甲基叔丁基醚诱导细胞增殖的毒物兴奋效应及其毒理学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     研究甲基叔丁基醚(Methyl Tertiary Butyl Ether, MTBE)是否能诱导细胞增殖的毒物兴奋效应(Hormesis)及其剂量-反应关系,同时探讨MTBE在环境中的安全剂量范围。
     研究方法:
     1、采用MTT试验观察MTBE对体外培养的人支气管上皮细胞(Human bronchial epithelial cells,16HBE)的细胞毒性作用,同时观察MTBE作用于16HBE细胞能否产生细胞增殖的毒物兴奋效应,并确定其剂量范围(Hormetic Zone)。
     2、采用单细胞凝胶电泳(Single cell gel electrophoresis, SCGE)试验观察MTBE在其细胞增殖的Hormetic Zone的剂量下能否导致16HBE细胞的DNA损伤。
     3、通过小鼠经口亚慢性染毒,采用SCGE试验观察MTBE在其细胞增殖的Hormetic Zone的剂量下能否导致小鼠全血细胞和外周血淋巴细胞的遗传物质的损伤效应,同时用微核试验检测其能否导致小鼠骨髓网织红细胞的染色体损伤效应。
     研究结果:
     1、MTT试验的结果显示,一定剂量的MTBE作用于16HBE细胞能诱导细胞增殖的毒物兴奋效应,其Hormetic Zone为1g/L~10g/L。
     2、SCGE试验结果表明,40g/L的MTBE染毒16HBE细胞4小时,细胞已绝大部分凋亡。经IMI图像分析软件分析,将各剂量组的尾长、尾DNA%、尾/头(长)、Olive尾矩、尾头光强比等指标值与正常对照组相比较,结果表明1g/L~30g/L剂量组的各指标值均较正常对照组高,且差异有统计学意义(P<0.05)。说明1g/L~30g/L的MTBE能造成16HBE细胞DNA损伤,MTBE浓度与16HBE细胞DNA损伤的程度呈剂量-反应关系。
     3、小鼠经口亚慢性(3个月)染毒的试验结果表明,2.5~5g/L剂量的MTBE能够造成小鼠全血细胞和淋巴细胞的DNA损伤效应,并有一定的剂量效应关系。MTBE对小鼠骨髓网织红细胞微核试验的结果表明,雄性和雌性小鼠骨髓网织红细胞与正染红细胞的比值(PEC/NEC)各染毒剂量组与空白对照组相比,均无显著性差异(P>0.05),表明该试验剂量范围的MTBE长期染毒对小鼠骨髓的造血功能无明显影响;除了剂量为1.25g/L时雌性小鼠的微核率与空白对照组相比存在显著性差异之外,其它各个剂量组中,无论雌性或雄性小鼠的微核率与空白对照组相比均无显著性差异(P>0.05)。该试验结果提示,本试验设计的染毒剂量的MTBE对小鼠网织红细胞染色体尚无法观察到确定的损伤作用。
     结论:
     1.一定剂量的MTBE作用于16HBE细胞会促进细胞增殖加速,表现出明显的毒物兴奋效应,其毒物兴奋效应作用带(Hormetic Zone)为1 g/L~10 g/L。
     2.1 g/L~10 g/L剂量范围的MTBE具有促进16HBE细胞增殖的作用,同时也能导致细胞DNA损伤,却没有观察到染色体水平的严重损伤效应。据此我们认为,能诱导细胞增殖Hormesis的剂量范围的MTBE并非安全,它具有DNA损伤作用,同时促进细胞增殖加速,很可能具有致癌危险性。
Research Aim:
     To study whether Methyl Tertiary Butyl Ether (MTBE) has hormesis on cell proliferation and how its dose-effect relationship is. At the same time to investigate the safe dose of MTBE in the environment.
     Methods:
     1. The MTT test was used to detect the cytotoxic effect of MTBE in Human Bronchial epithelial cells (16HBE cells). At the same time to observe whether MTBE could induce 16HBE cells to occur hormesis and determine its dose range (Hormetic Zone).
     2. Us Single cell gel electrophoresis to observe whether the MTBE within the dose of Hormetic Zone can lead to DNA damage in 16HBE cells.
     3. Set several dose groups of MTBE within the dose of Hormetic Zone. Let the mice continuously be exposed to these groups of MTBE by way of drinking for three months. Then detecte the DNA damage in their whole blood cells and leucocytes by SCGE while test the DNA damage in their bone marrow reticulocytes using micronucleus test.
     Result
     1. MTT test revealed that MTBE could induce 16HBE cells to occur hormesis and its dose range of Hormetic Zone is 1 g/L~10 g/L.
     2. SCGE experiment showed that apoptosis take place in most 16HBE cells after exposed to 40g/L dose of MTBE for 4h. Each index value in MTBE dose groups of lg/L~30g/L is higher than that in normal control group. It revealed that lg/L~30g/L doses of MTBE can cause DNA damage in 16HBE cells. It also showed clear dose-effect relationship.
     3. After continuous exposure to each dose group of MTBE for 90 days, the whole blood cells, leucocytes of blood and bone marrow reticulocyte were collected from the mice. We used these tissues to carry out related experiments. SCGE test showed that MTBE can result in DNA damage in whole blood cells and reticulocyte at the dose of 2.5~5g/L, and it also showed clear dose-effect relationship. Compared with the normal control group, no significant difference has been found in each exposure group (including male and female mouse) about the PCE/NCE value. It demonstrated that long-time exposure to low-dose MTBE is harmless to hematopoiesis. There was no significant difference between the normal control group and each exposure group about the micronucleus rate. Only at the dose of 1.25g/L, the micronucleus rate of female mice was significantly increased compared with the normal control group. Micronucleus test revealed that the dose of MTBE set in this experiment cannot cause chromosome damage.
     Conclusion:
     1. MTBE could induce 16HBE cells to occur hormesis on proliferation and its dose range of Hormetic Zone is 1 g/L~10 g/L.
     2. 1g/L~10g/L doses of MTBE can cause DNA damage in 16HBE cells and shows clear dose-effect relationship.2.5~5g/L doses of MTBE can cause DNA damage in whole blood cells and reticulocytes and has dose-effect relationship.2.5~5g/L doses of MTBE have no significant influence on PCE/NCE value and micronucleus rate. Accordingly, we think that the doses of MTBE in Hormetic Zone is dangerous to organisms, can cause slight DNA damage, but cannot lead to serious damage such as Chromosome breakage.
引文
[1]周伟,叶舜华,朱惠刚.甲基叔丁基醚毒性研究综述[J].环境医学,1998,17(1):43-45.
    [2]刘爱芬,庄德辉,吴振斌.甲基叔丁基醚(MTBE)的环境毒理学研究进展.环境科学与技术,2005,5(28):108-111.
    [3]程伟,江桂斌.无铅汽油新型添加剂甲基叔丁基醚(MTBE)的环境化学行为及其分析方法[J].环境污染治理技术与设备,2001,2(3):48-55.
    [4]F. Fayolle, J.-P. Vandecasteele, F. Monot. Microbial degradation and fate in the environment of methyl tert-butyl ether and related fuel oxygenates. Applied Microbiology and Biotechnology,2001,56(3-4):339-349
    [5]胡勤海,陈艳,管丹蓉.甲基叔丁基醚(MTBE)的环境生态效应[J].农业环境科学学报,2005,24(增刊):336-341
    [6]Belpoggi F. Methyl tertiary butyl ether (MTBE)—a gasoline additive causes testicular and Lymphohaematopoietic cancers in rats [J]. Toxicology and Industrial Health,1995,11 (2):119-149.
    [7]赵进顺,黄关麟等.甲基叔丁基醚的急性毒性研究[J].中国公共卫生,1999,15(3):264-265.
    [8]杨红,李红艳,等.甲基叔丁基醚无铅汽油的毒性研究[J].中国公共卫生,2002,18(2):143-145.
    [9]Bird, MG, Burleigh Flayer, et al. Oncogenicity studies of inhaled methyl tertiary-butyl ether (MTBE) in CD-1 mice and F-344 rats. Journal of Applied Toxicology,1997,17(7), S45-S55.
    [10]Andrews L S. Chronic health effects of MTBE. The International Congress of Toxicology, 1998.68 (9),45-55.
    [11]李红艳,高锦伍,杨江.甲基叔丁基醚的遗传毒性研究[J].劳动医学,2001,18(6):341-343.
    [12]唐国慧,王俊南,庄志雄.甲基叔丁基醚及其代谢产物对HL-60细胞的遗传毒性测定[J].中华预防医学杂志,1997,31(6):334-337.
    [13]黄关麟,赵进顺,王民生.单细胞凝胶电泳测定国产甲基叔丁醚致DNA损伤[J].中国公共卫生学报,1998,17(6):334.
    [14]周伟,叶舜华.甲基叔丁基醚遗传毒性研究[J].卫生研究,1998,27(5):309-311.
    [15]Kado N Y, Kuzmicky P A, Loarca-Pina G, et al. Genotoxicity testing of methyl tertiary-butyl ether(MTBE) in the Salmonella microsuspesion assay and mouse bone narrow micronucleus test. Mutation Research,1998,412:131-138.
    [16]赵进顺,黄关麟,田世兰,等.甲基叔丁基醚的蓄积毒性和遗传毒性研究.中国公共卫生学报,1999,18(2):104-106.
    [17]Williams-Hill D, Spears C P, Prakash S., et al. Mutagenicity studies of methyl-tert-butyl ether using the ames tester strain TA102. Mutation Research,1999,446:15-21.
    [18]Mackerer C R, Angelosanto F A, Blackburn G R, et al. Identification of formaldehyde as the metabolite responsible for the mutagenicity of methyl tertiary-butyl ether in the activated mouse lymphoma assay. Proc. Soc. Exp. Biol. Med,1996,212(4):338-341.
    [19]Ferrari S, Calabretta B, Battini R et al. Expression of c-myc and induction of DNA synthesis by platelet-poor derived plasma in human diploid fibroblasts. Exp Cell Res,1988,174: 25-33.
    [20]Eilers M, Schirm S and Bishop JM. The Myc protein activates transcription of the alpha-prothymosin gene. EMBOJ,1991,10:133-141
    [21]周伟,黄关麟等.甲基叔丁基醚对原癌基因和功能基因表达的影响.卫生研究,1999,28(3):137-138
    [22]Calabrese EJ, Baldwin LA and Holland C. Hormesis:a highly generalizable and reproducible phenomenon with important implications for risk assessment. Risk Analyse.1999, 19(2):261-281.
    [23]Joseph V and Rodricks. Hormesis and toxicological risk assessment. Toxicological Sciences. 2003,71:134-136.
    [24]Beyersmann D, Hechtenberg S, et al. Cadmium, gene regulation and cellular signaling in mammalian cells [J]. Toxicology Applied Pharmacology,1997,144:247-261.
    [25]Calabrese EJ, Baldwin LA. Toxicology rethinks its central belief-hormesis demands a reappraisal of the way risks are assessed [J]. Nature,2003,421:691-692.
    [26]Calabrese EJ, Baldwin LA. The dose determines the stimulation (and poison):development of a chemical hormesis database [J]. International Journal of Toxicology,1997,16(6):545-559.
    [27]Calabrese EJ, Baldwin LA. Hormesis as biological hypothesis[J]. Environmetal Health Perspectives,1998,106 (Suppl):357-362.
    [28]Blume-Jensen P, Hunter T. Oncogenic kinase signaling. Nature,2001,411(355-365).
    [29]Hunter T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine:Its role in cell growth and disease. Phil. Trans. R. Soc. Lond. B,1998,353:583-605
    [30]Kolibaba KS, Druker BJ. Protein tyrosine kinases and cancer. Biochim BioPhys. Acta.1997, 1333(3):F217-F248.
    [31]Biscardi JS, Tice DA, Parsons SJ. c-Src, receptor tyrosine kinases, and human cancer. Adv Cancer Res.1999,76:61-119.
    [32]Calabrese EJ. Hormesis:changing views of the dose response, a personal account of the history and current status. Mutation Reserch,2002,511:181-189.
    [33]Chapman PM. The implications of hormesis to ecotoxicology and ecological risk assessment. Human & Experimental Toxicology,2001,20(10):499-505.
    [34]Calabrese EJ, Baldwin LA. Hormesis and high risk groups. Reg Toxicol Pharmacol.2002, 35:414-428.
    [35]Calabrese EJ, Baldwin LA. A quantitatively-based methodology for the evaluation of chemical hormesis [J]. Hum Ecol Risk Assess.1997,3(4):545-554
    [36]Calabrese EJ, Baldwin LA, Hormesis as a default parameter in RfD derivation [J]. Hum.Exp.Toxicol.1998,17,444-7
    [37]Edward J. Calabrese and Linda A. Baldwin. Hormesis:U-shaped dose responses and their centrality in toxicology [J]. TRENDS in Pharmacological Sciences,2001,22 (6):285-291
    [38]Calabrese EJ. The maturing of hormesis as a credible dose-response model. Nonlinearity in Biology, Toxicology, and Medicine,2003,1(3):319-343.
    [39]Hossain K, Akhand AA, Kato M, et al. Arsenite induces apoptosis of murine T lymphocytes through membrane raft-linked signaling for activation of c-Jun ami no-terminal kinase. J. The Journal of Immunology.2000,165:4290-4297.
    [40]Chen W, Martindale JL, Holbrook NJ, et al. Tumor Promoter arsenite activates extracellular signal-regulated kinase through a signaling Pathway mediated by epidermal growth factor receptor and Shc. Mol. Cell. Biol.1998,18 (9):5178-5188.
    [41]Wu W, Graves LM, Jaspers I, et al. Activation of the EGF receptor signaling pathway in human airway epithelial cells exposed to metals. Am. J. Physiol.1999,277(5):L924-L931.
    [42]Calabrese E J. Hormesis:from marginalization to main stream. A case for Hormesis as the default dose-response model in risk assessment. Toxicology Applied Pharmacology,2004, 197:125-136.
    [43]Roberts SM. Another view of the scientific foundations of hormesis. Critic Rev Toxicology, 2001,31(4-5):631-635.
    [44]Calabrese E J, Cook RR. Hormesis:how it could affect the risk assessment process. Hum Exp Toxicol,2005,24(5):265-270.
    [45]USEPA. An examination of EPA risk assessment principles and practices. Staff paper prepared for the US EPA by members of the risk assessment task force. Washington DC: Office of the Science Advisor,2004:53.
    [46]Thayer KA, Melnick R, Burns K, et al. Fundamental flaws of hormesis for public health decisions. Environ Health Perspect,2005,113(10):1271-1276.
    [47]Waalkes MP, Rehm S, Devor DE. The effects of continuous testosterone exposure on spontaneous and cadmium-induced tumors in the male Fischer (F344/NCr) rat:loss of testicular response. Toxicology Applied Pharmacology,1997,142(1):40-46.
    [48]Giesy JP. Hormesis-does it have relevance at the population, community or ecosystem levels of organization? Hum Exp Toxicol,2001,20(10):517-520.
    [49]Calabrese EJ. Expanding the reference dose concept to incorporate and optimize beneficial effects while preventing toxic responses from nonessential toxicants. Regul Toxicol Pharmacol,1996,24(1):S68-S75.
    [50]Calabrese EJ, Baldwin LA. Can the concept of hormesis be generalized to carcinogens? Regul Toxicol Pharmacol,1998,28:230-241.
    [51]Sielken R, Stevenson D. Some implications for quantitative risk assessment if hormesis exists. Hum Exp Toxicol,1998,17(5):259-262.
    [52]Rattan SIS. Anti-ageing strategies:prevention or therapy? EMBO Reports.2005,6(S1):S25-S29
    [53]Calabrese EJ, Baldwin, L A. Agonist concentration gradients as a generalizable regulatory implementation strategy [J]. Crit Rev. Toxicol.2001,31(4-5):471-473.
    [54]Edward J Calabrese, Linda A Baldwin. Toxicology rethinks its central belief [J]. Nature, 2003,421(13):691-692.
    [55]Townsend CO. The correlation of growth under the influence of injuries [J]. Ann. Bot.1897, 11(114),509-32
    [56]Edward J. Calabrese, Baldwin LA. Applications of hormesis in toxicology, risk assessment and Chemotherapeutics. TRENDS in Pharmacological Sciences 2002,23 (7):331-337
    [57]Calabrese EJ. Overcompensation stimulation:a mechanism for hormetic effects [J]. Crit. Rev. Toxicol.2001,31 (4-5):425-470
    [58]Calabrese EJ, Baldwin LA. eds Scientific foundations of hormesis [J]. Crit. Rev. Toxicol. 2001,31(4-5):351-352.
    [59]Calabrese EJ, Baldwin LA. Defining hormesis[J]. Hum. Exp. Toxicol,2002,21 (2):91-97
    [60]Wiedman SJ, Appleby AP. Plant growth stimulation by sublethal concentrations of herbicides [J]. Weed Res.1972,12:65-74.
    [61]Fujiwara Y, Takahashi T, Yoshioka T. Changes in egg size of the diamondback moth Phutella xylostella (Lepidoptera:Yponomeutidae) treated with fenvalerate at sublethal doses and viability of the eggs [J]. Appl. Entomol. Zoology,2002,37(1):103-109.
    [62]Zanuncio TV, Guedes. Permethrin-induced hormesis on the predator Supputius cincticeps (Heteroptera:Pentatomidae)[J]. Crop Protect,2003,22(7):941-947
    [63]Duke, Stephen O. Nina Cedergreen, Edivaldo D. Velini, et al. Hormesis:is it an important factor in herbicide use and allelopathy? [J]. Outlooks on Pest Management,2006, 17(1)29-33.
    [64]Renn O. Implications of the hormesis hypothesis for risk perception and communication[J]. Hum Exp Toxicol.1998,17(8),431-438.
    [65]吕中明,张伟浩,杨永年.用四噻唑蓝比色法测定氯化镉的细胞毒性.卫生毒理学杂志,1997,11(2):106-108
    [66]李龙,陈家堃.现代毒理学实验技术原理与方法.北京.化学工业出版社,2006:195-198,29-35.
    [67]贺宇江,田虹.单细胞碱性微板电泳-种应用前景广泛的诱变检测技术.癌变·畸变·突变,1996,8(1):60-64.
    [68]朱志良,庄志雄,黄钰,等.单细胞凝胶电泳图像分析系统的研制及应用.中华劳动卫生职业病杂志,2001,19(4):298-300.
    [69]朱志良,庄志雄,黎建明,等.矩类迁移比作为单细胞凝胶电泳指标的研究.毒理学杂志,2005,19(2):117-119.
    [70]张桥.卫生毒理学基础.北京.人民卫生出版社,2001:252-254
    [71]李玉林,叶诸榕,龚寿良,等.分子病理学.北京:人民卫生出版社,2002.
    [72]Martin JV, Bilgin NM, Iba MM. Influence of oxygenated fuel additives and their metabolites on the binding of a convulsant ligand of the gamma-aminobutyric acid (A)(GABA(A)) receptor in rat brain membrane preparations[J]. Toxicol Lett,2002,129(3):219-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700