关于非线性反应扩散方程全局吸引子的整体与局部几何拓扑结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Global and Local Geometric and Topological Structure of Global Attractor for Nonlinear Reaction-Diffusion Equations
  • 作者:岳高成
  • 论文级别:博士
  • 学科专业名称:基础数学
  • 学位年度:2010
  • 导师:钟承奎
  • 学科代码:070101
  • 学位授予单位:兰州大学
  • 论文提交日期:2010-04-01
摘要
在这篇博士学位论文中,我们主要研究了下列非线性反应扩散方程全局吸引子的整体与局部几何拓扑结构,得到了对全局吸引子几何拓扑结构的新的描述.其中Ω(?)RN是有界光滑区域.
     假定f:Ω×R→R满足Caratheodory条件:
     i)对每一个s∈R,函数F(·,s)关于Ω是Lebesgue可测的;
     ii)对几乎所有的x∈Q,函数f(x,·)关于R是连续可微的.
     另外,假定存在正常数Ci,1≤i≤4和整数p≥2,f满足下列增长条件:|f(x,s)|≤C1|s|p-1+C2,对所有的(x,s)∈Ω×R, sf(x,s)≤-C3|s|p+C4,对所有的(x,s)∈Ω×R, f'(x,s)≤(?),对所有的(x,s)∈Ω×R.其中Q(?)RN是有界光滑区域,(?)是-△算子的一列特征值,j=1,2,
     假定f(u)是C1函数且满足下列假设|f'(s)|≤C1|s|p-2+C2,p≥2, f(0)=f'(0)=0, f'≥一(?).全文共分五章:
     第一章,介绍无穷维动力系统的理论和应用的背景,全局吸引子问题的发展及研究进展情况,总结全局吸引子存在性、维数估计和惯性流形的已有的理论和方法以及动力系统几何拓扑理论方面已有的成果.
     第二章,给出了本文用到的一些基础知识.
     第三章,主要研究了半线性反应扩散方程I当外力项g∈God时,God是相空间L2(Q)中的稠密子集(正则值集合),全局吸引子的整体几何拓扑结构,得到了对全局吸引子的新的刻画,也就是说,方程I的全局吸引子是平衡点的Lipschitz连续的不稳定流形的并,在一定程度上克服了方程I在惯性流形不存在时对全局吸引子的几何结构的刻画所带来的困难,这能很好地反映半线性反应扩散方程I的全局吸引子的整体几何拓扑结构.
     第四章,主要研究了在第三章中得到的全局吸引子的代数和拓扑结构,通过充分考虑全局吸引子自身所具有的性质,受文献[111]中关于建立Witten复形理论的启发,在我们所得到的半线性反应扩散方程I的全局吸引子(?)上建立了Witten同调群.并证明了(?)具有CW复形结构,得到了Witten同调群、胞腔同调以及奇异同调群之间的同构关系,这给出了奇异同调群的一种有效的计算方法.最后,结合全局吸引子的Morse过滤结构和相对同调群理论,我们给出了全局吸引子的相对同调群的刻画,得到了Morse等式.
     第五章,主要研究了一类具有任意阶多项式增长的非线性反应扩散方程Ⅱ的全局吸引子的局部几何拓扑结构,即如果方程Ⅱ的线性化方程的谱和虚轴相交时,我们所考虑的非线性反应扩散方程Ⅱ将出现中心流形,我们得到了中心流形定理.
In this doctoral dissertation,we study the global and local geometric and topological structure for global attractor of the following nonlinear reaction-diffusion equations, whereΩis a smooth bounded domain of RN.
     Assume that f:Ω×R→R satisfies the Caratheory conditions:
     i) For each s∈R,the function f(.,s)is Lebesgue measurable inΩ;
     ii) For almost every x∈Ω,the function f(x,.)is continuously differentiable functions in R.
     Assume further that there are positive constants Ci,for 1≤i≤4,and integer p≥2, f satisfies the following conditions:
     |f(x,s)|≤C1|s|p-1+C2, for(x,s)∈Ω×R,
     sf(x,s)≤一C3|s|p+C4, for(x,s)∈Ω×R,
     f'(x,s)≤(?), for(x,s)∈Ω×R.
     whereΩis a smooth bounded domain of RN,λj are eigenvalues of一△,j= 1,2,
     Assume that f(u)is C1 function satisfying the following hypotheses, |f'(s)|≤C1|s|p-2+C2,p≥2, f(0)=f'(0)= 0, f'≥-(?).
     This thesis consists of five chapters.
     In Chapter 1, we introduce the background of the theory and its applica-tions of infinite dimensional dynamical systems, and the evolution of global attractor, and then, the method and theory of the existence of global attrac-tor, dimensional estimate, inertial manifold, and the basic theory of geometry and topology of dynamical systems are listed in this chapter.
     In Chapter 2, some preliminary results and definitions that we will used in this thesis are presented.
     In Chapter 3, we mainly study the global geometric and topological struc-ture of the corresponding global attractor for semilinear reaction-diffusion equationsⅠwhen the forcing term g belongs to God, where God is an open and dense subset (regular value set) of the phase space L2(Ω), that is, the global attractor for equationsⅠcan be decomposed into the union of Lipschitz continuous manifold of equilibrium points. In some sense, we overcome some difficulties to describe the geometric structure of global attractor when the in-ertial manifold does not exist for equationsⅠ. In this way our decomposition for global attrator of equationsⅠgives a good description on the geometric and topological structure of global attractor for semilinear reaction-diffusion equationsⅠ.
     In Chapter 4, we mainly study the algebraic and topological structure of global attractor obtained in Chapter 3. We are motivated by the refer-ence [111], in which Witten gave a beautiful method to establish Witten com-plex. Based on the theory of Witten complex, we establish Witten homology group on the global attractor (?) of the reaction-diffusion equations I when g∈God, and prove the global attractor (?) possesses the structure of CW complex. We derive the isomorphism relation between any two of Witten ho-mology group, cell homology group and singular homology group, which give an efficient tool to calculate the singular homology group. Last, by using the structure of Morse filtration and the theory of relative homology group, we give a description of relative homology group to the global attractor (?) and obtain the corresponding Morse's equation.
     In Chapter 5, we mainly study the local geometric and topological struc-ture of global attractor for nonlinear reaction-diffusion equationsⅡwith a polynomial growth nonlinearity of arbitrary order, that is, if the spectrum of the linearized equation of equationsⅡmeet the imaginary axis, then evolution equationsⅡwill occur the center manifold. So we derive the center manifold theorem for the equationsⅡ.
引文
[1]A. Abbondandolo, P. Majer, A Morse complex for infinite dimensional manifolds-part Ⅰ, Advances in Mathematics 197(2005),321-410.
    [2]R. Abraham, J. E. Marsden, T. Ratiu, Manifold, Tensor Analysis and Appli-cations, Springer-Verlag, New York,1988.
    [3]R. Abraham, J. Robbin, Transversal Mappings and Flows, Benjamin, New York,1967.
    [4]G. Alessandrini, S. Vessella, Local behavior of solutions of parabolic equa-tions, Comm. Partial Differential Equations 13(1988),1041-1057.
    [5]H. Amann, Linear and Quasilinear Parabolic Problems, Birkhauser, Berlin,1995.
    [6]S. Agmon, L. Nirenberg, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space, Comm. Pure Appl. Math.20(1967), 207-229.
    [7]S. B. Angenent, The Morse-Smale property for a semilinear parabolic equation, J. Differential Equations 62(1986),427-442.
    [8]A. V. Babin, B. Nicolaenko, Exponential attractors of reaction-diffusion sys-tems in an unbounded domain, J. Dyn. Diff. Eqs.7(1995),567-590.
    [9]A. V. Babin, M. I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proc. R. Soc. Edinburgh 116A(1990),221-243.
    [10]A. V. Babin, M.I. Vishik, Attractors of evolution equations, Nauka, Moscow, 1989. English translation, North-Holland,1992.
    [11]A. V. Babin, M.I. Vishik, Regular attractors of semigroups of evolutionary equations, J. Math. Pures Appl.62(1983),441-491.
    [12]P. W. Bates, K. Lu, A Hartman-Grobman theorem for Cahn Hilliard equations and phase-field equations, J. Dynam. Differential Equations 6(1994),101-145.
    [13]C. M. Blazquez, Transverse homoclinic orbits in periodically perturbed parabolic equations, Nonlinear Anal.10(1986),1277-1291.
    [14]P.Brunovsky, S.-N. Chow, Generic properties of stationary solutions of reac-tion diffusion equations, J. Differential Equations 53(1984),1-23.
    [15]P. Brunovsky, P. Polacik, The Morse-Smale structure of a generic reaction-diffusion equation in higher space dimension, J. Differential Equations 135(1997),129-181.
    [16]P.Brunovsky, G. Raugel, Genericity of the Morse-Smale property for damped wave equations, J. Dynamics and Differential Equations 15(2003),571-658.
    [17]K. C. Chang, Infinite-dimensional Morse theory and multiple solution prob-lems, Progress in Nonlinear Differential Equations and their Applications, vol. 6, Birkhauser, Boston, MA,1993.
    [18]M. Chen, X.-Y. Chen, J. K. Hale, Structural stability for time-periodic one-dimensional parabolic equations, J. Differential Equations 96(1992),355-418.
    [19]陈省身,陈维桓,微分几何讲义,第二版,北京大学出版社,2001.
    [20]V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ. vol.49, Amer. Math. Soc. Providence, RI,2002.
    [21]S.-N. Chow, K. Lu, Smooth invariant foliations in infinite dimensional spaces, J. Differential Equations 94(1991),266-291.
    [22]J. W. Cholewa, T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press,2000.
    [23]W. A. Coppel, Dichotomies in Stability Theory, Springer-Verlag, Berlin,1978.
    [24]D. Daners, P. Koch Medina, Abstract Evolution Equations, Periodic Problems and Applications, Longman, Harlow,1992.
    [25]D. Daners, S. Merino, Gradient-like parabolic semiflows on BUC(Rn), Proc. R. Soc. Edinburgh 128A(1998),1281-1291.
    [26]K. Deimling, Nonlinear functional analysis, Springer, Berlin,1985.
    [27]T. Dlotko, Global solutions of reaction-diffusion equations, Funkcial. Ekvac. 30(1987),31-43.
    [28]L. Dung, Global attractors and steady state solutions for a class of reaction-diffusion systems, J. Diff. Equations 147(1998),1-29.
    [29]A. Eden, C. Foias, B. Nicolaeenko, R. Temam, Exponential attractor for dissi-pative evolution equations, Masson, Paris and J. Wiley Collection, Recherches en Mathematiques Appliquoes,1994.
    [30]M. A. Efendiev, S. V. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure. Appl. Math.54(2001),625-688.
    [31]T. Eirola, S. Y. Pilyugin, Pseudotrajectories generated by a discretization of a parabolic equation, J. Dynam. Differential Equations 8(1996),281-297.
    [32]R. Engelking, General Topology, PWN, Warsaw,1985.
    [33]L. C. Evans, Partial differential equations, Graduate Studies in Math 19. Amer. Math. Soc.1998.
    [34]E. Feireisl, Ph. Laurencot, F. Simondon, H. Toure, Compact attractors for reaction-diffusion equations in Rn, C. R. Acad. Sci. Paris Ser. Ⅰ.319(1994). 147-151.
    [35]E. Feireisl, Ph. Laurencot, F. Simondon, Compact attractors for degenerate parabolic eauations in RN. C. R. Acad. Sci. Paris. Ser. Ⅰ. Math.320(1995). 1079-1083.
    [36]E. Feireisl, Ph. Laurencot, F. Simondon, Global attractors for degenerate parabolic equations on unbounded domains, J. Diff. Eauations 129(1996).239-261.
    [37]C. Foias, G. R. Sell, R. Temam, Inertial manifold for nonlinear evolutionary equations, J. Diff. Equations 73(1988),309-353.
    [38]R. Forman, Morse Theory for Cell Complexes, Advances in Mathematics 134(1998),90-145.
    [39]W. Fulton, Algebraic Topology: A First Course, Heidelberg:Springer-Verlag, 1995.
    [40]G. Fusco, W. M. Oliva, Jacobi matrices and transversality, Proc. Roy. Soc. Edinburgh Sect. A 109,231-243.
    [41]M. Golubitsky, V. Guillemin, Stable Mappings and Their Singularities, Springer-Verlag, New York,1974.
    [42]郭柏灵,无穷维动力系统,国防工业出版社,1995.
    [43]郭大钧,非线性泛函分析(第二版),山东科学技术出版社,2002.
    [44]J. K. Hale, J. Kato, Phase space of retarted equations with infinite delay, Tohoku Math. J.21(1978),11-41.
    [45]J. K. Hale, X.-B. Lin, Heteroclinic orbits for retarded functional differential equations, J. Differential Equations 65(1986),175-202.
    46] J. K. Hale, L. T. Magalhaes, W. M. Oliva, An Introduction to Infinite-Dimen-sional Dynamical Systems-Geometric Theorey, Springer-Verlag, New York, 1984.
    [47]J. K. Hale, G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl.71(1992),33-95.
    [48]J. K. Hale, Asymptotic behavior of dissipative systems, Amer. Math. So Providence, RI,1988.
    [49]Q. Han, F. H. Lin, Nodal sets of solutions of parabolic equations, Ⅱ, Comm. Pure Appl. Math.47(1994),1219-1238.
    [501 A. Hatcher, Algebraic Topology, Cambridge:Cambridge University Press, 2002.
    [51]D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Springer-Verlag, Berlin,1981.
    [521 D. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations, J. Differential Equations 59(1985),165-205.
    [53]D. Henry, Perturbation of the Boundary for Boundary Value Problems of Partial Differential Operators, (with editorial assistance from Jack Hale and Antonio Luiz Pereira), London Mathematical Society Lecture Note Series no318, Cambridge University Press, Cambridge,2005.
    [54]D. Husemoller, Fibre Bundles, Second Edition, Springer-Verlag, New York, Heidelberg, Berlin,1966.
    [55]姜伯驹,同调论,北京大学出版社,2006.
    [56]R. Joly, Generic transversality property for a class of wave equations with variable damping, Journal de Mathematiques Pures et Appliquees 84(2005), 1015-1066.
    [571 T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966.
    [58]P. E. Kloeden, J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.463(2007),163-181.
    [59]H. Koch, Finite dimensional aspects of semilinear parabolic equations, J. Dy-nam. Differential Equations 8(1996),177-202.
    [60]I. Kupka, W. M. Oliva, Dissipative mechanical systems, Resenhas 1(1993), 69-115.
    [61]K. Kuratowski, Sur les espaces complets, Fund. Math.15(1930),301-309.
    [62]X.-B. Lin, Exponential dichotomies and homoclinic orbits in functional differen-tial equations, J. Differential Equations 63(1986),227-254.
    [63]X.-B. Lin, Exponential dichotomies in intermediate spaces with applica-tions to a diffusively perturbed predator-prey model, J. Differential Equations 108(1994),36-63.
    [64]O. A. Ladyzhenskaya, Attractors for semigroups and evolution equations, Leizioni Lincei, Cambridge Univ. Press, Cambridge, New York,1991.
    [65]J. L. Lions, Quelques Methodes de Resolution des Problems aux Limites Non Lineaires, Dunrod Gauthier-Villars, Paris,1969.
    [66]J. L. Lions, E. Magenes, Nonhomogeneous Boundary Value Problems and Ap-plications, vol.1, Springer-Verlag, Berlin,1972.
    [67]K. Lu, A Hartman-Grobman theorem for reaction-diffusion equations, J. Dif-ferential Equations 93(1991),364-394.
    [68]K. Lu, Structural stability for scalar parabolic equations, J. Differential Equa-tions 114(1994),253-271.
    [69]A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Prob-lems, Birkhauser, Berlin,1995.
    [70]Q. F. Ma, S. H. Wang, C. K. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana University Math. J.Vol.51, No.6(2002),1541-1557.
    [71]M. Marion, Attractors for reactions-diffusion equations: existence and esti-mate of their dimension, Appl. Anal.25(1987),101-147.
    [72]M. Marion, Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems, SIAM J. Math. Anal.20(1989),816-844.
    [73]M. Marion, Approximate inertial manifolds for reaction-diffusion equations in high space dimension, J. Dyn. Diff. Eqns.1(1989),245-267.
    [74]R.H. Martin, Asymptotic stability and critical points for nonlinear quasimono-tone parabolic systems, J. Diff. Equations 30(1978),391-432.
    [75]R.E. Megginson, An introduction to Banach space theory, GTM 183, Springer-Verlag New York,1998.
    [76]S. Merino, On the existence of the compact attractor for semilinear reaction-diffusion systems on Rn, J. Diff. Eqs.132(1996),87-106.
    [77]J. Milnor, Morse theory, Princeton:Princeton University Press,1963.中译本:莫尔斯理论,江嘉禾译,北京:科学出版社,1988.
    [78]C. Miranda, Partial Differential Equations of Elliptic Type, Springer-Verlag, Berlin,1955,1970.
    [79]I. Moise, R. Rosa, X. Wang, Attractors for non-compact semigroups via energy equations, Nonlinearity 11(1998),1369-1393.
    [80]J. R. Munkres, Elements of Algebraic Topology, Boston: Addison Wesley, 1984.
    [81]W. M. Oliva, J. C. F. de Oliveira, J. Sola-Morales, An infinite-dimensional Morse-Smale map, Nonlinear Differential Equations and Applications 1(1994), 365-387.
    [82]J. Palis, On Morse-Smale dynamical systems, Topology 8(1989),385-404.
    [83]J. Palis, W. de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York,1982.
    [84]J. Palis, S. Smale, Structural stability theorems, in "Global Analysis," Pro-ceedings of Symposic in Pure Mathematics, Vol.14, pp.223-404, Amer. Math. Soc. Providence, RI,1970.
    [85]K. Palmer, Exponential dichotomies and transversal homoclinic points, J. Dif-ferential Equations 55(1984),225-256.
    [86]A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York,1983.
    [87]L. Perko, Differential equations and dynamical systems, Texts in Applied Math.7, Springer-Verlag,1991.
    [88]P. Polacik, Generic hyperbolicity in one-dimensional reaction diffusion equa tions with general boundary conditions, Nonlinear Anal.11(1987),593-597.
    [89]P. Polacik, Transversal and nontransversal intersections of stable and unstable manifolds in reaction diffusion equations on symmetric domains, Differential Integral Equations 7(1994),1527-1545.
    [90]P. Polacik, Reaction-Diffusion equations and realization of gradient vector fields, Proc. EQUADIFF 95, L. Magalhaes, C. Rocha and L. Sanchez (eds.), World Scientific, Singapore 1998,197-206.
    [91]P. Polacik, K. P. Rybakowski, Imbedding vector fields in scalar parabolic Dirichlet BVPs, Ann. Scuola Norm. Sup. Pisa XXI (1995), pp.737-749.
    [92]M. Prizzi, A remark on reaction-diffusion equations in unbounded domains, Discrete Cont. Dyn. Syst.9(2003),281-286.
    [93]F. Quinn, Transversal approximation on Banach manifolds, in "Proceedings of Symposic in Pure and Applied Mathematics," Vol.15, pp.213-222, Amer. Math. Soc. Providence, RI,1970.
    [94]J. W. Robbin, Algebraic Kupka-Smale theory, in "Dynamical Systems and Tur-bulence, Coventry 1980," Lecture Notes in Mathematics, Vol.898, pp. 286-301, Springer-Verlag, Berlin/New York.
    [95]J. C. Robinson, Infinite-dimensional Dynamical Systems an Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge,2001.
    [96]C. Rocha, Generic properties of equilibria of reaction-diffusion equations with variable diffusion, Proc. Roy. Soc. Edinburgh Ser. A 101(1985),45-55.
    [97]B. P. Rynne, Genericity of hyperbolicity and saddle-node bifurcations in reaction-diffusion equations depending on a parameter, J. Appl. Math. Phys. (ZAMP) 47(1996),730-739.
    [98]D. Salamon, Morse theory, the Conley index and Floerhomology, Bull. London Math. Soc.22(1990),113-140.
    [99]H. Sato, Algebraic Topology: An Intuitive Approach, Amer. Math. Soc.1999.
    [100]J. Saut, R. Temam, Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations 4(1979),293-319.
    [101]M. Schwarz, Morse Homology, Birkhauser, Basel/Boston,1993.
    [1021 G. R. Sell, Y. You, Dynamics of evolutionary equations, Springer-Verlag, New York,2002.
    [1031 M. Shub, Global Stability of Dynamical Systems, Springer-Verlag, New York, 1987.
    [104]J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York,1967.
    [105]C. Y. Sun, C. K. Zhong, Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domains, Nonlinear Anal. 63(2005),49-65.
    [106]R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics (2nd edition), Springer-Verlag, New York,1997.
    [107]H. Triebel, Interpolation theory, function spaces, differential operators, Veb Deutscher, Berlin,1978.
    [108]K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math.98(1976),1059-1078.
    [109]B.X. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 128(1999),41-52.
    [110]J. Weber, The Morse-witten complex via dynamical systems, Expo. Math. 24(2006),127-159.
    [111]E. Witten, Supersymmetry and Morse theory, J. Differential Geom.17(1982), 661-692.
    [112]徐森林,胡自胜,薛春华,微分拓扑,清华大学出版社,2008.
    [113]尤承业,基础拓扑学讲义,北京:北京大学出版社,1997.
    [114]E. Zeidler, Nonlinear Functional Analysis and its Applications, Vols. I, II(Fixed Point Theorems, Monotone Operators), Springer-Verlag, Berlin, 1990.
    [115]S. V. Zelik, Attractors for reaction-diffusion systems in unbounded domains and their spatial complexity, Comm. Pure Appl. Math. Vol. LVI(2003) 584-637.
    [116]张楚生,微分拓扑新讲,北京大学出版社,2002.
    [117]张恭庆,临界点理论及其应用,上海科学技术出版社,1986.
    [118]W. Zhang, The Fredholm alternative and exponential dichotomies for parabolic equations, J. Math. Anal. Appl.191(1995), 180-201.
    [119]C. K. Zhong, C. Y. Sun, M. F. Niu, On the existence of global attractor of a class of infinite dimensional nonlinear dissipative dynamical systems, Chinese Ann. Math.26B:3(2005),1-8.
    [120]C. K. Zhong, M. H. Yang, C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Diff. Equations 223(2006),367-399.
    [121]C. K. Zhong, C. Y. Sun, M. F. Niu, On the existence of global attractor for a class of infinite dimensional nonlinear dissipative dynamical systems, Chin. Ann. Math. 26B:3(2005),393-400.
    [122]钟承奎,范先令,陈文源,非线性泛函分析,兰州大学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700