混沌动力学系统延拓与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混沌生成系统是混沌理论和应用研究的重要组成部分,而系统中的非线性组成项又是混沌产生的必要条件。非线性项的非线性特征及在系统中的组成形式直接决定了系统的混沌行为和混沌产生机理。本论文在前人工作基础上,对混沌系统的非线性组成特征进行了深入的研究,建立和延拓了一些典型的混沌系统,进而揭示了一些新的混沌行为和产生机理。这些现象和机理进一步丰富了混沌理论,为混沌的工程应用打下基础。
     本论文工作主要分为离散时间系统和连续时间系统两部分。
     在离散时间系统的延拓和分析方面,重点研究了具有指数二次项的一维和二维离散映射及含斜坡补偿的电流模式控制开关DC-DC变换器的动力学特性。
     为了使得离散映射具有较为复杂的动力学特性,提出了一类具有指数二次项的一维和二维离散映射,利用不动点演变轨迹分析和仿真手段构造相应次数的迭代曲线,对它们的动力学特性进行了全面深入的研究,结果表明:一维广义平方映射有着与单峰平方映射相类似的物理现象,其动力学行为分布在一个单位区域内;一维DOG小波映射随着参数变化不动点会发生数量上的增加或减少,存在倍周期分岔、切分岔、边界危机分岔、周期窗以及不完全费根鲍姆树等非线性物理现象;而二维广义平方映射则存在Hopf分岔和锁频等现象,有着复杂多变、形状奇异的极限环和混沌吸引子。
     开关DC-DC变换器是一种特殊的时变离散混沌系统,在较宽的电路参数下具有两个边界,存在一般混沌系统所不具有的边界碰撞分岔现象。随着电路参数变化,开关DC-DC变换器存在倍周期和边界碰撞两种分岔路由,并由边界碰撞分岔导致其运行轨道在稳定的周期1态、连续传导模式(CCM)的鲁棒混沌态和不连续传导模式(DCM)的强阵发性的弱混沌态之间发生模式转移现象。通过引入合适的斜坡补偿电流,开关DC-DC变换器的工作模式可以从DCM转移到CCM,也可以被镇定在周期1态。此外,通过导出运行轨道状态发生转移时的两个分界线方程,给出了所对应的工作状态域的电路参数估计,实验结果验证了其正确性。
     在连续时间系统的延拓和分析方面,重点研究了三维混沌系统、四维超混沌系统,以及多涡卷混沌系统和光滑忆阻混沌电路。
     提出了具有指数项的鲁棒混沌系统和规范形式的改进型广义Lorenz系统。具有指数项的鲁棒混沌系统有着简单的代数方程,能产生双涡卷混沌吸引子,在较宽的参数范围内存在鲁棒混沌现象;而改进型广义Lorenz系统因折叠因子的引入,可生成一类复杂的双涡卷和单涡卷折叠吸引子,有着丰富而复杂的非线性动力学现象。此外,通过加载线性的或者非线性的状态控制器获得了各种超混沌系统或其相应的电路,并由数值仿真和实验仿真得到了这类系统的超混沌吸引子。
     进一步地,根据吸引子的形成机理,首先以两个饱和函数序列驱动线性系统为例,提出了生成多涡卷吸引子的一般思路,由此实现了一个(2N+1)×(2M+1)网格涡卷混沌系统;其次基于Colpitts振荡器模型,通过对模型状态方程中非线性项的改造,构造了网格涡卷和多涡卷的混沌和超混沌系统,生成了(2N+1)涡卷混沌吸引子和(2M+1)×(2N+1)网格涡卷超混沌吸引子;最后通过对线性系统中引入的两个锯齿波函数的设计,获得了不同涡卷位置分布的多涡卷吸引子,完成了吸引子涡卷数量、涡卷位置的设计。
     在光滑忆阻混沌电路研究方面,提出了三次非线性函数描述的光滑磁控忆阻器,以此替换蔡氏混沌电路中的蔡氏二极管,导出了一个光滑忆阻混沌电路。采用常规的动力学分析手段研究了在电路参数和初始条件发生变化时的动力学特性。结果表明光滑忆阻振荡器与一般的混沌系统不同,它的动力学行为除了与电路参数有关外,还极端依赖于电路的初始状态,其运行轨道因初始状态不同将会在混沌振荡、周期振荡和稳定的汇之间发生转换。另外,分析了光滑忆阻振荡器中的瞬态混沌和状态转移等奇异的非线性现象。
The chaos-generating system is an important part of chaos theory and application study. The nonlinearity in dynamical systems is compulsory to generate chaotic phenomena and its characteristics and composition forms directly determine the chaotic behaviors and chaos-generating mechanisms. With advances in these areas, this dissertation conducts a thorough investigation on the nonlinear composition characteristics of the chaotic systems and extends some typical chaotic systems. Some new chaotic phenomena are found and new chaos-generating mechanisms are revealed.
     This dissertation is divided into two parts of the discrete time systems and the continuous time systems.
     In the study on discrete time systems, we pay attention on a class of one-dimensional and two-dimensional discrete maps with exponential quadratic terms and the current mode controlled switching DC-DC converters with ramp compensation.
     Generalized square map and DOG wavelet map are constructed and their complex dynamical behaviors are revealed. With the evolving orbits of the fixed points and the iterative curves with corresponding degree, it is found that (1) one-dimensional generalized square map has physical phenomenon similar to single-peak square map and its dynamical behavior distributes in the unit region. (2) DOG wavelet map. whose the number of the fixed points varies with the parameters, exhibits rich nonlinear phenomena, such as period-doubling bifurcation, tangent bifurcation, boundary crisis bifurcation, period-window, and imperfect Feigenbaum-tree. and so on. (3) two-dimensional generalized square map has the phenomena of Hopf bifurcation and locked-frequency with complex, flexible, strange shaped limit cycles and chaotic attractors.
     Switching DC-DC converter is a kind of special time-varying discrete chaotic systems and has two boundaries in the wide ranges of circuit parameters. It exhibits the phenomenon of border collision bifurcation. With the variations of circuit parameters, the switching DC-DC converter has two routes to chaos through period-doubling bifurcation and border collision bifurcation. The border collision bifurcation will lead to state shifts between the stable period-one state, robust chaos state in continuous conduction mode (CCM) and weak chaos state with strong intermittency in discontinuous conduction mode (DCM). By introducing suitable ramp compensation, the operation modes of the switching DC-DC converter can shift from DCM to CCM, and can also be controlled at the stable period-1 region. Furthermore, two borderline equations of the orbit state shifts are derived and the circuit parameters corresponding to the operation state regions are presented. The results are confirmed by circuit experiments.
     In the study on continuous time systems, we pay attention on three-dimensional chaotic systems, four-dimensional hyperchaotic systems, as well as multi-scroll chaotic systems and smooth memristor chaotic circuits.
     A robust chaotic system with an exponential quadratic term and a modified generalized Lorenz system in a canonical form are presented. The robust chaotic system has simple algebraic structure, can generate 2-scroll chaotic attractors and has chaotic phenomena in a very wide parameter ranges. The modified generalized Lorenz system with a folded factor can display complex 2-scroll and 1-scroll folded attractors and exhibits complicated nonlinear dynamical phenomena. In addition, different hyperchaotic systems or their corresponding circuits are obtained by adding linear or nonlinear state controllers to the different three-dimensional chaotic systems or circuits. Their hyperchaotic dynamics are comfirmed by simulations and experiments.
     A general guide to design multi-scroll chaotic systems is proposed. With Colpitts oscillator model, by modifying the nonlinear term in model state equations, grid-scroll and multi-scroll chaotic and hyperchaotic systems are constructed, which can generate a (2N+1)-scroll chaotic attractor and a (2M+1)x(2N+1)-grid scroll hyperchaotic attractor. By designing two different saw-tooth functions in the linear system, some multi-scroll chaotic attractors with different scroll-location distributions are obtained and the designs of the scroll number and scroll-location distributions of the chaotic attractors are realized.
     In the study on smooth memristor chaotic circuits, a smooth flux-controlled memristor having a cubic nonlinearity is presented and a smooth memristor chaotic circuit is derived by replacing Chua's diode in Chua's chaotic circuit with the memristor. The dynamical behaviors are analysed under different circuit parameters and initial states. The research results demonstrate that the dynamics of the smooth memristor oscillator, different from general chaotic systems, depend not only on circuit parameters, but also closely on the initial states. With different initial states, the circuit orbits will transfer among chaotic oscillation or periodic oscillation or stable sink. In addition, some transient chaos and state transitions in the smooth memristor oscillator are revealed and analyzed.
引文
[1]Lorenz E N. Deterministic nonperiodic flow [J]. Journal of the Atmospheric Sciences, 1963.20(2):130-141.
    [2]Ruell D. Takens F. On the nature of turbulence [J]. Communications in Mathematical Physics.1971,20(3):167-192.
    [3]Li T Y, York J A. Period three implies chaos [J]. American Mathematical Monthly, 1975.82(10):985-992.
    [4]May R M. Biological Populations with nonoverlapping generations:stable points, stable cycles, and chaos [J]. Science,1974.186(4164):645-647.
    [5]Feigenbaum M J. Quantitative universality for a class of nonlinear transformations [J]. Journal of statical physics.1978.19(1):25-52.
    [6]Mandelbrot B B. Fractal aspects of the iteration of z→ Az(1-z) for complex A and z [J]. Annals New York Academy of Sciences.1980.357:249-259.
    [7]Genfen Y. Mandelbrot B B and Aharony A. Critical phenomena on fractal lattices [J]. Physics Review Letters.1980.45:855-858.
    [8]Grassberger P. Information content and predictability of lumped and distributed dynamical systems [J]. Physica Scripta.1989.40:346-353.
    [9]Ott E. Grebogi C. Yorke J A. Controlling chaos [J]. Physical Review Letters.1990, 64(11):1196-1199.
    [10]Rul'kov, Volkovskii A R. Mutual synchronization of chaotic self-oscillators with dissipative coupling [J]. Int. J. Bifur. Chaos.1992.2(3):669-676.
    [11]Boccaletti B. Kurths J. Osipov G. Valladares D L. Zhou C S. The synchronization of chaotic systems [J]. Physics Reports.2002.366:1-101.
    [12]Pecora L M. Carrol T L. Synchronization in chaos systems [J]. Physics Review Letters.1990.64(8):821-824.
    [13]Kocarey L. Prlitz U. Encode message using chaotic synchronization [J]. Physical Review E.1996.53(5):4351-4361.
    [14]Andrievskii B R. Fradkov A L. Control of chaos:methods and applications. I. Methods [J]. Automation and Remote Control.2003.64(5):673-713.
    [15]Andrievskii B R. Fradkov A L. Control of chaos:methods and applications. Ⅱ. Applications [J]. Automation and Remote Control.2004.65(4):505-533.
    [16]Chen G R. Yu X H. Chaos control:theory and applications [M]. Springer.2003.
    [17]Scholl E, Schuster H G. Handbook of chaos control [M].2nd ed. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.2008.
    [18]Wiggins S. Introduction to applied nonlinear dynamical systems and chaos [M]. New York:Springer-Verlag.1990.
    [19]Devaney R L. An introduction to chaotic dynamical systems [M]. New York: Addison-Wesley,1989.
    [20]Wolf A. Swift J B, Swinney H L, Vastano J A. Determining Lyapunov exponents from a time series [J]. Physica D,1985,16:285-317.
    [21]Stewart I. The Lorenz attractor exists [J]. Nature,2002,406:948-949.
    [22]Chen G R, Ueta T. Yet anthor chaotic attractor [J]. Int. J. Bifur. Chaos,1999.9(6): 1465-1466.
    [23]Lu J H, Chen G R. A new chaotic attractor coined [J]. Int. J. Bifur. Chaos,2002. 12(3):659-661.
    [24]Rossler O E. An equation for continuous chaos [J]. Physics Letters A,1976.57(5): 397-398.
    [25]Lu J H, Chen G R. Cheng D. A new chaotic system and beyond:the generalized Lorenz-like system [J]. Int. J. Bifur. Chaos.2004.14(5):1507-1537.
    [26]Bilotta E, Pantano P. Stranges F. A gallery of Chua attractors:Part I [J]. Int. J. Bifur. Chaos,2007,17(1):1-60.
    [27]Maggio G M. Feo O D. Kennedy M P. Nonlinear analysis of the Colpitts oscillator and applications to design [J]. IEEE Trans. Circuits syst.-I,1999.46(9):1118-1130.
    [28]Liu W B. Chen G R. A new chaotic system and its generation [J]. Int. J. Bifur. Chaos. 2003,13(1):261-267.
    [29]Liu C X, Liu T. Liu L et al. A new chaotic attractor [J]. Chaos. Solitions and Fractals. 2004.22(5):1031-1038.
    [30]Qi G Y, Chen G R. Du S Z et al. Analysis of a new chaotic attractor [J]. Physica A. 2005.352:295-308.
    [31]Li Y X, Tang W K S. Chen G R. Hyperchaos evolved from the generalized Lorenz equation [J]. Int. J. of Circuit Theory Application.2005.33(4):235-251.
    [32]Chakrabarty K. Poddar G. Banerjee S. Bifurcation behavior of the Buck converter [J]. IEEE Trans. Power Electronics,1996.11(3):439-447.
    [33]Tse C K. Lai Y M. Iu H H C. Hopf bifurcation and chaos in a free-running current-controlled Cuk switching regulator [J]. IEEE Trans. Circuits sys.-I.2000. 47(4):448-457.
    [34]包伯成.许建平、胡文.电流控制型Boost变换器分义行为的仿真和分析[J].机车电传动,2008(4):20-24.
    [35]Yu S M, Tang W K S. Lu J H, Chen G R. Generation of n×m-wing Lorenz-like attractors from a modified Shimizu-Morioka model [J]. IEEE Trans. Circuits syst.-II, 2008.55(11):1168-1172.
    [36]Yu S M, Tang W K S. Lii J H. Chen G R. Generating 2n-wing attractors from Lorenz-like systems [J]. Int. Journal of Circuit Theory and Applications.2008, DOI: 10.1002/cta.558.
    [37]Sajid I. Masood A. Suhail AQ. Investigation of chaotic behavior in DC-DC converters [J]. Int. Journal of Electrical. Computer. and Systems Engineering.2007. 1(3):166~169.
    [38]Donato C. Giuseppe G. Bifurcation and chaotic behavior in boost converters: experimental results [J]. Nonlinear Dynamics.2006.44:251~262.
    [39]Lin F Y. Liu J M. Chaotic radar using nonlinear laser dynamics [J]. IEEE J. Quantum Electron.2004.40:815-820.
    [40]Liu Z. Zhu X H. Hu W. Jiang F. Principles of chaotic signal radar [J]. Int. J. Bifur. Chaos.2007.17(5):1735-1739.
    [41]Robinson R C. An introduction to dynamical systems:continuous and discrete [M]. Pearson Prentice Hall. Upper Saddle River.2004.
    [42]Meyer T. Bunner M J, Kittel A. Parisi J. Hyperchaos in the generalized Rossler system [J]. Physical Review E.1997.56:5069-5082.
    [43]Zhou T. Chen G. Yang Q. Constructing a new chaotic system based on the Silnikov criterion [J]. Chaos. Solitons and Fractals.2004.19(4):985-993.
    [44]Bao B C. Li C B. Xu J P. Liu Z. New robust chaotic system with exponential quadratic term [J]. Chin. Phys. B.2008.17(11):4022-4026.
    [45]于万波.魏小鹏.一个小波函数指数参数变化的分岔现象[J].物理学报,2006,55(8):3969~3373.
    [46]Elwakil AS. Ozoguz S. Kennedy MP. Creation of a complex butterfly attractor using a novel Lorenz-type system [J]. IEEE Trans. Circuits Syst.-I.2002.49(4):527-530.
    [47]王兴元.梁庆永.复合Logistic映射中的逆分岔与分形[J].力学学报.2005,37(4):522-528.
    [48]王兴元.骆超.二维Logistic映射的分岔与分形[J].力学学报.2005,37(3):346-355.
    [49]Bao B C. Liu Z. A hyperchaotic attractor coined from chaotic Lu system [J]. Chin. Phys. Lett..2008.25(7):2396-2399.
    [50]Avrutin V, Schanz M. On multi-parametric bifurcations in a scalar piecewise-linear map [J]. Nonlinearity.2006.19:531-552.
    [51]Osinga HM. Boundary crisis bifurcation in two parameters [M]. Bristol Centre for Applied Nonlinear Mathematics. U. K.2006.
    [52]Osinga HM. Feudel U. Boundary crisis in quasiperiodically forced systems [J]. Physica D:Nonlinear Phenomena.2000.141(1-2):54-64.
    [53]Corron N J. Hayes S T. Pethel S D. Blakely J N. Chaos without nonlinear Dynamics [J]. Physical Review Letters.2006.97. art.024101.
    [54]Hayes ST. Chaos from linear systems:Implications for communicating with chaos. and the nature of determinism and randomness [J]. J. Phys. Conf. Series.2005.23: 215-237.
    [55]Mallat S. A Wavelet Tour of Signal Processing [M]. Academic Press:San Diego. CA. 1998.
    [56]王发强.张浩,马西奎.单周控制Buck变换器中的降频现象分析[J].物理学报.2008,57(5):2842-2848.
    [57]王发强,张浩,马西奎.单期控制Boost变换器中的低频波动现象分析[J].物理学报.2008,57(3):1522-1528.
    [58]Tse C K. Bernardo M D. Complex behavior in switching power converters [J]. Proceeding of IEEE.2002.90(5):768-781.
    [59]Zhao Y B. Zhang D Y. Zhang C J. Study on bifurcation and stability of the closed-loop current-programmed boost converters [J]. Chin. Phys. B.2007.16(4): 933-936.
    [60]Zhanybai T Z, Evgeniy A S. Erik M Quasi-periodicity and border-collision bifurcations in a DC-DC converter with pulsewidth modulation [J]. IEEE Trans. Circuits syst.-I.2003.50(8):1047-1057.
    [61]Banerjee S. Parui S. Gupta A. Dynamical effects of missed switching in current-mode controlled dc-dc converters [J]. IEEE Trans. Circuits syst.-Ⅱ.2004. 51(12):649-654.
    [62]Wong S C. Tse C K. Tam K. C. Intermittent chaotic operation in switching power converters [J]. Int. J. Bifur. Chaos.2004.14(8):1971-2978.
    [63]戴栋,马西奎.李小峰.一类具有两个边界的分段光滑系统中边界碰撞分岔现象及混沌[J].物理学报.2003.52(11):2729-2736.
    [64]Parag J. Banerjee S. Border-collision bifurcations in one-dimensional discontinuous maps [J]. Int. J. Bifur. Chaos,2003,13(11):3341-3351.
    [65]Parui S, Banerjee S. Bifurcations due to transition from continuous conduction mode to discontinuous conduction mode in the boost converter [J]. IEEE Trans. Circuits syst.-I,2003,50(11):1464-1469.
    [66]Iu H H C, Tse C K. Study of low-frequency bifurcation phenomena of a parallel-connected boost converter system via simple averaged models [J]. IEEE Trans. Circuits syst.-I,2003,50(5):679-686.
    [67]任海鹏.平均电流控制型PFC Boost变换器中的低频分岔现象研究[J].电子学报,2006,34(5):784-789.
    [68]周宇飞,陈军宇,等.开关功率变换器中的间隙现象——仿真和实验[J].电子学报,2004,32(2):264-268.
    [69]周宇飞,陈军宇,柯导明.电流模式控制Boost变换器中的呼吸现象[J].电子学报,2005,33(5):915-919.
    [70]Zhou Y F, Chen J N. IU H H C, Tse C K. Complex intermittency in switching converter [J]. Int. J. Bifur. Chaos,2008,18(1):121-140.
    [71]Poddar G, Chakrabarty K, Banerjee S. Control of chaos in DC-DC converters [J]. IEEE Trans. Circuits syst.-I,1998,45(6):672-676.
    [72]Lu W G, Zhou L W, Luo Q M. Notch filter feedback controlled chaos in buck converter [J]. Chin. Phys. B.2007,16(11):3256-3261.
    [73]卢伟国,周雒维,罗全明,杜雄Boost变换器延迟反馈混沌控制及其优化[J].物理学报, 2007,56(11):6275-6281.
    [74]周宇飞,陈军宇,谢智刚,柯导明,等.参数共振微扰法在Boost变换器混沌控制中的实现及其优化[J].物理学报.2004.53(11):2676-2683.
    [75]包伯成,许建平,刘中.开关DC-DC变换器斜坡补偿的稳定性控制研究[J].2008,电子科技大学学报,37(3):397-400.
    [76]王凤岩.许建平.V~2C控制Buck变换器分析[J].中国电机工程学报.2006.26(2):121-126.
    [77]杨宇,马西奎,赵世平.电流型Cuk变换器稳定运行的参数域预测[J].中国电机工程学报,2007, 27(16):78-84.
    [78]Kabe T, Parui S, Torikai H. Banerjee S. Saito T. Analysis of piecewise constant models of current mode controlled DC-DC converters [J]. IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences.2007, E90-A(2):448-456.
    [79]Toribio E. Ei Aroudi A. Olivar G, Benadero L. Numerical and experimental study of the region of period-one operation of a PWM boost converter [J]. IEEE Trans. Power Electron..2000.15(6):1163-1171.
    [80]Cheng K W E. Liu M. Wu J. Chaos study and parameter-space analysis of the DC-DC buck-boost converter [J]. IEE Proc. Electric Power Applicat.,2003,150(2): 126-138.
    [81]Benadero L, El Aroudi A, Olivar G. Toribio E, Gomez E. Two-dimensional bifurcation diagrams:background pattern of fundamental DC-DC converters with PWM control [J]. Int. J. Bifur. Chaos.2003.13(2):427-451.
    [82]Deane J H B. Hamill D C. Improvement of power supply EMC by chaos [J]. Electron. Lett..1996,32(12):1045-1045.
    [83]Giral R. El Aroudi A. Martinez-Salamero L, Leyva R, Maixe J. Current control technique for improving EMC in power converters [J]. Electron. Lett.,2001.37(5): 274-275.
    [84]Lorenz E N. The Essence of Chaos [M]. Seattle. WA:University of Washington Press. 1993.
    [85]Lu J H, Chen G R. Zhang S C. Dynamical analysis of a new chaotic attractor [J]. Int. J. Bifur. Chaos.2002.12(5):1001-1015.
    [86]Lu J H. Chen G R. Cheng D. Celikovsky S. Bridge the gap between the Lorenz and the Chen system [J]. Int. J. Bifur. Chaos.2002.12(12):2917-2926.
    [87]Tsubone T. Saito T. Hyperchaos from a 4-D manifold piecewise-linear system [J]. IEEE Trans. Circuits Sys.-I,1998,45(9):889-894.
    [88]Tang K S. Man K F, Zhong G Q et al. Generating chaos via xx [J]. IEEE Trans. Circuits Sys.-I.2001.48(5):636-641.
    [89]Tang K S. Zhong G Q. Chaotification of linear continuous-time systems using simple nonlinear feedback [J]. Int. J. Bifur. Chaos.2003.13(10):3099-3106.
    [90]王发强,刘崇新.Liu混沌系统的混沌分析及电路实验的研究[J].物理学报.2006.55(10):5061-5069.
    [91]Wang G Y. Liu J B. Zheng X. Analysis and implementation of a new hyperchaotic system [J]. Chin. Phys. B.2007.16(8):2278-2284.
    [92]Jia Q. Hyperchaos generated from the Lorenz chaotic system and its control [J]. Physica A.2007.366:217-222.
    [93]Li Y X. Tang W K S. Chen G R. Hyperchaos evolved form the generalized Lorenz equation [J]. Int. J. of Circuit Theory Application.2005.33(4):235-251.
    [94]Vanecek A. Celikovsky S. Control systems:from linear analysis to synthesis of chaos [M]. Prentice-Hall. London 1996.
    [95]Celikovsky S. Chen G R. On a generalized Lorenz canonical form of chaotic systems [J]. Int. J. Bifur. Chaos.2002,12(8):1789-1812.
    [96]Celikovsky S. Chen G R. On the generalized Lorenz canonical form [J]. Chaos. Solitons and Fractals.2005,26(5):1271-1276.
    [97]Sprott J C. A new class of chaotic circuit [J]. Physics Letters A.2000.266:19-23.
    [98]Sprott J C. Simple chaotic systems and circuits [J]. Am. J. Phys..2000.68(8): 758-763.
    [99]Zhou T S, Chen G R, Celikovsky S. Shil'nikov chaos in the generalized Lorenz canonical form of dynamical systems [J]. Nonlinear Dynamics,2005.39(4): 319-334.
    [100]Lu J H. Chen G R. Zhang S C. The compound structure of a new chaotic attractor [J]. Chaos. Solitons and Fractals.2002.14(5):669-672.
    [101]Lu J H. Zhou T S. Chen G R. Zhang S C. The compound structure of Chen's attractor [J]. Int. J. Bifur. Chaos.2002.12(4):855-858.
    [102]Ueta T, Chen G R. Bifurcation analysis of Chen's attractor [J]. Int. J. Bifur. Chaos. 2000.10(8):1917-1931.
    [103]Chen A. Lu J. Lu J H et al. Generating hyperchaotic Lu attractor via state feedback control [J]. PhysicaA.2006.364:103-110.
    [104]Chen Z Q. Yang Y. Qi G. Yuan Z Z. A novel hyperchaos system only with one quilibrium [J]. PhysicaA.2007.366.696-701.
    [105]张表,王杰智.陈增强.袁著祉.共轭Chen混沌系统的分岔分析及基于该系统的超混沌生成研究[J].物理学报,2008.57(4):2092-2099.
    [106]王兴元,王明军.超混沌Lorenz系统[J].物理学报.2007.56(9):5136-5141.
    [107]Wu X. Lu J. lu H H C. Wong S. Suppression and generation of chaos for a three-dimensional autonomous system using parametric perturbations [J]. Chaos. Solitons and Fractals.2007.31:811-819.
    [108]Li Q D, Yang X S. Hyperchaos from two coupled Wien bridge oscillators [J]. Int. Journal of Circuit Theory and Applications.2008.36:19-29.
    [109]Suykens J A K. Vandewalle J. Generation of n-double scrolls (n=1.2.3.4,...) [J]. IEEE Trans. Circuits syst. I.1993.40(11):861-867.
    [110]Lu J H. Chen G R. Generating multiscroll chaotic attractors:theories, methods and applications [J]. Int. J. Bifur. Chaos.2006.16(4):775-858.
    [111]Yalcin M E. Increasing the entropy of a random number generator using n-scroll chaotic attractors [J]. Int. J. Bifur. Chaos,2007,17(12):4471-4479.
    [112]Yalcin M E, Suykens J, Vandewalle J. Ozoguz S. Families of scroll grid attractors. Int. J. Bifur. Chaos,2002,12(1):23-41.
    [113]Lu J H, Yu X H, Chen G R. Generating chaotic attractors with multiple merged basin: A switching piecewise linear control approach [J]. IEEE Trans. Circuits syst. I,2003, 50(1):198-207.
    [114]Lu J H. Chen G. Yu X H, Leung H. Design and analysis of multiscroll chaotic attractors from saturated function series [J]. IEEE Trans. Circuits syst. I.2004. 51(12):2476-2490.
    [115]Lu J H, Han F L, Yu X H. Chen G R. Generating 3-D multiscroll chaotic attractors:a hysteresis series switching method [J]. Automatica,2004.40(10):1677-1687.
    [116]Lu J H. Yu S M. Leung H. Chen G R. Experimental verification of multidirectional multi-scroll chaotic attractors [J]. IEEE Trans. Circuits syst. I.2006.53(1):149-165.
    [117]禹思敏.用三角波序列产生三维多涡卷混沌吸引子的电路实验[J].物理学报,2005.54(4):1500-1509.
    [118]Yu S M. Lu J H. Tang W K S, Chen G R. A general multiscroll Lorenz system family and its realization via digital signal processors [J]. Chaos.2006.16(3):033126.
    [119]Yu S M. Lu J H. Leung H. Chen G R. Design and implementation of n-scroll chaotic attractors from a general Jerk circuit [J]. IEEE Trans. Circuits syst. I.2005.52(7): 1459-1476.
    [120]Yu S M, Lu J H. Chen G R. Theoretical design and circuit implementation of multi-directional multi-torus chaotic attractors [J]. IEEE Trans. Circuits syst. I.2007. 54(9):2087-2098.
    [121]王发强,刘崇新.一类多折叠环面多涡卷混沌吸子的仿真研究[J].物理学报,2007.56(4):1983-1987.
    [122]Wang F Q. Liu C X. A new multi-scroll chaotic generator [J]. Chin. Phys. B.2007, 16(4):942-945.
    [123]Radwan A, Soliman A. Elwakil A.1-D digitally-controlled multi-scroll chaos generator [J]. Int. J. Bifur. Chaos.2007.17(1):227-242.
    [124]Gandhi G. Roska T. MOS-integrable circuitry for multi-scroll chaotic grid realization: A SPICE-assisted proof [J]. Int. Journal of Circuit Theory and Applications.2008. DOI:10.1002/cta.487.
    [125]Elwakil A S, Ozoguz S. Multiscroll chaotic oscillators:the non-autonomous approach [J]. IEEE Trans. Circuits syst. Ⅱ.2006.53(9):862-866.
    [126]Elwakil A S. Ozoguz S. A system and circuit for generating "multi-butterflies" [J]. Int. J. Bifur. Chaos.2008.18(3):841-844.
    [127]Lu J H. Murali K. Sinha S et al. Generating multi-scroll chaotic attractors by thresholding [J]. Physics Letters A.2008.372:3234-3239.
    [128]谌龙.彭海军,王德石. 类多涡卷混沌系统构造方法研究[J].物理学报,2008,57(6):3337-3341.
    [129]张朝霞,禹思敏.用时滞和阶跃序列组合生成网格多涡卷蔡氏混沌吸引子[J]物理学报.2009.58(1):120-130.
    [130]罗小华.李华青,代祥光. 类多涡卷混沌吸引子及电路设计.物理学报[J],2008,57(12):7511-7516.
    [131]Yalcin M E, Ozoguz S/n-scroll chaotic attractors from a first-order time-delay differential equation [J]. Chaos.2007.17(3):033112
    [132]Ahmad W. Generation and control of multi-scroll chaotic attractors in fractional order systems [J]. Chaos. Solitons Fractals.2005.25(3):727-735.
    [133]Deng W. Lii J H. Design of multidirectional multiscroll chaotic attractors based on fractional differential systems via switching control [J]. Chaos.2006.16(4):043120.
    [134]Deng W. Lu J H. Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system [J]. Physics Letters A.2007.369:438-443.
    [135]禹思敏.林清华.丘水生.四维系统中多涡卷混沌吸引子的仿真研究[J].物理学报,2003.52(1):25-33.
    [136]王发强.刘崇新.逯俊杰.四维系统中多涡卷混沌吸引子的仿真研究[J]物理学报.2006,55(7):3289-3294.
    [137]Kennedy M P. Chaos in the Colpitts oscillator [J]. IEEE Trans. Circuits syst. I.1994. 41(11):771-774.
    [138]Chua L O. Memrister-the missing circuit element [J]. IEEE Trans, on Circuit Theory.1971. CT-18(5):507-519.
    [139]Chua L O. Kang S M. Memristive devices and systems [J]. Proc. IEEE.1976.64(2): 209-223.
    [140]Strukov D B. Snider G S. Stewart D R. Williams R S. The missing memristor found [J]. Nature.2008.453:80-83.
    [141]Tour J M. He T. The fourth element [J]. Nature.2008.453:42-43.
    [142]Itoh M. Chua L O. Memristor oscillators [J]. Int. J. Bifur. Chaos.2008.18(11): 3183-3206.
    [143]Cafagna D. Grassi G. Decomposition method for studying smooth Chua's equation with application to hyperchaotic multiscroll attractors [J]. Int. J. Bifur. Chaos,2007. 17(1):209-226.
    [144]Woltering M, Markus M. Riddled-like basins of transient chaos [J]. Physical Review Letters.2000.84(4):630-633.
    [145]Dhamala M. Lai Y C. Kostelich E J. Analyses of transient chaotic time series [J]. Physical Review E,2003.61(5):055207.
    [146]Yorke J A, Yorke E D. The transition to sustained chaotic behavior in the Lorenz model [J]. Journal of Statistical Physics,1979,21(3):263-277.
    [147]Cang S J. Qi G Y. Chen Z Q. A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system [J]. Nonlinear Dynamics. 2009. DOI 10.1007/s11071-009.
    [148]Yang H J, Yang J H, Hu G. The boundary-induced spiral wave drift in the complex Ginzburg-Landau equation [J]. Phys. Lett. A.2007.365(3):204-209.
    [149]Astafev G B. Koronovskkii A A. Hramov A E. Behavior of dynamical systems in the regime of transient chaos [J]. Technical Physics Letters.2003.29(11):923-926.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700