用户名: 密码: 验证码:
乳状液膜和支撑液膜体系手性分离苯丙氨酸的传质机理与模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药物对映体的液膜手性分离及其传质模型的研究为当前最热门的课题之一。本文阐述了手性药物的基本概念,综述了目前主要的手性拆分方法及其研究进展,对液膜手性拆分过程的传质机理及模型研究现状和意义进行了阐述。对乳状液膜和中空纤维支撑液膜手性分离苯丙氨酸对映体的传质机理及模型进行了比较详细的研究与探讨,主要研究内容如下:
     研究了以N-癸基-L-羟基脯氨酸和铜离子配合物为手性载体,Span-80为表面活性剂,煤油为溶剂的乳状液膜体系手性分离苯丙氨酸对映体的分离性能。考察了各因素等对选择性分离性能的影响,从而确定了合适的萃取条件为:表面活性剂Span-80和有机溶剂煤油体积比8:92;苯丙氨酸外消旋体浓度为1.0 mmol/L;手性萃取途径是从外水相到内水相;外水相pH 4.8;Cu~(2+)浓度5 mmol/L。
     通过对乳状液膜手性分离过程中传质机理的研究以及各影响因素的分析,得到了可以分析和预测乳状液膜手性拆分过程传质的反应-扩散模型,该模型同时考虑了外水相边界层的扩散阻力和手性对映体与载体的反应阻力。外水相苯丙氨酸对映体的浓度以及分离因子α表示为:
     当外相对映体浓度远小于液膜相手性载体浓度时,该手性传质过程中外相边界层的扩散为控制步骤,利用数据拟合得到了外水相与液膜相界面边界层扩散的传质系数k_e。
     将常数表达式中引入表观分配系数的概念,可以得到改进的反应-扩散模型,改进后模型对外水相D-苯丙氨酸对映体的浓度分率的模拟值与实验结果的最大偏差大大减小,由20.4%降为10.7%。模型中的常数表达式为:
     研究了在中空纤维液膜器中采用N-癸基-L-羟基脯氨酸和铜离子配合物为手性载体的支撑液膜体系手性拆分苯丙氨酸对映体。通过对比不同的流体流速对手性分离过程的影响,选择最佳的流体流速为3mm/s。研究了对映体浓度和分离因子与缓冲溶液pH的变化关系,选择缓冲溶液的pH为4.8。
     从总传质阻力的角度出发,通过对中空纤维支撑液膜过程中各影响因素的分析及理论推导,得到了接收相中各手性对映体浓度以及手性药物拆分过程分离因子对时间的总传质阻力模型。该数学模型同时考虑了手性对映体在料液相、接收相与液膜相间的分配行为和料液相边界层、接收相边界层以及支撑液膜相的扩散阻力。接收相中苯丙氨酸对映体的浓度及分离因子α可表示为:
     利用实验结果,拟合得到了模型中的未知参数,为以后进一步的研究及实验装置的放大提供了参考。
     进一步研究了中空纤维支撑液膜手性分离过程的传质机理,得到了描述接收相中各手性对映体浓度、液膜相中各手性对映体浓度以及手性药物拆分过程分离因子对时间变化的偏微分方程组。通过对某些条件的假设与简化处理,得到了偏微分方程组的解析解,即反应一扩散模型。该数学模型同时考虑了手性对映体与载体的反应和料液相边界层、接收相边界层以及支撑液膜相的扩散阻力。接收相和中空纤维支撑液膜相中苯丙氨酸对映体的浓度以及手性分离因子可表示为:
     在描述手性对映体与载体反应的各因素中,药物对映体与载体反应的正向速率常数,反向速率常数对浓度和分离因子的影响很小,故可以考虑将其忽略,从而得到该过程的快速反应--扩散模型。模型中的常数λ_j表达式化为:
     将反应-扩散模型中手性对映体与载体的反应行为用手性对映体在料液相、接收相与液膜相间的表观分配行为取代,同样可以得到描述接收相中各手性对映体浓度、液膜相中各手性对映体浓度以及手性药物拆分过程分离因子对时间变化的偏微分方程组,其解析解为分配-扩散模型。该数学模型同时考虑了手性对映体的表观分配行为和料液相边界层、接收相边界层以及支撑液膜相的扩散阻力。接收相和支撑液膜中苯丙氨酸对映体的浓度以及手性分离因子可表示为:
     将所得到的传质模型对手性拆分过程中苯丙氨酸对映体的浓度和分离因子进行预测。结果表明:模型的模拟结果与实验数据能够很好地吻合;总传质阻力模型、反应-扩散模型与快速反应-扩散模型以及分配-扩散模型的模拟结果基本一致。对料液相与接收相的pH值,边界层传质阻力以及液膜传质阻力等因素对手性拆分过程中对映体的浓度和分离因子的影响进行分析。结果表明这些模型能够应用于苯丙氨酸对映体的中空纤维支撑液膜手性拆分过程中各操作条件的优化。
Research on the enantioseparation of drug enantiomers using liquid membrane and its mass transfer model has a great interesting potential. The basic concepts about chiral drug were expatiated, the importance of the determination of chiral drug was analyzed, and the present main methods of chiral separation and their research progress, the importance of the principle and mathematical model of mass transfer process were reviewed in this paper. The principle and mathematical model of mass transfer process using the chiral emulsion liquid membrane and the chiral supported liquid membrane were investigated and discussed in detail, the main content and results can be summarized as following:
     Chiral extraction of phenylalanine enantiomers in the emulsion liquid membranes system using copper (Ⅱ) N-decyl-L-hydroxyproline as chiral selector, Span-80 as surfactant and kerosene as organic solvent was studied. The effects of initial phenylalanine concentration, the direction of chiral extraction, the volume ratio of organic solvent and surfactant, the pH gradient from external to internal phase and the pH of external aqueous phase, on performances of selective extraction, were discussed, respectively. Consequently, appropriate extractive conditions were established: 8:92 (v/v) Span-80: kerosene; Initial concentration of phynelalanine is 1.0 mmol/L; External phase pH 4.8; Copper concentration 5 mmol/L; Chiral extraction from external phase to internal phase.
     The reaction-diffusion model was developed to analyze the concentration of enantiomers and the separation factor of the enantioseparation process of chiral emulsion liquid membrane by studying the principle and some factors of mass transfer process. The mass transfer resistance of boundary layer in outer aqueous phase and the interfacial chemical reactions at the liquid membrane interfaces were taken into account in the model equations. The concentration of D-phenylalanine in the external phase and the separation factorαcan be expressed as:
     The diffusion of boundary layer in outer aqueous phase is the controlled process while the concentration of D-phenylalanine in the external phase far less than the concentration of chiral carrier in the emulsion liquid membrane phase, then the diffusion coefficient k_e of boundary layer in outer aqueous phase can be achieved by data fitting.
     The improved reaction-diffusion model was developed by substituting the partition coefficient and the reaction equilibrium constant for the observed partition coefficient in the expression ofζ_j. The deviation of the computational results from the experimental data decreased from 20.4% to 10.7%. The expression ofζ_j can be deduced as:
     Resolution of racemicα-cyclohexyl-mandelic acid containing copper(Ⅱ) N-dodeecyl-(L)-hydroxyproline (CuN2) as a chiral carrier across hollow fiber supported liquid membrane was carried out successfully. The effects of velocity of feed phase and stripping phase and the pH of external and internal aqueous phase, on performances of selective extraction, were discussed, respectively. Consequently, appropriate extractive conditions which the velocity of feed phase and stripping phase is 3 mm/s and the pH of external and internal aqueous phase is 4.8 were established.
     The overall mass transfer model was developed to analyze the concentration of enantiomers in the stripping phase and the separation factor of the enantioseparation process. The observed partition coefficient between the feed phase and the membrane phase, the stripping phase and the membrane phase, mass transfer resistance of boundary layer in strip phase inside the hollow fibers, boundary layer in feed phase and mass transfer resistance of the membrane phase were taken into account in the model equations. The concentration of enantiomers in the stripping phase and the separation factorαcan be expressed as:
     Using the experimental results of the enantiomers concentration, several parameters of the proposed model had been achieved by nonlinear fitting method.
     The mechanism of mass transfer process across hollow fiber supported liquid membranes containing chiral carrier was investigated more detailedly. Partial differential equations describing the concentrations of enantiomers in the stripping phase, concentrations of enantiomers in the membrane phase and the separation factor of the enantioseparation process were deduced. The reaction-diffusion model has been developed according to some hypothesis and predigestion. The mass transfer resistance of boundary layer in the strip phase inside the hollow fiber and boundary layer in the feed phase, the diffusion in the membrane phase and the interfacial chemical reactions at the liquid membrane interfaces are taken into account comprehensively. The concentration of enantiomers in the stripping phase and the hollow fiber supported liquid membrane and the enantioseparation factor can be expressed as:
     The forward reaction rate and the backward reaction rate could be ignored because they have little influence on the concentrations of phenylalanine enantiomers and the separation factor of the enantioseparation process by the prediction of the reaction-diffusion model, so the rapid reaction-diffusion model of the enantioseparation process can be deduced. The expression ofλ_j can be deduced as:
     Substituting the reaction behavior between the enantiomers and the chiral carrier of the reaction-diffusion model for the observed partition behavior between the feed phase, the stripping phase and the liquid membrane phase, partial differential equations describing the concentrations of enantiomes in the stripping phase and the membrane phase were also deduced. The partition-diffusion model has been developed according to some hypothesis and predigestion. The observed partition coefficient between the feed phase and the membrane phase, the stripping phase and the membrane phase, mass transfer resistance of boundary layer in strip phase inside the hollow fibers, boundary layer in feed phase and the diffusion in the membrane phase are taken into account in the model equations. The concentration of enantiomers in the stripping phase and the hollow fiber supported liquid membrane and the enantioseparation factor can be expressed as:
     The mathematical model was used to predict the enantiomers concentration of (D/L)-phenylalanine and the separation factor of the enantioseparation process. The results indicate that the computational results of mathematical models were in good agreement with the experimental data and that the computational results of the overall mass transfer model, the reaction-diffusion model and the partition-diffusion model are almost the same. The effects of some factors such as pH of the feed phase and the stripping phase, mass transfer resistance of boundary layer and mass transfer resistance of liquid membrane on the enantiomers concentration of (D/L)-phenylalanine and the separation factor of the enantioseparation process were analyzed by those models. The results show that those mathematical models can be easily used to predict the concentration of (D/L)-phenylalanine and the separation factor of the hollow fiber liquid membrane resolution process.
引文
[1] Persson Bengt-Arne, Andersson Shalini. Unusual effects of separation conditions on chiral separations. J Chromatogr A, 2001, 906(1-2): 195-203
    [2] 叶秀林.立体化学.北京:北京大学出版社,1999:
    [3] 张永敏.物理有机化学.上海:上海科学技术出版社,2001:
    [4] 向小莉,袁黎明.手性化合物.化学教育,2003,(5):3-6
    [5] 尤田耙.手性化合物的现代研究方法.合肥:中国科学技术大学出版社,1993:
    [6] 李良智,史大永,刘均洪等.手性药物的构型与药效活性.青岛化工学院学报,2001,22(2):124-126
    [7] Aimar Christian, Audit Christine O. Thalidomide-induced teratogenesis in the newt (Pleurodeles waltl.). Biol Cell, 1995, 84 (1-2): 114
    [8] Matthews S James, Mc Coy Christopher. Thalidomide: A review of approved and investigational uses. Clin Ther, 2003,25 (2): 342-395
    [9] Trent D Stephens, Carolyn J W Bunde, Bradley J Fillmore. Mechanism of Action in Thalidomide Teratogenesis. Biochem Pharmacol, 2000, 59(): 1489-1499
    [10] Anon. FDA's Policy Statement for the Development of New Stereoisomeric Drugs. U S FDA Guidance, Washington D C, 1992
    [11] Israel Agranat, Hava Caner. Intellectual property and chirality of drugs. DDT,1999,4 (7): 313-321
    [12] 黄蓓,杨立荣,吴坚平.手性拆分技术的工业应用.化工进展,2002,21(36):375-380
    [13] 杨振云,张贻亮.手性工业.中国医药工业杂志,1996,27(10):469-475
    [14] 李雷鸣,高连勋,丁孟贤.对映体制备性分离方法的进展.化学通报,1997,(2):12-21,16
    [15] G Subramanian. Chiral Separation Techniques: A Practical Approach-Second completely revised and updated edition, New York: Wiley, 2001:
    [16] Shalini Andersson, Stig G Allenmark. Preparative chiral chromatographic resolution of enantiomers in drug discovery. J Biochem Biophys Methods, 2002, 54():11-23
    [17] 蒋约珥.液膜手性分离技术.精细与专用化学品,2002,14():16-18
    [18] 杨晓弟,马小玲,方俊.手性药物的化学拆分-形成和分离非对映体拆分法.阜阳师范学院学报(自然科学版),1994,22(2):24-29
    [19] 邓金根,迟永祥,朱槿等.化学拆分的新方法研究.合成化学,1999,7(4):340-345
    [20] El Gihani, Moharem T, Williams Jonathan M J. Dynamic kinetic resolution. Curr Opin Chem Biol, 1999, 3 (1): 11-15
    [21] Allen J V, Williams J M J. Dynamic kinetic resolution with enzyme and palladium combinations. Tetrahed Lett, 1996,37(11): 1859-1862
    [22] 段钢,陈家镛.光学活性物质的工业生产方法.化工进展,1995,(2):32-36
    [23] Jeffrey H, Lutje Spelberg, Lixia Tang, et al. Enzymatic dynamic kinetic resolution of epihalohydrins. Tetrahedron Asymmetry, 2004, (15): 1095-1102
    [24] S Joly, Mangalam S Nair. Studies on the enzymatic kinetic resolution of β-hydroxy ketones. J Mol Catal B-Enzym, 2003, 22(3-4): 151-160
    [25] 王道宾,何炳林.用固定化氨基酰化酶拆分DL-对氯苯丙氨酸.化学通报,1994,(1):50-52
    [26] 徐诗伟,徐清.酶法拆分腈类制备光学活性2-芳基丙酸.微生物学通报,1995,22(3):184-187
    [27] 辛嘉英,李树本,徐毅,等.膜反应器中萘普生甲酯的动态拆分.分子催化,2001,15(1):42-46
    [28] Zdenek Deyl, Ivan Miksik, F Tagliaro. Advances in capillary electrophoresis.Forensic Sci Int, 1998,92(): 89-124
    [29] 何丽一.平面色谱方法及应用.北京:化学工业出版社,2000:
    [30] 朱全红,邓芹英,曾陇梅.手性药物的薄层色谱拆分.药物分析杂志,2002,22(2):155-158
    [31] 郝爱友,童林荟,张复升.β-环糊精为TLC流动相添加剂分离对映体.化学通报,1996,(4):16-18
    [32] 徐国珍.薄层色谱分离酪胺酸异构体研究.食品研究与开发,1998,19(2):22-24
    [33] 朱全红,马果东,邓芹英.薄层色谱用苯基异氰酸酯衍生化的β-环糊精键合固定相的制备及应用.分析化学,2000,28(3):349-352
    [34] Yoko Nagata, Teruhito Iida, Masaki Sakai. Enantiomeric resolution of amino acids by thin-layer chromatography. J Mol Catal B-Enzym, 2001,20(12): 105-108
    [35] Mathur V, Kanoongo N, Mathur R, et al. Resolution of amino acid racemates on borate-gelled guaran-impregnated silica gel thin-layer chromatographic plates. J Chromatogr A, 1994, 685 (2): 360-364
    [36] Bhushan R, Parshad Vineeta. Resolution of (±)-ibuprofen using l-arginine-impregnated thin-layer chromatography. J Chromatogr A, 1996, 721 (2):369-372
    [37] 周志强,张红雁,于兆文,等.高效液相色谱法对外消旋药物的拆分.分析测试技术与仪器,1998,4(1):1-7
    [38] Francoise Bressolle, Michel Audran, Tuyet-Nga Pham, et al. Cyclodextrins and enantiomeric separations of drugs by liquid chromatography and capillary electrophoresis: basic principles and new developments. J Chromatogr B, 1996,687(1-2): 303-336
    [39] Patrick Piras, Christian Roussel, Johanna Pierrot-Sanders. Reviewing mobile phases used on Chiralcel OD through an application of data mining tools to CHIRBASE database. J Chromatogr A, 2001, 906(1-2): 443-458
    [40] 曾苏.高效液相色谱手性试剂衍生化法及其应用.色谱,1994,12(6):406-410
    [41] Masayuki Nakano, Seiichi Kawahara. High-performance liquid chromatographic method for simultaneous determination of enantiomers of 5-dimethylsulphamoyl-6,7-dichloro-2,3-dihydrobenzofuran-2-carboxylic acid and its N-monodemethyl metabolite in monkey plasma and urine after chiral derivatization. J Chromatogr B, 1991, 564 (1): 235-241
    [42] Eugene J Eisenberg, Weslia R Patterson, G Clare Kahn. High-performance liquid chromatographic method for the simultaneous determination of the enantiomers of carvedilol and its O-desmethyl metabolite in human plasma after chiral derivatization. J Chromatogr B, 1989,493(1-2): 105-115
    [41] Poul Vibholm Petersen, Jens Ekelund, Lars Olsen, et al. Chiral separations of β-blocking drug substances using the Pirkle-type α-Burke chiral stationary phase. J Chromatogr A, 1997, 757 (1-2): 65-71
    [42] Timothy J Ward, Alton B Farris Ⅲ. Chiral separations using the macrocyclic antibiotics-a review. J Chromatogr A, 2001, 906 (1-2): 73-89
    [43] M C Millot. Separation of drug enantiomers by liquid chromatography and capillary electrophoresis using immobilized proteins as chiral selectors. J Chromatogr B, 2003, 797(1-2): 131-159
    [44] Britt-Marie Eriksson, Anita Wallin. Evaluation of the liquid-chromatographic resolution of indenoindolic racemic compounds on three protein-based chiral stationary phases. J Pharmaceut Biomed Anal, 1995, 13 (4-5): 551-561
    [45] Hassan Y Aboul-Enein. High-performance liquid chromatographic enantioseparation of drugs containing multiple chiral centers on polysaccharide-type chiral stationary phases. J Chromatogr A, 2001, 906(1-2): 185-193
    [46] Irma Kartozia, Martial Kanyonyo, Thierry Happaerts, et al. Comparative HPLC enantioseparation of new chiral hydantoin derivatives on three different polysaccharide type chiral stationary phases. J Pharmaceut Biomed Anal, 2002, 27(3-4): 457-465
    [47] Eto S, Noda H, Noda A. Chiral separation of barbiturates and hydantoins by reversed-phase high performance liquid chromatography using a 25 or 50mm short ODS catridge column via β-cyclodextrin inclusion complexes. J Chromatogr, 1992,579(1-2): 253-258
    [48] Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies. Angew Chem Int Ed Engl, 1995,34():1812-1816
    [49] 陈德英,陈玉英,胡育筑.HP-β-环糊精对盐酸舍曲林异构体手性选择包合和色谱保留行为影响的研究.色谱,2004,22(6):595-600
    [50] X X Han, T L Yang, Y Lin. Separation of chiral furan derivatives by liquid chromatography using cyclodextrin-based chiral stationary phases. J Chromatogr A, 2005,1063(1-2): 111-120
    [51] Fang Wang, Morteza G Khaledi. Enantiomeric separations by nonaqueous capillary electrophoresis. J Chromatogr A, 2000, 875(1-2): 277-293
    [52] Salvatore Fanali. Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors. J Chromatogr A, 2000, 875(1-2): 89-122
    [53] Bezhan Chankvetadze, Gottfried Blaschke. Enantioseparations in capillary electromigration techniques-recent developments and future trends. J Chromatogr A,2001, 906(3-4): 309-363
    [54] 曾苏,章立,沈向忠,等.光学异构体的气相色谱拆分法.色谱,1994,12(4):259-262
    [55] Volker Schurig. Chiral separations using gas chromatography. Trends Anal Chem, 2002, 21(9-10): 647-661
    [56] Volker Schurig. Separation of enantiomers by gas chromatography. J Chromatogr A, 2001, 906(): 275-299
    [57] Carlo Bicchi, Angela D'Amato, Patrizia Rubiolo. Cyclodextrin derivatives as chiral selectors for direct gas chromatographic separation of enantiomers in the essential oil, aroma and flavour fields. J Chromatogr A, 1999, 843(): 99-121
    [58] Petersson P, Markides K E. Chiral separation performed by supercritical fluid chromatography. J Chromatogr A, 1994, 666(3-4): 381-394
    [59] 马剑茵.手性药物的色谱分离方法.中国医药工业杂志,2002,33(4):199-202
    [60] Vladimir P, Stjepan M, Krunoslav K. Uber die Enantiomer entrennung durch verteilung zwischen fussigen Phasen. Helv Chim Acta, 1983, 66(225): 2279-2284
    [61] Vladimir P, Stjepan M, Uberdie Stereoselektivitat der 9, 9-spirobifluoren-kronenathergegen-aminoalkoholen. Helv Chim Acta, 1983,66 (224):2274-2278
    [62] Vladimir P, Martin E. Lipophilic tartaric acid esters as enantioselective ionophores. Angew Chem Int Ed, 1989,28():1147-1152
    [63] 岑仲浙,蔡水洪.手性溶剂萃取麻黄碱差向异构体.化工学报,2000,51(3):418-420
    [64] Toshifumi T, Rikizo H, Takenori T. Enantioselective solvent extraction of neutral DL-Amino acids in two-phase systems containing N-n-alkyl-L-proline derivative and Copper (Ⅱ) ion. Anal Chem, 1984, 56():1152-1155
    [65] Ding H B, Carr P W, Cussler E L. Racemic leucine separation by hollow-fiber extraction. AIChE J, 1992, 38 (10): 1493-1498
    [66] Jerome L, Catherine G G, Sonya T H, et al. Efficient enantioselective extraction tris (diimine) ruthenium (Ⅱ) complexs by chiral lipophilic trisphat anions. Angew Chem Int Ed, 2000, 39 (20): 3695-3697
    [67] Jurgen K, Charles A H. Modelling multiple chemical equilibria in chiral partition systems. Chem Eng Sci, 2001, 56(): 5853-5864
    [68] 唐课文,周春山.疏水性L-酒石酸酯萃取分离氧氟沙星对映体.化工学报,2003,54(12):1729-1732
    [69] 唐课文,周春山.L-酒石酸酯立体选择性萃取分离扁桃酸对映体.应用化学,2003,20(11):1108-1110
    [70] 唐课文,周春山.疏水性L-酒石酸酯立体选择性萃取分离氯噻酮对映体.分析化学,2004,32(1):63-66
    [71] 谢锐,褚良银,曲剑波.手性拆分膜的研究与应用新进展.现代化工,2004,24(4):15-18
    [72] Alan Gabelman, Sun-Tak Hwang. Hollow fiber membrane contactors. J Membrane Sci, 1999, 159(): 61-106
    [73] Aoki Toshiki, Ohshima Makoto, Shinohara Ken-ichi, et al. Enantioselective permeation of racemates through a solid (+)-poly{2-[dimethyl (10-pinanyl) silyl]norbornadiene} membrane. Polymer, 1997, 38 (1): 235-238
    [74] Thoelen C, De bruyn M, Theunissen E, et al. Membranes based on poly(γ-methyl-l-glutamate): synthesis, characterization and use in chiral separations. J Membrane Sci, 2001,186 (2): 153-163
    [75] Lee N H, Frank C W. Separation of chiral molecules using polypeptide-modified poly (vinylidene fluoride) membranes. Polymer, 2002,43 (23): 6255-6262
    [76] Randon J, Gamier F, Rocca J L, et al. Optimization of the enantiomeric separation of tryptophan analogs by membrane processes. J Membrane Sci, 2000, 175(1): 111-117
    [77] 龙远德,黄天宝.β-环糊精聚合物膜拆分氨基酸对映体.高等学校化学学报,1999,20(6):884-886
    [78] Yoshikawa Masakazu, Yonetani Kyoichi. Molecularly imprinted polymeric membranes with oligopeptide tweezers for optical resolution. Polymer, 2002, 149(1-3): 287-292
    [79] Tomar Jyoti, Awasthy Anubhuti, Sharma Uma. Synthetic ionophores for the separation of Li+, Na+, K+, Ca2+, Mg2+ metal ions using liquid membrane technology. Desalination, 2008,232 (1-3): 102-109
    [80] Mendiguchia Carolina, Garcia-Vargas Manuel, Moreno Carlos. Screening of dissolved heavy metals (Cu, Zn, Mn, Al, Cd, Ni, Pb) in seawater by a liquid-membrane-ICP-MS approach. Anal Bio Chem, 2008,391 (3): 773-778
    [81] Zolgharnein Javad, Shahrjerdi Akram, Asanjarani Neda, Azimi Gholamhassan. Highly efficient and selective transport of Au(Ⅲ) through a bulk liquid membrane using potassium-dicyclohexyl-18-crown-6 as carrier. Sep Sci Technol, 2008, 43(11-12): 3119-3133
    [82] Talekar Manqesh S, Mahajani Vijaykumar V. E-waste management via Liquid Emulsion Membrane (LEM) process: Enrichment of Cd(Ⅱ) from lean solution. Ind Eng Chem Res, 2008,47 (15): 5568-5575
    [83] Ansari S A, Mohapatra P K, Raut D R, Adya V C, Thulasidas S K, Manchanda V K. Separation of Am(Ⅲ) and trivalent lanthanides from simulated high-level waste using a hollow fiber-supported liquid membrane. Sep Purif Technol, 2008, 63 (1):239-242
    [84] Lee Jinqyi, Lee Hian Kee, Rasmussen Knut E, Pedersen-Bjerqaard Stiq.Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: A review. Analytica Chimica Acta, 2008, 624 (2): 253-268
    [85] Bara Jason E, Hatakeyama Evan S, Gabriel Christopher J, Zenq Xiaohui,Lessmann Sonja, Gin Douqlas L, Noble Richard D. Synthesis and light gas separations in cross-linked gemini room temperature ionic liquid polymer membranes. J Membrane Sci, 2008, 316 (1-2): 186-191
    [86] Shalyqin M G., Roizard D, Favre E, Teplyakov V V. CO2 transfer in an aqueous potassium carbonate liquid membrane module with dense polymeric supporting layers:Influence of concentration, circulation flow rate and temperature. J Membrane Sci 2008, 318 (1-2): 317-326
    [87] Park Hyun Hee, Deshwal Bal Raj, Kim In Won, Lee Hyung Keun. Absorption of SO2 from flue gas using PVDF hollow fiber membranes in a gas-liquid contactor. J Membrane Sci, 2008, 319 (1-2): 29-37
    [88] Mohaqheqhi. E, Alemzadeh I, Vossouqhi M. Study and optimization of amino acid extraction by emulsion liquid membrane. Sep Sci Technol, 2008, 43 (11-12):3075-3096
    [89] Martak Jan, Schlosser Stefan, Vlckova Silvia. Pertraction of lactic acid through supported liquid membranes containing phosphonium ionic liquid. J Membrane Sci,2008, 318 (1-2): 298-310
    [90] Shah Faiz Ullah, Barri Thaer, Jonsson Jan Ake, Skoq Kerstin. Determination of heterocyclic aromatic amines in human urine by using hollow-fibre supported liquid membrane extraction and liquid chromatography-ultraviolet detection system. J Chromatogr B, 2008, 870 (2): 203-208
    [91] Leon Gerardo, Guzman Maria Amelia. Facilitated transport of copper through bulk liquid membranes containing different carriers: compared kinetic study.Desalination, 2008,223 (1-3): 330-336
    [92] Keurentjes J T F, Nabuurs L J W M, Vegter E A. Liquid membrane technology for the separation of racemic mixtures. J Membrane Sci, 1996, 113 (2): 351-360
    [93] Coelhoso I M, Cardoso M M, Viegas R M C, Crespo J P S G. Transport mechanisms and modelling in liquid membrane contactors. Sep Purif Technol, 2000,19 (3): 183-197
    [94] Stella Daniela, Calzado Juan A, Girelli Anna Maria, Canepari Silvia, Bucci Remo,Palet Cristina, Valiente Manuel. Liquid membranes for chiral separations-Application of cinchonidine as a chiral carrier. J Sep Sci 2002,25 (4): 229-238
    [95] Oshima Tatsuya, Inoue Katsutoshi, Furusaki Shintaro, Goto Masahiro. Liquid membrane transport of amino acids by a calix[6]arene carboxylic acid derivative. J Membrane Sci, 2003,217 (1-2): 87-97
    [96] Ferreira Q, Coelhoso I M, Ramalhete N, Marques H M C. Resolution of racemic propranolol in liquid membranes containing TA-β-cyclodextrin. Sep Sci Technol,2006,41(16): 3553-3568
    [97] Hadik P(?)ter, Szab(?) Lujza-P, Nagy Endre. D, L-lactic acid and D, L-alanine enantioseparation by membrane process. Desalination, 2002,148 (1-3): 193-198
    [98] Jiao Fei-Peng, Huang Ke-Long, Peng Xia-Hui, Zhao Xue-Hui, Yu Jin-Gang.Hollow fiber liquid-supported membrane technology for enantioseparation of racemic salbutamol by combinatorial chiral selectors. J Cent South Univ T (English Edition),2006,13 (1): 39-43
    [99] Clark Jason D, Han Binbing, Bhown Abhoyjit S, Wickramasinghe S Ranil.Amino acid resolution using supported liquid membranes. Sep Purif Technol, 2005,42 (3): 201-211
    [100] Gumi Tania, Valiente Manuel, Palet Cristina. Characterization of a Supported Liquid Membrane Based System for the Enantioseparation of SR-Propranolol by N-Hexadecyl-L-hydroxyproline. Sep Sci Technol, 2004, 39 (2): 431-447
    [101] Dzygiel Pawel, Wieczorek Piotr, Kafarski Pawel. Supported liquid membrane separation of amine and amino acid derivatives with chiral esters of phosphoric acids as carriers. J Membrane Sci, 2003,26 (11): 1050-1056
    [102] Maier Norbert M, Franco Pilar, Lindner Wolfgang. Separation of enantiomers: needs, challenges, perspectives. J Chromatogr A, 1996, 906 (1): 3-33
    [103] 汪家鼎,陈家镛.溶剂萃取手册.北京:化学工业出版社,2000:995-1009
    [104] Dzygiel Pawel, Wieczorek Piotr. Extraction of amino acids with emulsion liquid membranes using industrial surfactants and lecithin as stabilizers. J Membrane Sci,2000,172 (2): 223-232
    [105] Pickering P J, Chaudhuri J B. Enantioselective extraction of (d)-phenylalanine from racemic (d/1-phenylalanine using chiral emulsion liquid membranes. J Membrane Sci, 1997,127 (2): 115-130
    [106] 彭霞辉,黄可龙,于金刚,赵学辉.乳状液膜手性萃取分离氧氟沙星外消旋体.中南大学学报(自然科学版),2006,37(3):527-531
    [107] Krieg Henning M, Lotter Jeanette, Keizer Klaas, et al. Enrichment of chlorthalidone enantiomers by an aqueous bulk liquid membrane containing β-cyclodextrin. J Membrane Sci, 2000,167 (1): 33-45
    [108] Coelhoso I M, Cardoso M M, Viegas R M C, et al. Transport mechanisms and modelling in liquid membrane contactors. Sep Purif Technol, 2000,19 (3):183-197
    [109] 胡卫国,焦飞鹏,黄可龙,王蔚玲.厚体液膜拆分普络奈尔外消旋体及其动力学研究.高等学校化学学报,2008,29(2):328-331
    [110] N M Kocherginsky, Qian Yang. Big Carrousel mechanism of copper removal from ammoniacal wastewater through supported liquid membrane. Sep Purif Technol,2007, 54(1): 104.
    [111] Jin-Feng Peng, Jing-Fu Liu, Xia-Lin Hu, Gui-Bin Jiang. Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography, J Chromatogr A,2007, 1139(2): 165.
    [112] Ueberfeld Jorn, Parthasarathy Nalini, Zbinden Hugo, Gisin Nicolas, Buffle Jacques. Coupling fiber optics to a permeation liquid membrane for heavy metal sensor development, Anal Chem, 2002, 74 (3): 664.
    [113] I Van de Voorde, L Pinoy, RF De Ketelaere. Recovery of nickel ions by supported liquid membrane (SLM) extraction, J Membrane Sci, 2004,234 (1-2): 11.
    [114] 朱澄云,莫凤奎,王晶等.乳状液膜法提取赖氨酸.膜科学与技术,2002,22(2):57-60
    [115] 陈丙义,靳惠霞,李全民等.以正十六胺为载体的乳状液膜迁移分离镉(Ⅱ).应用化学,2004,21(1):54-57
    [116] 朱澄云,莫凤奎,朱金良等.乳状液膜法从发酵液中提取青霉素的研究.膜科学与技术,2000,20(6):55-61
    [117] 朱治方,朱澄云,莫凤奎等.乳状液膜法提取亮氨酸.膜科学与技术,1999,19(4):56-58
    [118] 焦飞鹏,黄可龙,彭霞辉,于金刚,赵学辉等.手性配体交换乳状液膜选择性萃取扁桃酸对映体.膜科学与技术,2006,26(2):75-78
    [119] T Takeuchi, R Horikawa, T Tarimara. Enantioselective solvent extraction of neutral D/L-amino acids in two-phase systems containing N-n-alkyl-proline derivatves and copper (Ⅱ) ion. Anal Chem, 1984, 56(): 1152-1160
    [120] Sharma Anshu, Goswami AN, Rawat BS. Drop size prediction in liquid membrane systems, J Membrane Sci, 1991, 60 (2-3): 261-274.
    [121] P J Pickering, J B Chaudhuri. Equilibrium and kinetic studies of the enantioselective complexation of (D/L)-phenylalanine with copper (Ⅱ) N-decyl-(L)-hydroxyproline, Chem Eng Sci, 1996, 52 (3): 377.
    [122] 唐课文,周春山,蒋新宇.支载液膜双有机相萃取分离氧氟沙星外消旋体. 中国科学B, 2002,36 (6): 491-496
    [123] Fkeurentjes J T, Nabuurs L J W M, vegter E A. Liquid membrane technology for the separation of racemic mixtures. J Membrane Sci, 1996 113: 351-360.
    [124] Jinki Jeong, Jae-Chun Lee, Wonbaek Kim. Modeling on the Counteractive Facilitated Transport of Co in Co-Ni Mixtures by Hollow-Fiber Supported Liquid Membrane, Sep Sci Technol, 2003, 38 (3): 499.
    [125] Jae-Chun Lee, Jinki Jeong, Kang-Sup Chung, Mikio Kobayashi. Active facilitated transport and separation of Co in Co-Ni sulfate solution by hollow fiber supported liquid membrane containing HEH(EHP). Sep Sci Technol, 2004, 39 (7):1519.
    [126] N S Rathore,J V Sonawane, S K Gupta, Anil Kumar Pabby, A K Venugopalan, R D Changrani, P K Dey. Separation of uranium and plutonium from aqueous acidic wastes using a hollow fiber supported liquid membrane, Sep Sci Technol, 2005,39 (6): 1295.
    [127] Bipan Bansal, Xiao Dong Chen, Md Monwar Hossain. Transport of lithium through a supported liquid membrane of LIX54 and TOPO in kerosene, Chem Eng Process, 2005,44 (12): 1327-1336
    [128] R C Reid, J M Prausnitz, T K Sherwood. The properties of Gases and Liquids, 3rd edn. New York: McGraw-Hill, 1977:.
    [129] Ortiz, Galan B, Roman F S, Ibanez R. Kinetics of separating multicomponent mixtures by nondispersive solvent extraction:Ni and Cd. AIChE J, 2001, 47(4):895-905
    [130] Gawronski R, Wrzesinska B. Kinetics of solvent extraction in hollow-fiber contactors. J Membrane Sci, 2000,168 (1-2): 213-222
    [131] Jasmin W, Vicki Ch. Shell-side mass transfer performance of randomly packed hollow fiber modules. J Membrane Sci, 2000,172 (1-2): 59-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700