectric properties of Pb(Ni1/3Nb2/3)O3-PbTiO3 ferroelectric ceramic near the morphotropic phase boundary. Mater.Lett.,2002,54:8-12
    [59]Lei C, Chen K P, Zhang X W. Study of the electrical properties of Pb(Mg,Ni)1/3Nb2/3O3-PbTiO3 system across the morphotropic phase boundary. J. Electroceram,2003,10:233-239

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700