少数自由度导致的退相干和量子—经典过渡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了少数自由度导致的退相干和量子-经典过渡。研究结果表明:与一个粒子的相互作用能够破坏系统的量子相干性,使得系统的量子行为过渡到经典极限。
     一.本文研究了一个质量非常小的粒子导致的退相干。其中,环境和系统都是kicked rotor模型。kicked rotor经典混沌运动的特征是经典扩散,即动量平方的系综平均值随时间线性增长。由于量子相干性抑制波函数在动量空间的扩散,量子动量平方的平均值随时间的增长趋近于饱和值。这个现象就是动力学局域化。本论文研究的情况是:第二个转子的质量(m2)远远小于第一个的质量(m1)。它们之间的相互作用使得第二个转子的经典运动处于强混沌状态。在这种情况下,这个质量非常小的转子更相当于噪声。本文的研究结果表明:这种量子噪声有效得促进了系统的退相干。随着耦合强度的增加,系统的量子行为由局域化状态逐渐过渡到经典扩散。在这个转变过程中,两个转子之间的纠缠增强。本论文对两种不同的耦合势的数值计算都证明了相同的结果。
     二.本文研究了对经典运动几乎没有影响的相互作用导致的退相干。本文以两个耦合的kicked rotor模型为例,研究了耦合强度(ε)和第二个转子的质量(m2)与有效普朗克常数(h)成比例变化的情况。在h减小的过程中,耦合强度逐渐减弱,第二个转子也逐渐消失。在半经典临域(h→0),第一个转子的经典运动几乎不受外界影响。本文的研究表明:随着h的减小,即使第二个转子逐渐消失,它与第一个转子的纠缠确逐渐增强。这种很强的纠缠能够抑制系统波函数的相干性,导致量子-经典过渡。
     三.本文研究了无限深势阱内少数自由度导致的退相干。模型是:无限深势阱内以排斥势相耦合的两个kicked particle。排斥势是物理系统中普遍存在的相互作用。随着第二个粒子质量(m2)的减小,它对第一个粒子经典运动的影响也减小。当它们的质量相差几个数量级(m2《m1)时,第一个粒子经典运动几乎不受影响。当m2非常小时,第一个粒子的排斥力使得这个粒子的经典运动处于强混沌状态。第二个粒子的混沌运动有效得促进系统的退相干。本文研究了第一个粒子的量子-经典过渡在参数h和m2空间的相图。结果表明:系统的量子-经典过渡出现三种不同的区间:局域化,过渡区间和经典扩散。本文的数值结果表明:环境自由度的混沌运动使得系统的量子态与局域化状态之间的距离以指数函数形式衰减。
We investigate the quantum to classical transition in chaotic systems. The typical character of classical chaos is the exponential deviation of nearby trajectories. Such exponential dependence on initial conditions is not exhibited by quantum dynamics. Due to unitary time evolution, the inner product of two quantum states remains the same as the initial value. This demonstrates that the distance between two initial states is unchanged during quantum evolutions. Such stability of quantum behaviors is very different from classically chaotic dynamics. Decoherence theory gives an reasonable explanation of quantum to classical transition. The unavoidable interaction between system and environment makes entanglement between them. Such entanglement suppresses the quantum coherence of the system, and consequently leads to the quantum to classical transition.
     We investigate the decoherence caused by an environment consisting of only one degree of freedom. We are interested in the case that the mass of the environment is much smaller than that of the system. Our results show that the influence from a small weightless particle makes the decoherence of the system, even when the classical motion is almost unaffected.
     We firstly investigate the quantum to classical transition in a system of two coupled kicked rotors. In this system, the mass of the second kicked rotor is smaller than that of the first one by several orders. For large coupling strength, the entanglement between the two rotors rapidly becomes strong with time evolution. This process is accompanied by the disappearance of quantum coherence of the first rotor. The decoherence results in the emergence of classical diffusion from quantum dynamics.
     We further investigate the case that both the mass m2 of the second rotor and the coupling strengthεchange proportionally with the effective Planck's constant h. With the decrease of h, both the second rotor and the coupling become small, so that the classical diffusion of the first rotor is almost unaffected. In the limit h→0, this small weightless part is strongly entangled with the first rotor. This makes decoherence and the quantum to classical transition of the first rotor.
     The last system which we investigated consists of two kicked particles in an infinite square wall. They are coupled by repulsive potential. In classical dynamics, as the mass of particle 2 m2 decreases its effect on particle 1 decreases. When the mass of particle 2 is smaller than that of particle 1 by several orders m2<
引文
[1]A. Peres. Quantum Theory:Concepts and Methods (Springer, New York,1995).
    [2]C. J. Isham. Lectures on Quantum Theory:Mathematical and Structural Foundations (Imperial College Press, London,1995).
    [3]A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev.,1935 (47):777-780.
    [4]E. Schrodinger, Proceedings of the Cambridge Philosophical Society 31,555 (1935).
    [5]N. Bohr, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev.,1935 (48):696-702.
    [6]J. S. Bell, On the Einstein-Podolsky-Rosen paradox. Physics (New York) 1,195 (1964)
    [7]J. S. Bell. In Proceedings of the Symposium on Frontier Problems in High Energy Physics, pp.33-45 (1976).
    [8]A. J. Leggett and A. Garg, Quantum mechanics versus macroscopic realism:Is the flux there when nobody looks? Phys. Rev. Lett.,1985 (54):857-860.
    [9]M. Ardehali, Bell inequalities with a magnitude of violation that grows exponentially with the number of particles, Phys. Rev. A.,1992 (46):5375-5378.
    [10]R. F. Werner, and M. M. Wolf, All-multipartite Bell-correlation inequalities for two dichotomic observables per site, Phys. Rev. A.,2001 (64):032112.
    [11]H. Weinfurter and M. Zukowski, Four-photon entanglement from down-conversion, Phys. Rev. A.,2001 (64):010102(R).
    [12]N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys.,2002 (74):145-195.
    [13]A. Aspect. Bell's inequality test:more ideal than ever. Nature,1999 (398), 189-190.
    [14]P. G Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin. Experimental entanglement distillation and'hidden'non-locality. Nature,2001 (409):
    1014-1017
    [15]D. Bohm, A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. Ⅰ, Phys. Rev.,1952 (85):166-179.
    [16]D. Bohm, A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. Ⅱ, Phys. Rev.,1952 (85):180-193.
    [17]N. Bohr. The quantum postulate and the recent development of atomic theory. Nature.,1928 (121):580-590.
    [18]M. O. Scully, B.-G. Englert, and H.Walther. Quantum optical tests of complementarity. Nature.,1991 (351):111-116.
    [19]C. H. Bennett, and G Brassard, in:Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, IEEE, New York, p.175 (1984).
    [20]A. K. Ekert, Phys. Quantum cryptography based on Bell's theorem, Phys. Rev. Lett.,1991 (67):661-663.
    [21]C. HBennett, G Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett.,1993 (70):1895-1899.
    [22]D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 1997 (390):575-579.
    [23]R. Horodecki, M. Horodecki, and P. Horodecki. Teleportation, Bell's inequalities and inseparability,.Phys. Lett. A.,1996 (22):21-25
    [24]S. Popescu. Bell's inequalities versus teleportation:What is nonlocality? Phys. Rev. Lett.,1994 (72):797-799.
    [25]M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, Peculiar lacalized state at zizag graphite edge. J. Phys. Soc. Jpn.,1996 (65):1920.
    [26]G. C. Ghirardi, A. Rimini, and T. Weber, Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D.,1986 (34):470-491.
    [27]M. Jammer,, The Philosophy of Quantum Mechanics:The Interpretations of Quantum echanics in Historical Perspective (John Wiley & Sons,1974).
    [28]W. H. Zurek, Pointer Basis of Quantum Apparatus:Into what Mixture does the Wave Packet Collapse? Phys. Rev. D,1981(24):1516-1525.
    [29]W. H. Zurek, Environment-Induced Superselection Rules, Phys. Rev. D, 1982(26):1862-1880.
    [30]W. H. Zurek, Decoherence and the Transition from Quantum to Classical, Physics Today,1991(44) (October),36-44.
    [31]W. H. Zurek, Negotiating the Tricky Border Between Quantum and Classical. Physics Today 1993 (46),84-90.
    [32]W. H. Zurek, Decoherence, Einselection, and the Existential Interpretation (The Rough Guide). Philosophical Transactions of the Royal Society of London A., 1998(356),1793-1820.
    [33]W. H. Zurek, Decoherence, Einselection, and the Quantum Origins of the Classical. Rev. Mod. Phys.,2003 (75):715-775.
    [34]W. H. Zurek, and J. P. Paz, Decoherence, Chaos, and the Second Law. Phys. Rev. Lett.,1994 (72):2508-2511
    [35]R. B. Kohout and W. H. Zurek, Quantum Darwinism:Entanglement, branches, and the emergent classicality of redundantly stored quantum information, Phys. Rev. A.,2006 (73):062310.
    [36]R. B. Kohout and W. H. Zurek, Quantum Darwinism in Quantum Brownian Motion, Phys. Rev. Lett.101.,2008 (101):240405.
    [37]F. D. Mazzitellil, J. P. Paz, and A. Villanueva, Decoherence and recoherence from vacuum fluctuations near a conducting plate. Phys. Rev. A.,2003 (68): 062106.
    [38]W. H. Zurek, S. Habib, and J. P. Paz, Coherent states via decoherence. Phys. Rev. Lett.1993 (70):1187-1190.
    [39]J. P. Paz, S. Habib and W. H. Zurek, Reduction of the wave packet:Preferred observable and decoherence time scale, Phys. Rev. D.,1992 (47):488-501
    [40]J. P. Paz and W. H. Zurek, Quantum Limit of Decoherence:Environment Induced Superselection of Energy Eigenstates, Phys. Rev. Lett.,1999 (82): 5181-5185.
    [41]A. Venugopalan, Deepak. Kumar and R. Ghosh Environment-induced decoherence the stern Gerlach measurement, Physica A.,1995 (220):563-575.
    [42]M. Brune, E. Hagley, J. Dreyer, et al., Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement, Phys. Rev. Lett.,1996 (77): 4887-4890.
    [43]D. K. Ferry, R. Akis, and J. P. Bird, Einselection in Action:Decoherence and Pointer States in Open Quantum Dots, Phys. Rev. Lett.,2004 (93):026803.
    [44]G Casati and B. Chirikov, Quantum chaos:unexpected complexity, Physica D., 1995 (86); 220-237.
    [45]P. A Miller, S. Sarkar, R Zarum, quantum chaos entropy signatures, ACTA PHYSICA POLONICA SERIES B.,1998 (29):3643-3688.
    [46]Y. S. Weinstein and L. Viola, Generalized entanglement as a natural framework for exploring quantum chaos, Europhys. Lett.,2006 (76):746-752.
    [47]X. G. Wang, S. Ghose, B. C. Sanders and B. Hu, Entanglement as a signature of quantum chaos, Phys. Rev. E.,2004 (70):016217.
    [48]R. Zarum and S. Sarkar, Quantum-classical correspondence of entropy contours in the transition to chaos, Phys. Rev. E.,1997 (57):5467-5471.
    [49]S. Ghose, R. Stock, P. Jessen, et al., Chaos, entanglement, and decoherence in the quantum kicked top, Phys. Rev. A.,2008 (78):042318.
    [50]H. Kubotani, M. Toda and S. Adachi, Universality in dynamical formation of entanglement for quantum chaos, Phys. Rev. A.,2006 (74):032314.
    [51]R. D. Dobrzanski and M. Kus, Global entangling properties of the coupled kicked tops, Phys. Rev. E.,2004 (70),066216.
    [52]P. A. Miller and S. Sarkar, Entropy production, dynamical localization and criteria for quantum chaos in the open quantum kicked rotor, Nonlinearity.,1999 (12):419-442.
    [53]A. Lahiri, Dynamical Criterion for Quantum Chaos:Entropy Production in Subsystems, quant-ph/0302029
    [54]P. A. Miller and S. Sarkar, Signatures of chaos in the entanglement of two coupled quantum kicked tops, Phys. Rev. E.,1999 (60):1542-1550.
    [55]W. S (?)omczynski and and K. Zyczkowski, Quantum chaos:An entropy approach, J. Math. Phys.,1994 (35):5674-5700.
    [56]F. M. Cucchietti, D. A. R. Dalvit, J. P. Paz and W. H. Zurek, Decoherence and the Loschmidt Echo. Phys. Rev. Lett.,2003 (91),210403.
    [57]Z. P. Karkuszewski, C. Jarzynski and W. H. Zurek, Quantum Chaotic Environments, the Butterfly Effect, and Decoherence, Phys. Rev. Lett.,2002 (89): 170405.
    [58]R. A. Jalabert and H. M. Pastawski, Environment-Independent Decoherence Rate in Classically Chaotic Systems, Phys. Rev. Lett.,2001 (86):2490-2493.
    [59]T. Prosen and T. H. Seligman, Decoherence of spin echoes, J. Phys. A:Math. Gen.2002 (35):4707-4727.
    [60]L. Benet T. H. Seligman and H. A. Weidenmuller, Quantum signatures of classical chaos:Sensitivity of wave functions to perturbations, Phys. Rev. Lett., 1993 (71):529-532.
    [61]F. Pellegrini and S. Montangero, Fractal fidelity as a signature of quantum chaos, Phys. Rev. A.,2007 (76):052327.
    [62]W.g. Wang, Sensitivity of quantum motion to perturbation in a triangle map, Phys. Rev. E.,2008 (77):036206.
    [63]F. Haug, M. Bienert, and W. P. Schleich, et al, Motional stability of the quantum kicked rotor:A fidelity approach, Phys. Rev. A.,2005 (71):043803.
    [64]M. Abb, I. Guarneri and S. Wimberger, Pseudoclassical theory for fidelity of nearly resonant quantum rotors, Phys. Rev. E.,2009 (80):035206(R).
    [65]T. Prosen, T. H. Seligman and M. znidaric, Theory of Quantum Loschmidt Echoes, Progress of Theoretical Physics.,2003 (150):200-228.
    [66]T. Gorina, T. Prosenb, T. H. Seligmanc and M. Znidari, Dynamics of Loschmidt echoes and fidelity decay, Physics Reports.,2006 (435):33-156.
    [67]G. Benenti and G. Casati, How complex is quantum motion? Phys. Rev. E.,2009 (79):025201 (R).
    [68]V. V. Sokolov, O. V. Zhirov, G. Benenti and G Casati, Complexity of quantum states and reversibility of quantum motion, Phys. Rev. E.,2008 (78):046212.
    [69]G. Benenti and G. Casati, Quantum-classical correspondence in perturbed chaotic systems, Phys. Rev. E.,2002 (65):066205.
    [70]A. Tanaka, Quantum mechanical entanglements with chaotic dynamics, J. Phys. A:Math. Gen.,1996 (29):5475-5497.
    [71]A. Tanaka, H. Fujisaki and Takayuki Miyadera, Saturation of the production of quantum entanglement between weakly coupled mapping systems in a strongly chaotic region, Phys. Rev. E.,2002 (66):045201(R).
    [72]H. Fujisaki, T. Miyadera and A. Tanaka, Dynamical aspects of quantum entanglement for weakly coupled kicked tops, Phys. Rev. E.,2003 (67):066201.
    [73]H. Fujisaki, A. Tanaka and T. Miyadera, Dynamical aspects of quantum entanglement for coupled mapping systems, J. Phys. Soc. Jpn. Suppl. C.,2003 (72):111-114.
    [74]A. K. Pattanayak, Lyapunov Exponents, Entropy Production, and Decoherence, Phys. Rev. Lett.,1999 (83):4526-4529.
    [75]V. Latora and M. Baranger, Kolmogorov-Sinai Entropy Rate versus Physical Entropy, Phys. Rev. Lett.,1999 (82):520-523.
    [76]P. Zanardi, C. Zalka and L. Faoro, Entangling power of quantum evolutions, Phys. Rev. A.,2000 (62):030301 (R).
    [77]A. Lakshminarayan, Entangling power of quantized chaotic systems, Phys. Rev. E.,2001 (64):036207.
    [78]J. N. Bandyopadhyay and A. Lakshminarayan, Testing Statistical Bounds on Entanglement Using Quantum Chaos, Phys. Rev. Lett.,2002 (89):060402.
    [79]S. Ghose and B. C. Sanders, Entanglement dynamics in chaotic systems, Phys. Rev. A.,2004 (70):062315.
    [80]M. S. Santhanam, V. B. Sheorey and A. Lakshminarayan, Effect of classical bifurcations on the quantum entanglement of two coupled quartic oscillators, Phys. Rev. E.,2008 (77):026213.
    [81]S. Hilt and E. Lutz, System-bath entanglement in quantum thermodynamics, Phys. Rev. A.,2009 (79):010101 (R).
    [82]W. H. Zurek and J. P. Paz, Decoherence, chaos, and the second law. Phys. Rev. Lett.,1994 (72):2508-2511.
    [83]W. H. Zurek and J. P. Paz, Quantum chaos:a decoherent definition. Physica D., 1995 (83):300-305.
    [84]D. Monteoliva and J. P. Paz, Decoherence and the Rate of Entropy Production in Chaotic Quantum Systems. Phys. Rev. Lett.,2000 (85):3373-3376.
    [85]J. N. Bandyopadhyay and A. Lakshminarayan, Entanglement production in coupled chaotic systems:Case of the kicked tops, Phys. Rev. E.,2004 (69): 016201.
    [86]G. Benenti, Entanglement, randomness and chaos. Riv. Nuovo Cimento.,2009 (32):105-146.
    [87]A. K. Pattanayak and P. Brumer, Exponentially Rapid Decoherence of Quantum Chaotic Systems, Phys. Rev. Lett.,1997 (79):4131-4134.
    [88]曾谨言,量子力学卷Ⅰ,2000,北京科学技术出版社.
    [89]F. Haake, M. Kus and R. Scharf, Z. Phys. B., Classical and quantum chaos for a kicked top,1987 (65):381-395.
    [90]F. Haake, Quantum Signatures of Chaos, (Springer, New York,2001).
    [91]G.P. Berman and GM. Zaslavsky, Condition of stochasticity in quantum nonlinear systems, Physica A.,1978 (91):450-460.
    [92]M.V. Berry, N.L. Balasz, M. Tabor, and A. Voros, Quantum maps, Ann. Phys., 1979 (122):26-63.
    [93]H. Frahm and H.J. Mikeska, On the dynamics of a quantum system which is classically chaotic, Z. Phys. B.,1985 (60):117-126.
    [94]GM. Zaslavsky, Stochasticity in quantum systems, Phy. Rep.,1981 (80): 157-250.
    [95]P. Ehrenfest, Bemerkung uber die angenaherte Gultigkeit der klassischen Mechanik innerhalb der Quantenmechanik, Z. Physik.,1927 (45):455-457.
    [96]J. Wisdom, S. Peale, and F. Mignard, The chaotic rotation of Hyperion, Icarus, 1984(58):137-152.
    [97]W.H. Zurek and J.P. Paz, Zurek and Paz Reply, Phys. Rev. Letters.,1995 (75): 351-351.
    [98]L. E. Ballentine, Yumin Yang, and J. P. Zibin, Inadequacy of Ehrenfest's theorem to characterize the classical regime, Phys. Rev. A.,1994 (50):2854-2859.
    [99]S. Habib, K. Shizume and W. H. Zurek, Decoherence, Chaos, and the Correspondence Principle, Phys. Rev. Lett.,1997 (80):4361-4365.
    [100]W. H. Zurek, Decoherence, Chaos, Quantum-Classical Correspondence and the Arrow of time, Acta Physica Polonica B.,1998 (29):3689-3709.
    [101]W. H. Zurek, Sub-Planck structure in phase space and its relevance for quantum decoherence, Nature.,2001 (412):712-717.
    [102]Z. P. Karkuszewski, J. Zakrzewski and W. H. Zurek, Breakdown of correspondence in chaotic systems:Ehrenfest versus localization times, Phys. Rev. A.,2002 (65):042113.
    [103]T. Bhattacharya, S. Habib, K. Jacobs and K Shizume,δ-function-kicked rotor: Momentum diffusion and the quantum-classical boundary, Phys. Rev. A.,2002 (65):032005.
    [104]B. D Greenbaum, S. Habib, K. Shizume, B. Sundaram, The semiclassical regime of the chaotic quantum-classical transition, Chaos.,2005 (15):033302.
    [105]B. D. Greenbaum, K. Jacobs and B. Sundaram, Conditions for the quantum-to-classical transition:Trajectories versus phase-space distributions, Phys. Rev. E.,2007 (76):036213.
    [106]A. K. Pattanayak, B. Sundaram and B. D. Greenbaum, Parameter Scaling in the Decoherent Quantum-Classical Transition for Chaotic Systems, Phys. Rev. Lett., 2003 (90):014103.
    [107]S. Habib, K. Jacobs and H. Mabuchi, et al, Quantum-Classical Transition in Nonlinear Dynamical Systems, Phys. Rev. Lett.,2002 (88):040402.
    [108]S. Habib, K. Jacobs and K. Shizume, Emergence of Chaos in Quantum Systems Far from the Classical Limit, Phys. Rev. Lett.,2006 (96):010403.
    [109]A. K. Pattanayak and P. Brumer, Chaos and Lyapunov exponents in classical and quantal distribution dynamics, Phys. Rev. E.,1997 (56):5174-5177.
    [110]Jiangbin Gong and P. Brumer, Chaos and quantum-classical correspondence via phase-space distribution functions, Phys. Rev. A.,2003 (68):062103.
    [111]Jiangbin Gong and P. Brumer, When is Quantum Decoherence Dynamics Classical?, Phys. Rev. Lett.,2003 (90):050402.
    [112]Jiangbin Gong and P. Brumer, Decoherence and correspondence in conservative chaotic dynamics, Phys. Rev. E.,1999 (60):1643-1647.
    [113]R.F. Fox and T.C. Elston, Chaos and a quantum-classical correspondence in the kicked top, Phys. Rev. E.,1994 (50):2553-2563.
    [114]R.F. Fox and T.C. Elston, Chaos and the quantum-classical correspondence in the kicked pendulum, Phys. Rev. E.,1994 (49):3683-3696.
    [115]L.E. Ballentine and S.M. McRae, Moment equations for probability distributions in classical and quantum mechanics, Phys. Rev. A.,1998 (58): 1799-1809.
    [116]L.E. Ballentine, Lyapunov exponents for the differences between quantum and classical dynamics, Phys. Rev. A.,2001 (63):024101.
    [117]G. Casati, B. Chirikov, J. Ford, and F. M. Izrailev, In Stochastic Behavior in Classical and Quantum Hamiltonian Systems, edited by G. Casati and J. Ford, Lecture Notes in Physics Vol.93 (Springer-Verlag, Berlin,1979),334.
    [118]F.M. Izrailev, Simple models of quantum chaos:spectrum and eigenfunctions, Phys. Rep.,1990 (196):299-392.
    [119]B. V. Chirikov, F. M. Izrailev and D. L. Shepelyansky, Dynamical stochasticity in classical and quantum mechanics, Sov. Sci. Rev. C.,1981 (2):209-267.
    [120]D.L.Shepelyansky Dynamical stochasticity in nonlinear quantum systems, Theor. Math. Phys.,1981 (49):925-928.
    [121]J. H. Shirley, Solution of the Schrodinger Equation with a Hamiltonian Periodic in Time, Phys. Rev.,1965 (138):B979-B987.
    [122]W. R. Salzman, Quantum mechanics of systems periodic in time, Phys. Rev. A., 1974 (10):461-465.
    [123]S. R. Barone and M. A. Narcowich, Floquet theory and applications, Phys. Rev. A.,1977(15):1109-1125.
    [124]K. F. Milfeld and R. E. Wyatt, Study, extension, and application of Floquet theory for quantum molecular systems in an oscillating field, Phys. Rev. A., 1983 (27):72-94.
    [125]M. Grifoni and P. HAanggi, Driven quantum tunneling, Phys. Rep.,1998 (304): 229-354.
    [126]A. N. Seleznyova, Cyclic states, Berry phases and the Schrodinger operator, J. Phys. A.,1993 (26):981-1000.
    [127]D. R. Grempel, R. E. Prange and S. Fishman, Quantum dynamics of a nonintegrable system, Phys. Rev. A.,1984 (29):1639-1647.
    [128]S. Fishman, D. R. Grempel, R. E. Prange, Temporal crossover from classical to quantal behavior near dynamical critical points, Phys. Rev. A.,1987 (36): 289-305.
    [129]G Casati, I. Guarneri, F. Izrailev, and R. Scharf, Scaling behavior of localization in quantum chaos, Phys. Rev. Lett.,1990 (64):5-8.
    [130]G. Casati, B. V. Chirikov, I. Guarneri, and D. L. Shepelyansky, Relevance of classical chaos in quantum mechanics:The hydrogen atom in a monochromatic field, Phys. Rep. (1987)154,77-123.
    [131]V. Milner, D. A. Steck, W. H. Oskay, and M. G. Raizen, Recovery of classically chaotic behavior in a noise-driven quantum system, Phys. Rev. E.,2000 (61): 7223-7226.
    [132]S. Adachi, M. Toda, and K. Ikeda, Recovery of Liouville dynamics in quantum mechanical suppressed chaotic behavior, J. Phys. A.,1989 (22):3291-3306.
    [133]C. F. F. Karney, A. B. Rechester and R. B. White, Effect of noise on the standard mapping, Physica 4D.,1982 (3):425-438.
    [134]E. Ott, T. M. Antonsen, Jr, J. D. Hanson, Effect of Noise on Time-Dependent Quantum Chaos, Phys. Rev. Lett.,1984 (53):2187-2190.
    [135]F. L. Moore, J. C. Robinson, C. Bharucha, P. E. Williams, and M. G Raizen, Observation of Dynamical Localization in Atomic Momentum Transfer:A New Testing Ground for Quantum Chaos, Phys. Rev. Lett.,1994 (73):2974-2977.
    [136]P. Szriftgiser, J. Ringot, D. Delande and J. C. Garreau, Observation of Sub-Fourier Resonances in a Quantum-Chaotic System, Phys. Rev. Lett.,2002 (89):224101.
    [137]B. G Klappauf, W. H. Oskay, D. A. Steck, and M. G Raizen, Observation of Noise and Dissipation Effects on Dynamical Localization, Phys. Rev. Lett., 1998(81):1203-1206.
    [138]H. Ammann, R. Gray, I. Shvarchuck, and N. Christensen Quantum Delta-Kicked Rotor:Experimental Observation of Decoherence, Phys. Rev. Lett.,1998 (80):4111-4115.
    [139]J. Ringot, P. Szriftgiser, and J. C. Garreau, Experimental Evidence of Dynamical Localization and Delocalization in a Quasiperiodic Driven System,Phys. Rev. Lett.,2000 (85):2741-2744.
    [140]H. Lignier, J. Chabe, D. Delande, J. C. Garreau, and P. Szriftgiser, Reversible Destruction of Dynamical Localization, Phys. Rev. Lett.,2005 (95):234101.
    [141]J. D. Hanson, E. Ott and T. M. Antonsen, Jr, Influence of finite wavelength on the quantum kicked rotator in the semiclassical regime, Phys. Rev. A.,1984 (29):819-825.
    [142]B. L. Hu, J. P. Paz and Y. Zhang Quantum Brownian motion in a general environment:Exact master equation with nonlocal dissipation and colored noise, Phys. Rev. D.,1992 (45):2843-2861.
    [143]C. Petitjean and P. Jacquod, Lyapunov Generation of Entanglement and the Correspondence Principle, Phys. Rev. Lett.,2006 (97):194103.
    [144]P. Jacquod, Semiclassical Time Evolution of the Reduced Density Matrix and Dynamically Assisted Generation of Entanglement for Bipartite Quantum Systems, Phys. Rev. Lett.,2004 (92):150403.
    [145]R. B. Kohout and W. H. Zurek, Decoherence from a chaotic environment:An upside-down "oscillator" as a model, Phys. Rev. A.,2003 (68):032104.
    [146]D. Rossini, G Benenti and G Casati, Conservative chaotic map as a model of quantum many-body environment, Phys. Rev. E.,2006 (74):036209.
    [147]S. Adachi, M. Toda, and K. Ikeda, Quantum-Classical Correspondence in Many-Dimensional Quantum Chaos, Phys. Rev. Lett.,1988 (61):659-661.
    [148]H. K. Park and S. W. Kim, Decoherence from chaotic internal dynamics in two coupled 8-function-kicked rotors, Phys. Rev. A.,2003 (67):060102(R).
    [149]R. Graham and A. R. Kolovsky, Dynamical localization for a kicked atom in two standing waves, Phys. Lett. A.,1996 (222):47-49.
    [150]Q. L. Jie, B. Hu and G. Dong, Decoherence and localization in tunneling process under influence of one external degree of freedom. arXiv[quant-ph], 2006:0601025.
    [151]B. Hu, B. Li, J. Liu, and Y. Gu, Quantum Chaos of a Kicked Particle in an Infinite Potential Well, Phys. Rev. Lett.,1999 (82):4224-4227.
    [152]A. Peres, Stability of quantum motion in chaotic and regular systems, Phys. Rev. A.,1984(30):1610-1615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700