扩散捕食系统正平衡态的定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有空间结构的生态模型已成为近几十年来最为活跃的研究领域之一,引起了众多数学家和生物学家的广泛兴趣.特别的,由于自然界中能量传递形式的差异,带有不同功能反应的扩散捕食系统的长时间行为和非常数正平衡态的存在性与不存在性是种群动态模型研究的重要内容.本文的主要工作是对几类带有不同功能反应项的扩散捕食系统进行定性分析.
     首先,研究了两类带有Robin边界条件的捕食模型,一类是捕食者种群带有修正的Leslie-Gower型功能反应,而食饵种群中则含有一般的功能反应函数p(u);另一类是带有Beddinton-DeAngelis功能反应的捕食系统.运用锥映射的不动点指数理论,给出了这两类系统共存解的存在性与不存在性的一些充分必要条件.这些条件依赖于系统中的某些参数和Robin边界条件下特征值问题的主特征值.并且还讨论了共存解的稳定性和抛物系统的渐近行为.特别的,对于第一类捕食系统给出了一个具体应用,即取p(u)为Holling-II型功能反应,获得了相应的结果.
     其次,研究了一类修正的Holling-Tanner浦食系统,带有齐次Neumann边界条件.讨论了抛物系统的全局吸引性、持久性;分别运用线性化方法和Lyapunov函数法,当系统中参数满足一定条件时,研究了正常数平衡态的局部与全局渐近稳定性;通过最大值原理和Harnack不等式给出了椭圆问题正解的先验上、下界估计;进而分别运用能量方法和Leray-Schauder度理论证明了系统在大扩散时非常数正平衡态的不存在性和存在性.再次,研究了一类带有扩散项的三种群捕食系统,其中两捕食者猎获同一种食饵.当系统中参数满足一定条件时,讨论了系统唯一正常数平衡态的局部与全局渐近稳定性;通过对椭圆问题正解的先验估计,运用能量方法证明了当扩散系数d1充分大时系统非常数正平衡态的不存在性.
     最后,鉴于脉冲微分方程在描述某些生态系统的重要意义,研究了含有脉冲和扩散项的比例依赖Holling-III型捕食系统,给出系统的正向不变集、解的最终有界性与持久性等结果,以及捕食者种群灭绝的充分条件.并且还将这些结果推广到了多种群情形.
In the past decades, ecological models with spacial structure have been one of the most active fields and received extensive concerns from many mathematicians and biologists. In particular, due to the differences in energy transformation, the long-time behaviors and the existence/nonexistence of nonconstant positive steady states for diffusive predator-prey systems with different functional responses are im-portant themes in studying population dynamical models. This thesis is concerned with the qualitative property for some diffusive predator-prey systems with different functional responses.
     Firstly, we study two classes of predator-prey models with Robin boundary conditions. One incorporates the modified Leslie-Gower functional response for the predator and the general functional response p(u) for the prey. The other one involves the Beddington-DeAngelis functional response. By applying the theory of fixed point in cones, we give some sufficient and necessary conditions for the existence and nonexistence of coexistence solutions to these systems, which are dependent on some parameters and the principle eigenvalues under Robin boundary conditions. Furthermore, we will discuss the stability of coexistence solutions and the asymptotic behavior for the parabolic systems. In particular, we give an application of the first class of predator-prey system, that is to say, we replace the functional response p(u) with Holling-II type functional response and obtain the corresponding results.
     Secondly, we study a kind of modified Holling-Tanner type predator-prey sys-tem under homogeneous Neumann boundary conditions and discuss the global at-tractivity and persistence property of the parabolic system. By using the linearized method and Lyapunov function method, we investigate the locally and globally asymptotic stability of the positive constant steady state when the parameters sat-isfy suitable conditions. After this, we apply the maximal principle and Harnack inequality to give a priori upper and lower bounds estimate for the positive solu-tions to elliptic system. Then, we establish the nonexistence and existence of the nonconstant positive steady states by energy method and Leray-Schauder degree theory, respectively, in the case of large diffusion. Furthermore, we study a class of three-species predator-prey system with diffusion, in which the two predators con-sume the common prey. The locally and globally asymptotic stability of the unique positive constant steady state is discussed. Through giving a priori estimate on the positive solution to the corresponding elliptic problem, the nonexistence of noncon- stant positive steady state is established by applying the energy method when the diffusion coefficient d1 is sufficiently large.
     Finally, in view of the important role of impulsive differential equations in mod-eling some ecological systems, we discuss a class of ratio-dependent Holling-III type predator-prey system with diffusion and impulses. Some sufficient conditions for the existence of positively invariant set, ultimate boundedness of solutions, persis-tence property and the extinction of predator population are given. Furthermore, we generalize these results to multi-species predator-prey systems.
引文
[1]J.F. Andrews, A mathematical model for the continuous culture of microorgan-isms utlizing inhibitory substrates, Biotechnol. Bioeng.10 (1986) 707-723.
    [2]M.U. Akhmet, M. Beklioglu, T. Ergenc, et al., An impulsive ratio-dependent predator-prey system with diffusion, Nonlinear Anal. Real World Appl.7 (2006) 1255-1267.
    [3]R. Artidi, L.R. Ginzburg, Coupling in predator-prey dynamics: ratio-dependence, J. Theoret. Biol.139 (1989) 311-326.
    [4]M.A. Aziz-Alaoui, M.D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Appl. Math. Lett.16 (2003) 1069-1075.
    [5]J.R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol.44 (1975) 331-340.
    [6]E. Beretta, Y. Kuang, Global analysis in some delayed ratio-dependent predator-prey systems, Nonlinear Anal.32 (1998) 381-408.
    [7]A.A. Berryman, The origins and evolution of predator-prey theory, Ecology 73 (1992) 1530-1535.
    [8]J. Blat, K.J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations, SIAM J. Math. Anal.17 (1986) 1339-1353.
    [9]N.F. Britton,生物数学引论,清华大学出版社,北京,2009.
    [10]S. Cano-Casanova, Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems, Nonlinear Anal.49 (2002) 361-430.
    [11]S. Cano-Casanova, J. Lopez-Gomez, Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems, J. Differential Equations 178 (2002) 123-211.
    [12]R.S. Cantrell, C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, J. Math. Anal. Appl.257 (2001) 206-222.
    [13]R.S. Cantrell. C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley and Sons, Chichester, UK,2003.
    [14]R.S. Cantrell, C. Cosner, S. Ruan, Intraspecific interference and consumer-resource dynamics, Discrete Contin. Dyn. Syst. Ser. B 4 (2004) 527-546.
    [15]陈兰荪,宋新宇,陆征一,数学生态学模型与研究方法,四川科学技术出版社,成都,2003.
    [16]陈滨,王明新,带有扩散和Beddington-DeAngelis响应函数的捕食模型的正平衡态,数学年刊A辑,28(2007)495-506.
    [17]B. Chen. M. Wang. Qualitative analysis for a diffusive predator-prey model, Comput. Math. Appl.55 (2008) 339-355.
    [18]W. Chen, M. Wang, Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion, Math. Comput. Mod-elling 42 (2005) 31-44.
    [19]C.H. Chiu, S.B. Hsu, Extinction of top-predator in a three-level food-chain model, J. Math. Biol.37 (1998) 372-380.
    [20]J.B. Collings, The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model, J. Math. Biol.36 (1997) 149-168.
    [21]M.G. Crandall, P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971) 321-340.
    [22]M.G. Crandall, P.H. Rabinowitz, Bifurcation, perturbation of simple eigenval-ues, and linear stability, Arch. Ration. Mech. Anal.52 (1973) 161-180.
    [23]E.N. Dancer, On the indices of fixed points of mappings in cones and applica-tions, J. Math. Anal. Appl.91 (1983) 131-151.
    [24]C. Daque, K. Kiss, M. Lizana, On the dynamics of an n-dimensional ratio-dependent predator-prey system with diffusion, Appl. Math. Comput.208 (2009) 98-105.
    [25]D.L. DeAngelis, R.A. Goldstein, R.V. O'Neill, A model for trophic interaction, Ecology 56 (1975) 881-892.
    [26]Y. Du, S.B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations 203 (2004) 331-364.
    [27]Y. Du, Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model, Trans. Amer. Math. Soc.349 (1997) 2443-2475.
    [28]Y. Du, Y. Lou, Qualitative behavior of positive solutions of a predator-prey model:effects of saturation, Proc. Roy. Soc. Edinburgh Sect. A 131A (2001) 321-349.
    [29]Y. Du, R. Peng, M. Wang, Effect of a protection zone in the diffusive Leslie-Gower predator-prey model, J. Differential Equations 246 (2009) 3932-3956.
    [30]Y. Du, J. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous envirment, In Nonlinear dynamics and evolution equations (Ed. by H. Brunner, X. Zhao and X. Zou),95-135, Fields Inst. Commun.48, AMS, Providence, RI,2006.
    [31]Y. Du, J. Shi, A diffusive predator-prey model with a protection zone, J. Dif-ferential Equations 229 (2006) 63-91.
    [32]Y.H. Fan, W.T. Li, Global asymptotic stability of a ratio-dependent predator-prey system with diffusion, J. Comput. Appl. Math.188 (2006) 205-227.
    [33]冯孝周,吴建华,一类带Beddington-DeAngelis反应项的捕食模型的分歧解,工程数学学报,25(2008)665-671.
    [34]R.A. Fisher, The Waves of advance of advantageous genes, Ann. Eugenics 7 (1937) 353-369.
    [35]H. I. Freedman, Deterministic Mathematical Modles in Population Ecology, Marcel Dekker, New York,1980.
    [36]M. Ghergu, Non-constant steady-state solutions for Brusselator type systems, Nonlinearity 21 (2008) 2331-2345.
    [37]D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin,2001.
    [38]郭改慧,李艳玲,带B-D反应项的捕食-食饵模型的全局分支及稳定性,应用数学学报,31(2008)220-230.
    [39]郭改慧,李艳玲,带B-D反应项的捕食-食饵模型正解的一致持续性,工程数学学报,26(2009)946-950.
    [40]郭改慧,吴建华,一类捕食-食饵模型正解的存在性与惟一性,武汉大学学报,54(2008)9-14.
    [41]G. Guo, J. Wu, Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response, Nonlinear Anal.72 (2009) 1632-1646.
    [42]黑力军,反应扩散生态系统研究,陕西师范大学博士学位论文,2004.
    [43]L. Hei, Y. Yu, Non-constant positive steady state of one resource and two consumers model with diffusion, J. Math. Anal. Appl.339 (2008) 566-581.
    [44]D. Henry, Geometric Theory of Semilinear Parabolic Equations, in:Lecture Notes in Mathematics, Vol.840, Springer-Verlag, Berlin, New York,1993.
    [45]M.A. Hixon, G.P. Jones, Competition, predation, and density-dependent mor-tality in demersal marine fishes, Ecology 86 (2005) 2847-2859.
    [46]C.S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation, Mem. Entomol. Sec. Can.45 (1965) 1-60.
    [47]S.B. Hsu, T.W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math.55 (1995) 763-783.
    [48]S.B. Hsu, T.W. Hwang, Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, J. Math. Biol.42 (2001) 489-506.
    [49]S.B. Hsu, T.W. Hwang, Y. Kuang, A ratio-dependent food chain model and its applications to biological control, Math. Biosci.181 (2003) 55-83.
    [50]胡广平,几类捕食系统的分支问题与周期解,兰州大学博士学位论文,2009.
    [51]G.H. Hutchinson, Circular causal systems in ecology, Ann. N. Y. Acad. Sci.50 (1948) 221-246.
    [52]T.W. Hwang, Global analysis of the predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl.281 (2003) 395-401.
    [53]V.S. Ivlev, Experimental Ecology of the Feeding of Fishes, Yale Univ. Press, New Haven, CT,1961.
    [54]K. Kiss, n-Dimensional ratio-dependent predator-prey systems with diffusion, Appl. Math. Comput.205 (2008) 325-335.
    [55]W. Ko, I. Ahn, Analysis of ratio-dependent food chain model, J. Math. Anal. Appl.335 (2007) 498-523.
    [56]W. Ko, K. Ryu, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, J. Differential Equations 231 (2006) 534-550.
    [57]W. Ko, K. Ryu, Nonconstant positive steady-states of a diffusive predator-prey system in homogeneous environment, J. Math. Anal. Appl.327 (2007) 539-549.
    [58]W. Ko, K. Ryu, Coexistence states of a predator-prey system with non-monotonic functional response, Nonlinear Anal. Real World Appl.8 (2007) 769-786.
    [59]W. Ko, K. Ryu, A qualitative study on general Gause-type predator-prey mod-els with constant diffusion rates, J. Math. Anal. Appl.344 (2008) 217-230.
    [60]W. Ko, K. Ryu, Analysis of diffusive two-competing-prey and one-predator systems with Beddington-DeAngelis functional response, Nonlinear Anal.71 (2009) 4185-4202.
    [61]W. Ko, K. Ryu, Coexistence states of a nonlinear Lotka-Volterra type predator-predator model with cross-diffusion, Nonlinear Anal.71 (2009) e1109-e1115.
    [62]W. Ko, K. Ryu, A qualitative study on general Gause-type predator-prey mod-els with non-monotonic functional response, Nonliear Anal. Real World Appl. 10 (2009) 2558-2573.
    [63]A. Kolmogoroff, I. Petrovsky, N. Piscounoff, Study of the diffusion equation with growth of the quantity of matter and its application to a biological prob-lem, Moscow Univ. Bull. Math.1 (1937) 1-25.
    [64]H. Kierstead, L.B. Slobodkin, The size of water masses containing plankton bloom, J. Mar. Res.12 (1953) 141-147.
    [65]K. Kuto, Stability of steady-state solutions to a prey-predator system with cross-diffusion, J. Differential Equations 197 (2004) 293-314.
    [66]K. Kuto, Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations 197 (2004) 315-348.
    [67]L. Li, Coexistence theorems of steady states for predator-prey interacting sys-tems, Trans. Amer. Math. Soc.305 (1988) 143-166.
    [68]李波,王明新,一类带有扩散的三种群捕食模型的非常数正平衡解,数学年刊A辑,30(2009)265-280.
    [69]Z. Liang, H. Pan, Qualitative analysis of a ratio-dependent Holling-Tanner model, J. Math. Anal. Appl.334 (2007) 954-964.
    [70]L.S. Lin, W.M. Ni, I. Takagi, Large amplitude stationary solutions to a cherno-taxis systems, J. Differential Equations 72 (1988) 1-27.
    [71]Z. Lin, M. Pederson, Stability in a diffusive food-chain model with Michaelis-Menten functional response, Nonlinear Anal.57 (2004) 421-433.
    [72]X. Liu, L. Chen, Global dynamics of the periodic logistic system with periodic impulsive perturbations, J. Math. Anal. Appl.289 (2004) 279-291.
    [73]X. Liu, L. Huang, Permanence and periodic solutions for a diffusive ratio-dependent predator-prey system, Appl. Math. Modelling 33 (2009) 683-691.
    [74]A.J. Lotka, Elements of Physical Biology, Williams and Wilkins Company, Bal-timore,1925.
    [75]Y. Lou, W.M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations 131 (1996) 79-131.
    [76]Z. Lu, X. Liu, Analysis of a predator-prey model with modified Holling-Tanner functional response and time delay, Nonlinear Anal. Real World Appl.9 (2008) 641-650.
    [77]陆征一,王稳地,生物数学前沿,科学出版社,北京,2008.
    [78]R. May, Stability and Complexity in Model Ecosystems, Princeton University press, Princeton, NJ,1978.
    [79]H. Nie, J. Wu, Multiplicity and stability of a diffusive predator-prey model with non-monotonic conversion rate, Nonlinear Anal. Real World Appl.10 (2009) 154-171.
    [80]L. Nirenberg, Topics in Nonlinear Functional Analysis, American Mathematical Society, Providence, RI,2001.
    [81]A.F. Nindjin, M.A. Aziz-Alaoui, M. Cadivel, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay, Non-linear Anal. Real World Appl.7 (2006) 1104-1118.
    [82]P.Y.H. Pang, M. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Royal Soc. Edinburgh Sect. A 133 (2003) 919-942.
    [83]P.Y.H. Pang, M. Wang, Strategy and stationary pattern in a three-species predator-prey, J. Differential Equations 200 (2004) 245-273.
    [84]P.Y.H. Pang, M. Wang, Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, Proc. Lond. Math. Soc.88 (2004) 135-157.
    [85]C. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
    [86]彭锐,几类捕食模型平衡态模式的定性分析,东南大学博士学位论文,2006.
    [87]R. Peng, Qualitative analysis of steady states to the Sel'kov model, J. Differ-ential Equations 241 (2007) 386-398.
    [88]R. Peng, J. Shi, M. Wang, Stationary pattern of a ratio-dependent food chain model with diffusion, SIAM J. Appl. Math.67 (2007) 1479-1503.
    [89]R. Peng, J. Shi, Non-existence of non-constant positive steady states of two Holling type-Ⅱ predator-prey systems:strong interaction case, J. Differential Equations 247 (2009) 866-886.
    [90]彭锐,王朋新,关于Gray-Scott模型的模式生成,中国科学A辑,37(2007)85-92.
    [91]彭锐,王明新,一个具有扩散和比例依赖响应函数捕食模型的定性分析,中国科学A辑,38(2008)135-148.
    [92]R. Peng, M. Wang, Positive steady-state solutions of the Noyes-Field model for Belousov-Zhabotinskii reaction, Nonlinear Anal.56 (2004) 451-464.
    [93]R. Peng, M. Wang, Pattern formation in the Brusselator system, J. Math. Anal. Appl.309 (2005) 151-166.
    [94]R. Peng, M. Wang, Positive steady states of the Holling-Tanner prey-predator model with diffusion, Proc. Royal Soc. Edinburgh Sect. A 135 (2005) 149-164.
    [95]R. Peng, M. Wang, On multiplicity and stability of positive solutions of a diffusive prey-predator model, J. Math. Anal. Appl.316 (2006) 256-268.
    [96]R. Peng, M. Wang, Note on a ratio-dependent predator-prey system with dif-fusion, Nonlinear Anal. Real World Appl.7 (2006) 1-11.
    [97]R. Peng, M. Wang, Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model, Appl. Math. Lett.20 (2007) 664-670.
    [98]R. Peng, M. Wang, W. Chen, Positive steady states of a prey-predator model with diffusion and non-monotonic conversion rate, Acta Math. Sin. Engl. Ser. 23 (2007) 749-760.
    [99]R. Peng, M. Wang, G. Yang, Stationary patterns of the the Holling-Tanner prey-predator model with diffusion and cross-diffusion, Appl. Math. Comput. 196 (2008) 570-557.
    [100]R. Peng, M. Wang, M. Yang, Positive solutions of a diffusive prey-predator model in a heterogeneous environment, Math. Comput. Modelling 46 (2007) 1410-1418.
    [101]P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal.7 (1971) 487-513.
    [102]W. Ruan, W. Feng, On the fixed point index and multiple steady states of reaction-diffusion systems, Diff. Int. Eqns.8 (1995) 371-391.
    [103]S. Ruan, A. Ardito, P. Ricciardi, et al., Coexistence in competition models with density-dependent mortality, C. R. Biologies 330 (2007) 845-854.
    [104]S. Ruan, D. Xiao, Global analysis in a predator-prey system with nonmono-tonic functional response, SIAM J. Appl. Math.61 (2001) 1445-1472.
    [105]K. Ryu, I. Ahn, Positive solutions for ratio-dependent predator-prey interac-tion systems, J. Differential Equations 218 (2005) 117-135.
    [106]A. Samoilenko, N. Perestyuk, Impulsive Differential Equations, World Scien-tific,1995.
    [107]N. Sato, Some nonexistence results of stationary solutions for the Gray-Scott model, Nonlinear Anal.65 (2006) 1644-1653.
    [108]J.G. Skellam, Random dispersal in theoritical populations, Biometrika 38 (1951) 196-218.
    [109]W. Sokol, J.A. Howell, Kinetics of Phenol oxidation by washed cells, Biotech-nol. Eng.23 (1980) 2039-2049.
    [110]H.L. Smith, Dynamics of competition, Lecture Notes in Mathematics, Vol. 1714, Springer,1999.
    [111]J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York,1983.
    [112]唐三一,肖燕妮,单种群生物动力系统,科学出版社,北京,2008.
    [113]A.M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lon-don Ser. B 237 (1952) 37-72.
    [114]V. Volterra, Fluctuations in the abundance of a species considered mathemat-ically, Nature 118 (1926) 558-560.
    [115]W. Walter, Differential inequalities and maximum principles:theory, new methods and applications, Nonlinear Anal.30 (1997) 4695-4711.
    [116]王明新,非线性抛物型方程,科学出版社,北京,1997.
    [117]M. Wang, Non-constant positive steady states of the Sel'kov model, J. Differ-ential Equations 190 (2003) 600-620.
    [118]M. Wang, Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion, Phys. D 196 (2004) 172-192.
    [119]M. Wang, Stationary patterns caused by cross-diffusion for a three species predator-prey model, Comput. Math. Appl.52 (2006) 707-720.
    [120]M. Wang, P.Y.H. Pang, Global asymptotic stability of positive steady states of a diffusive ratio-dependent prey-predator model, Appl. Math. Lett.21 (2008) 1215-1220.
    [121]M. Wang, P.Y.H. Pang, W. Chen, Sharp spatial patterns of the diffusive Holling-Tanner prey-predator model in heterogeneous environment, IMA J. Appl. Math.73 (2008) 815-835.
    [122]M. Wang, Q. Wu, Positive solutions of a prey-predator model with predator saturation and competition, J. Math. Anal. Appl.345 (2008) 708-718.
    [123]王明新,王旭勃.(?)个捕食椭圆型方程组正解的存在性、唯一性与稳定性,中国科学,38A(2008)1095-1104.
    [124]Q. Wang, Z. Wang, Y. Wang et al., An impulsive ratio-dependent n+1-species predator-prey model with diffusion, Nonlinear Anal. Real World Appl. 11 (2009),2164-2174.
    [125]温紫娟,多种群强耦合种群动态模型的稳定性分析,兰州大学博十学位论文,2009.
    [126]J.D. Wollkind, J.B. Collings, J.A. Logan, Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees, Bull. Math. Biol.50 (1988) 379-409.
    [127]J.D. Wollkind, J.A. Logan, Temperature-dependent predator-prey mite ecosystem on apple tree foliage, J. Math. Biol.6 (1978) 265-283.
    [128]J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York,1996.
    [129]J. Wu, Maximal attractor, stability, and persistence for prey-predator model with saturation, Math. Comput. Modelling 30 (1999) 7-16.
    [130]D. Xiao, S. Ruan, Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response, J. Differential Equations 176 (2001) 494-510.
    [131]Y. Yamada, Stability of steady states for prey-predator diffusion equations with homogenenous Dirichlet conditions, SIAM J. Math. Anal.21 (1990) 327-345.
    [132]X.P. Yan, W.T. Li, Hopf bifurcation and global periodic solutions in a delayed predator-prey system, Appl. Math. Comput.177 (2006) 427-445.
    [133]Y. Yang, Hopf bifurcation in a two-competitor, one-prey system with time delay, Appl. Math. Comput.214 (2009) 228-235.
    [134]叶其孝,李正元,反应扩散方程引论,科学出版社,北京,1990.
    [135]曾宪忠,带扩散和交叉扩散的生态数学模型的研究,湖南师范大学博士学位论文,2006.
    [136]张汉姜,李艳玲,一类捕食-食饵模型正平衡解的整体分歧,系统科学与数学,27(2007)791-800.
    [137]钟承奎,范先令,陈文源,非线性泛函分析引论,兰州大学出版社,兰州,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700