梯度结构硬质合金残余热应力的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究主要采用有限元方法分析了梯度结构硬质合金在制备过程中形成的宏观热应力,同时对于均质硬质合金内部微观热应力采用有限元方法中的单胞模型进行分析,并与Eshelby理论模型进行比较。为了验证模型和分析结果的正确性,利用SEM、XRD、EDAX等现代材料分析与测试手段,对梯度结构硬质合金的成分、组织结构与性能之间的关系进行了必要研究,得到以下结论:
     (1)通过渗碳制备了具有三层结构的梯度硬质合金,外层贫钴,中间层富钴,芯部为渗碳前的名义钴含量,该合金在硬度和韧性方面均优于常规的均质硬质合金。
     (2)通过定义弹性约束因子,运用修正的混合律,建立了梯度硬质合金的弹性本构关系,即得到了简化的体积比相关的复合材料杨氏模量表达式,同时采用简单的混合律得到两相复合材料热膨胀系数和泊松比表达式,该模型可以通过有限元软件MSC.Marc2005实现,计算表明:渗碳后硬质合金在温度从800℃下降到室温时,材料表面产生了压应力,在富钴区产生了拉应力,要使表面存在500-700MPa的压应力以阻止热裂纹产生,合金内钴的名义含量应在15wt.%以上。
     (3)采用材料常数随温度变化的弹塑性本构关系有限元单胞模型分析了均质硬质合金内部残余热应力。计算表明,增强相钴相内最大拉应力为1400MPa,基体碳化钨相内最大压应力为1064MPa;当钴相为非理想的椭球形状(这里为圆柱形)时,钴相内部有较大的等效应力(565MPa),且在应力集中处有塑性流动。
     (4)通过引入塑性约束因子,建立两相梯度复合材料弹塑性变形的本构关系,较之以前研究者们建立的塑性本构,该塑性本构模型的屈服准则是温度相关和体积比相关的,并可以通过有限元软件MSC.Marc2005实现,更符合客观实际,计算表明:相对于完全弹性,渗碳后硬质合金引入塑性变形时,最大轴向应力为750MPa,而最大等效应力为600MPa,下降了70%。
     (5)对于脱氮后得到的梯度硬质合金,采用同样方法,建立了弹塑性本构关系,分析制备时产生的宏观残余热应力,计算得出:表面两相区存在拉应力,向内逐渐过度到压应力,两相区最大拉应力为140MPa,而芯部最大压应力为120MPa。
     (6)采用有限元方法分析了均质基体和梯度基体单层和多层复合涂层内部宏观残余热应力。TiC/Al_2O_3/TiN复合涂层温度从800℃下降到0℃时,在TiN涂层内以拉应力为主,在硬质合金基体内以压应力为主。另外,TiC涂层内,表现为拉应力,Al_2O_3涂层为一应力低谷,夹在两个高峰之间。
     (7)采用XRD方法测试了渗碳后梯度硬质合金表面宏观残余应力,与有限元计算有较好的符合。
In the present study, macrostress in functionally graded cemented carbides was investigated by finite element method, yet microstress in homogeneous cemented carbides was analyzed by finite element unit model and compared to the results of Eshelby theoretical model. To prove the accuracy of the models, the relationship between properties and microstructure for graded cemented carbides were studied by using SEM, XRD and EDAX, following conclusions are obtained:
     (1) Graded cemented carbides have been developed by pre-sintering carbon-deficient compacts and subsequently carburizing. The three-layered structure of the cemented carbides was formed after the carburization, the outer layer which is WC rich, the middle layer which is Co-rich and the inner layer which is as-sintered microstructure. The graded structure has significant advance compared to conventional cemented carbides.
     (2) The elastic constitutive relations of graded cemented carbides were developed by the definition of elastic constraint factor and modified mixed law, namely the formation of Young's modulus for composite materials according to simple volume fraction and the thermal expansion coefficient and passion ratio were obtained by simple mixed law. The model can be achieved by the finite element software of MSC. Marc2005. The calculated results show when the temperature drops from initial stress-free temperature of 800°C to room temperature, compressive stress generates in the surface zone and tensile stress in the Co-rich zone, and the nominal cobalt content should be above 15wt.% in order to obtain compressive stress of 500-700MPa to prevent thermal cracking occurrences.
     (3) The microstress in homogenous cemented carbides was ananlyzed by finite element unit cell model which their material parameters are varied with temperature. The calculated results show that the maximum tensile stress in the reinforcement phase Co is 1400 MPa, the maximum compressive stress in matrix WC is 1064 MPa; When the Co phase is non-ideal ellipsoidal shape (here is cylindrical shape), there is large equivalent stress (565 MPa) and plastic flow generates in stress concentration place.
     (4) The constitutive relation of elastoplastic deformation of functionally graded cemented carbides is developed by introducing plastic constraint factor. Compared to other researchers not long ago, the constitutive relation is temperature-dependent, volume fraction dependent and could be achieved in the finite element sofeware of MSC.Marc2005, having more objective rationality. The calculated results show in elastoplastic deformation (compared to elastic-only), the maximum axial stress is 750MPa and the maximum equivalent stress is 600MPa, namely decreases by 70%.
     (5) The elastoplastic constitutive relation for cemented carbides after denitriding was developed also by constraint factors. The calculated results show tensile stresses generates in the surface two-phase zone and gradually transfer to compressive stress in the inner layer; the maximum hydrostatic tensile stress in the two-phase zone is 140MPa and the hydrostatic compressive stress in the centre is 120MPa.
     (6) The thermal residual macrostress for monolayer and multilayer of homogenous and graded cemented carbides were investigated also by finite element method. When the temperature drops from 800℃to 0℃for TiC/Al_2O_3/TiN composite coating with cemented carbide substrate, there is tensile stress in TiN coating. There is compressive stress in cemented carbide substrate. Furthermore there is tensile stress in TiC coating and the stress in Al_2O_3 coating is smaller than other coating layers.
     (7) The macrostress in the surface zone of cemented carbides after carburing was measured by XRD method and the results have a good agreement with the calculated results.
引文
[1]Kenneth J.A Brookes.World Directory and Handbook of Hardmetals and Hard Materials.sixth edition,EN48DN UK:International carbide date,1996,9.
    [2]株洲硬质合金厂.硬质合金的生产.北京,冶金工业出版社,1973,1-5.
    [3]Schr(o|¨)ter K.Hard-Metal Composition.U.S.Patent 1721416,Assigned to General Electric Company,July 16,1929(filed April 26,1926).
    [4]Fischer UKR,Hartzell ET,Akerman JGH.Cemented carbide body with a binder phase gradient and method of make the same.US Patent 4820482,April 11,1989.
    [5]Brookes,K.J.A.Metal Powder Report.2001,56(11):24-27.
    [6]李沐山.国内外硬质合金工艺发展现状与预测.1994年全国粉末冶金学术会议论文集(黄佰云主编),北京,地震出版社,1994,40-46.
    [7]李沐山.世界硬质合金工业现状与发展趋势.世界有色金属,1993(10):2-7。
    [8]Akerman JGH,Fischer UKR,Hartzell ET.Cemented carbide body with extra tough behavior.US Patent 5279901,January 18,1994.
    [9]Fischer UKR,Hartzell ET,Akerman JGH.Cemented carbide body used preferably for rock drilling and mineral cutting.US Patent 4743515,May 10,1998.
    [10]PM special feature.Metal Powder Report,1998(47),48.
    [11]Lisovsky AF.On the imbibition of metal melts by sintered carbides,powder metallurgy international,1987,19:18-21.
    [12]Lisovsky AF.Composition and Structure of Cemented Carbides Produced by MMT Process.Powder Metallurgy,1991,23:157-161.
    [13]羊建高.梯度结构硬质合金的制备原理及梯度形成机理研究.博士学位论文,2004:97-98。
    [14]Konyashin IY.Improvements in reliability and serviceability of cemented carbides with wear-resistant coatings.Materials science and engineering,1997,A230:213-220.
    [15]Konyashin IY.PVD/CVD technology for coating cemented carbides.Surface and coatings technology,1995,71:277-283.
    [16]Knotek O,Loftier F,Kramer G.Cutting performance of multicomponent and multiplayer coatings on cemented carbides and cermets for interrupted cut maching.Int.J.of refractory & hard materials,1996,14:195-202.
    [17]Narasirnhan K,Boppana SP,Bhat DG.Development of a graded TiCN coating for cemented carbide cutting tools a design approach.Wear,1995,188:123-129
    [18] Ekroth M, Frykholm R, Lindholm M, et al. Gradient zones in WC-Ti(C,N)-Co-based cemented carbides: experimental study and computer simulations. Acta Materialia, 2000,48 (9): 2177-2185.
    [19] Zackrisson J, Rolander U, Weinl G. Microstructure of the surface zone in a heat-treated cermet material. Int. J. Refr. Met. Hard Mater., 1998,16: 315-322
    [20] Gustafson P, Akeson L. Formation of stratified binder phase gradients . Mater.Sci. and Eng., 1996,A209: 192-196.
    [21] Argyris JH. Energy Theorems and Structural Analysis. Butterworth, 1960 (reprinted from Aircraft Eng., 1954-55)
    [22] Clough RW, The finite element in plane stress analysis. Proc.2nd A.S.C.E. Conf.on Electronic Computation, Pittsburgh, Pa., Sept. 1960.
    [23] Turner MJ, Clough RW, Martin HC, Topp LJ. Stiffness and deflection analysis of complex structures. J. Aero.Sci., 1973,23: 805-823
    [24] Besseling JF. Non-linear analysis of structures by the finite element method as a supplement to a linear analysis. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 173-194.
    [25] Strutt JW (Lord Rayleigh). On the theory of resonance. Trans. Roy. Soc. (London), 1970, A161: 77-118.
    [26] Ritz W. Uber eine neue Methode zur Losung gewissen Variations-Probleme der mathematischen Physik. J.Reine angew, Math. 1909,135: 1-61.
    [27] Galezeno CB. Series solution of some problems of elastic equilibrium of rods and plates (Russian). Vestn. Inzh. Tech., 1915,19: 897-908.
    [28] Palmqvist S. Jern. Ann, 1967, 151.
    [29] Exner H E. Trans metal Soc. AME. Inst of min and metal Eng. 1969, 245(4).
    [30] Bernard R. J Annaler Jern. 1963,147.
    [31] Sharma RA, Johnson I. Phase diagrams for the systems MGCL//2-MGF//2, CACL//2- MGF//2, AND NACL-MGF//2. J Amer Ceram, 1969, 52(11): 612-619.
    [32] Katharina Buss. High temperature deformation mechanisms of cemented carbides and cermets. Doctor thesis, 2004: 69-70.
    [33] Jonsson H. Deformation in a cemented carbide tool bit buring the turning of steel. Schweissen und Schneiden, 1972,20(1), 39-62.
    [34] Julfikar Haider, Mahfujur Rahman, Brian Corcoran, et al. Simulation of thermal stress in magnetron sputtered thin coating by finite element analysis. Journal of Materials Processing Technology,2005,168:36-41.
    [35]Suresh S,Mortensen A.功能梯度材料基础--制备及热机械行为.李守新等译 国防工业出版社 2000,1.
    [36]Bilek MMM,McKenzie D.R.A comprehensive model of stress generation and relief processes in thin films deposited with energetic ions.Surface and Coating Technology,2006,200:4345-4354.
    [37]Gunnars J,Alahelisten A.Thermal stresses in diamond coatings and their influence on coating wear and failure.Surface and Coating Technology.1996,80(3):303-312.
    [38]Gunnars J,Alahelisten A.Thermal stresses in diamond coatings and their influence on coating wear and failure.Surf.Coat.Technol.1996,80:303-312.
    [39]Julfikar Haider,Mahfujur Rahman,Brian Corcoran,et al.Simulation of thermal stress in magnetron sputtered thin coating by finite element analysis.Journal of Materials Processing Technology,2005,168:36-41.
    [40]Ekroth M,Frykholm R,Lindholm M,et al.Gradient zone in WC±Ti(C,N)±Co-based cemented carbides:Experimental study and computer simulations.Acta mater.2000,48:2177-2185.
    [41]Larsson C,Oden M.X-ray diffraction determination of residual stress in functionally graded WC-Co composites.International Journal of Refractory Metals & Hard Materials,2004,22:177-184.
    [42]Rohde J,Schmauder S,Bao G.Mesoscopic modelling of gradient zones in hardmetals.Computational Materials Science.1996,7:63-67
    [43]Nordgren A,1huvander A.Residual stresses in CVD coated cemented carbide with structural gradient,Report No.IM-2682(Swedish Institute for Metals Research,Stockholm,1990.
    [44]Ravichandran KS.Thermal residual stresses in a Functionally Graded Material system.Mater.Sci.Eng.,1995,A201:269-278.
    [45]Ravichandran KS.Elastic properties of two phase composites.J.Am.Ceram.Sot,1994,77:1178-1184.
    [46]Hashin Z,Shtrikman S.A variational approach to the theory of the elastic behavior of multiphase systems.J.Mech.Phy.Solids,1963 11:127-140.
    [47]Schapery RA.Thermal expansion coefficients of composite materials.J.Comp.Mater.,1968,2:380-404.
    [48]Timoshenko S P,Goodier JN.Theory of Elasticity,3rd edn,McGraw-Hill,1970: 433-439.
    [49]Frost HJ,Ashby MF.Deformation Mechanism Maps,Pergamon,New York,1982.
    [50]Touloukian YS.Thermophysical Properties of High Temperature Solid Materials.Vol.Ⅰ-6,Macmillan,1967.
    [51]Weissenbekt E,Pettermanns HE,Suresh S.Elasto-plastic deformation of compositionally graded metal-ceramic composites.Acta.mater.1997,45(8):3401-3417.
    [52]Ming Dao,Pei Gu,Akhilesh Maewal,et al.A micromechanical study of residual stresses in functionally graded materials.Acta.mater.1997,45(8):3265-3276.
    [53]王自强,段祝平.塑性细观力学.北京,科学出版社,1995:144-149.
    [54]Mura T.Micromechanics of Defects in Solids.Martinus Nijhoff Publishers,1987.
    [55]Eshelby JD.The determination of the elastic field of an ellipsoidal inclusion and related problem.Proc R Soc Lond,1957,A241:376-396.
    [56]Kinoshita N,Mura T.Elastic fields of inclusions in anisotropic media.Phys.Stat.Sol.(a),1971,5:759-768.
    [57]Staley WG,Brindley GW.Development of noncrystalline material in subsolidus reactions between silica and alumina.J.Am.Ceram.Soc,1969,52(11):616-619.
    [58]Clyne TW,Withers PJ.An Introduction to Metal Matrix Composites.Cambridge University Press,Cambridge,1993.
    [59]Lee M,Gilmore R S.Single crystal elastic constants of tungsten monocarbide.Journal of Materials Science,1982,17:2657-2663.
    [60]Toth L E.Transition Metal Carbides and Nitrides.New York and London,Academic Press,1971.
    [61]株洲硬质合金厂.国外硬质合金.北京,冶金工业出版社,1976:482-483.
    [62]周玉,武高辉.材料分析测试技术.哈尔滨,哈尔滨工业大学出版社,1998:96-97.
    [63]张武装,刘咏,羊建高,黄伯云.正碳烧结法制备WC-Co梯度结构硬质合金的研究.稀有金属与硬质合金,2004,32(1):32-36。
    [64]Drugan WJ,Willis JR.A micromechanical-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites.J Mech Phys of Solids,1996,44:497-524.
    [65]Hershey AV.The elasticity of an isotropic aggregate of anisotropic cubic crystals. J Appl Mech, 1954,21:236
    [66] Kroner E. Statistical continuum mechanics. CISM Lecture Notes, Springer, 1972 92-93.
    [67] Hutchinson JW, Elastic-plastic behaviour of polycrystalline metals and composites. Proc Roy Soc, 1970, A319: 247-272.
    [68] Hill R. Continuum micro-mechanics of elastoplastic polycrastals. J Mech Phys Solids, 1965,13:89-101.
    [69] Tanaka K, Mori T. Note on volume integrals of the elastic field around anelliosoida inclusions. J Elasticity, 1972, 2: 199-200.
    [70] Kinoshita N, Mura T. Elastic fields of inclusions in anisotropic media. Phys Stat Sol (a), 1971,5:759-768.
    [71] Tvergaard V. Analysis of tensile properties for a whisker-reinforced metal-matrix composite. Acta Metallurgica et Materialia, 1990, 38(2): 185-194.
    [72] Bao G, Hutchinson JW, McMeeking RM. Particle reinforcement of ductile matrices against plastic flow and creep. Acta Metallurgica et Materialia. 1991, 39(8): 1871 -1882.
    [73] Christensen RM. Mechanics of composite materials. Wiley, 1979, xiv+348.
    [74] Hashin Z. Analysis of composite materials. Journal of Applied Mechanics, 1983, 50(3): 481-505.
    [75] Nakamura T, Suresh S. Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites. Acta Metallurgica et Materialia, 1993, 41(6): 1665-1681.
    [76] Dragone TL (Stanford Univ), Nix WD. Geometric factors affecting the internal stress distribution and high temperature creep rate of discontinuous fiber reinforced metals. Acta Metallurgica et Materialia, 1990, 38(10): 1941-1953.
    [77] Shen Y-L, Finot M, Needleman A, Suresh S. Effective elastic response of two-phase composites. Acta metal mater, 1994,42(1): 77-97.
    [78] Hull D, Clyne TW. An Introduction to Composite Materials. Cambridge University Press, 2nd Edition, 1996.
    [79] Chawla KK. Introduction to Composites. Springer-Verlag, 1992.
    [80] Clyne TW, Withers PJ. An Introduction to Metal-Matrix Composites. Cambridge University Press, 199.
    [81] Mura T. Micromechanics of Defects in Solids. Nijhoff, 1987.
    [82] Taya M, Arsenault RJ. Metal-Matrix Composites. Thermomechanical Behavior, Pergatnon Press, 1989.
    [83] Kelly A. Strong Solids. Oxford University Press, 1966.
    [84] Suresh S, Mortensen A, Needleman A. Fundamentals of Metal-Matrix Composites. Butterworth-Heinemann, 1993.
    [85] Embury JD, Duncan JL. Formability of dual-phase steels. Journal of Metals, 1982,34(3): 24-29.
    [86] Freund LB. Stress distribution and curvature of a general compositionally graded semiconductor layer. J Crystal Growth, 1993, 132(1-2): 341-344.
    [87] Voigt W. Lehrbuch der Kristallphysik, Teubner, Leipzig, 1928.
    [88] Reuss A. Berechnung der filessgrenze yon mischkristallen auf grund der plastizitatbedingng fur einkristallen. Z Angew Math Mech, 1929,9:49-58.
    [89] Hill R. Elastic Properties of Reinforced Solids; Some Theoretical Principles. J Mech Phys Solids, 1963,11: 357-372.
    [90] Halpin JC, Polley HW. Observations on the Fracture of Viscoelastic Bodies. Journal of Composite Materials, 1967,1(1): 64-81.
    [91] Tomota Y, Kukori K, Mori T, Tamura I. Tensile deformation of two-ductile-phase alloys: flow curves of alpha - gamma Fe-Cr-Ni alloys. Materiaux et Techniques, 1976, 24(1): 85-94.
    [92] Cho K, Gurland J. Law and mixtures applied to the plastics deformation of two-phase alloys of coarse microstructures. Metallurgical Transactions A (Physical Metallurgy and Materials Science), 1988,19(8): 2027-2040.
    [93] Williamson RL, Rabin BH, Drake JT. Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces, Part I. Model description and geometrical effects. J Appl Phys, 1993, 74:1310-1320.
    [94] Drake JT, Williamson RL, Rabin RH. Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part II. Interface optimization for residual stress reduction. J Appl Phys, 1993, 74: 1321-1336.
    [95] Giannakopoulos AE, Suresh S, Finot M, Olsson M. Elastoplastic analysis of thermal cycling: Layered materials with compositional gradients. Acta Metall. Mater, 1995,43:1335-1354.
    [96] Finot M, Suresh S, Bull C, Sampath S. Curvature changes during thermal cycling of a compositionally graded Ni-A12O3 multi-layered material. Mater Sci Eng, 1996, 205A: 59-71.
    [97] Fischmeister H, Karlsson B. Plasticity of two-phase materials with a coarse microstructure.Z Metallkunde,1977,68:311-327.
    [98]Ankem S,Margolion H.A rationalization of stress-strain behavior of two-ductile phase alloys.Metall.Trans.A,1986,17A:2209-2223.
    [99]Drucker DC.Hight-Strength material.New York,1965.
    [100]Fischmeister HF,Schmauder S,Sigl LS.Finite element modeling of crack propagation in WC-Co hard metals.Materials Science & Enginering A,1988,105-106:305-311.
    [101]王零森.特种陶瓷.长沙,中南工业大学出版社,1994,35-36.
    [102]李震夏,黄玉祥,阮允翔等.世界有色金属材料成分与性能书册.北京,冶金工业出版社,1992:1340-1341.
    [103]Christman T,Needleman A,Suresh S.An experimental and numerical study of deformation in metal-ceramic composites.Acta Metallurgica,1989,37(11):3029-3050.
    [104]Tvergaard V.On localization in ductile materials containing spherical voids International Journal of Fracture.1982,18(4):237-252.
    [105]Tvergaard V.Effect of thickness inhomogeneities in internally pressurized elastic-plastic spherical shells.Journal of the Mechanics and Physics of Solids,1976,24(5):291-304.
    [106]刘寿荣.WC-Co硬质合金中的相.硬质合金,1997,14(4):198-203
    [107]A.F.Lisovsky.On the Imbibition of Metal Metlts by Sintered Carbides.Powder Metallurgy International,1987,19(5):18-21.
    [108]周建华,孙宝琦.钴相梯度分布硬质合金的研究,稀有金属与硬质合金,2002,30(2):11-14
    [109]杨维才,吴恩熙.真空渗碳制备双相梯度硬质合金的研究.硬质合金,1999,16(3):154-158.
    [110]孙绪新.梯度硬质合金的研制.粉末冶金技术,1998,16(4):262-266.
    [111]Tamura I,Tomota Y,Ozura H.Strength and ductility of Fe-Ni-C alloys composed of austenite and martensite with various strength.Institute of Metals (London),Monograph and Report Series,1973,1(3):611-615.
    [112]Williamson RL,Rabin BH,Drake JT.Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces.Part Ⅰ.Model description and geometrical effects.Journal of Applied Physics,1993,74(2):1310-1320.
    [113]Williamson RL,Rabin BH,Drake JT.Finite element analysis of thermal residual stresses at graded ceramicmetal interfaces.Part Ⅱ.interface optimization for residual stress reduction. Journal of Applied Physics, 74(2): 1321-1326.
    [114] Toshio Nomura, Hideki Moriguchi, Keiichi Tsuda, et al. Material design method for the functionally graded cemented carbide tool. Int J Refract Met H, 1999,17: 397-404.
    [115] Leyendecker T, Lemmer O, Jurgens A, et al. Industrial application of crystalline diamond-coated tools. Surface & Coatings Technology, 1991,48 (3): 253-260.
    [116] Murakawa M, Takaeuchi S. Mechanical applications of thin and thick diamond films. Surface & Coatings Technology, 1991,49 (1-3): 359-365.
    [117] Yaskiki T, Nakemura T, Fujimori N, Nakai T. Practical properties of chemical vapour deposition diamond tools. Surface & Coatings Technology, 1992, 52 (1): 81-85.
    [118] Inspector A, Bauer C E, Oles E J. Superhard coating for metal cutting applications. Surface & Coatings Technology, 1994,68/69: 359-368.
    [119] Kanda K, Takehana S, Yoshida S, Watanabe R, Takano S. Ando H. Application of diamond-coated cutting tools. Surface & Coatings Technology, 1995, 73 (1-2): 115-120.
    [120] Amirhaghi S, Reehal H. S, Wood R J K, Wheeler D W. Diamond coating on tungsten carbide and their erosive wear properties. Surface & Coatings Technology, 2001,135 (2-3): 126-138.
    [121] Inspector A, Oles E J, Bauer C E. Theory and practice in diamond coated metal-cutting tools. International Journal of Refractory Metals & Hard Materials, 1997,15 (1-3): 49-56.
    [122] Itoh H, Osaki T, Iwahara H, Sakamoto H. Microstructural control of boundary region between CVD diamond film and cemented carbide substrate. Journal of Materals Science, 1994, 29 (5): 1404-1410.
    [123] CHEN Li, WU En-xil , WANG She-quan , et al. Formation mechanism of surface ductile zones in WC2Ti( C, N)2Co gradient cemented carbide. Journal of Central South University of Technology, 2006, 37 (4): 650-654.
    [124] YIN Fei, CHEN Kang-hua, WAN She-quan. Influences of functionally graded structure of substrate on performance of coated cemented carbide. Journal of Central South University of Technology, 2005, 36 (5): 776-779.
    [125] Liu Y, Wang H B, Yang J G. Formation mechanism of cobalt-gradient structure in WC-Co hard alloy. Journal of Materials Science, 2004, 39: 4397-4399.
    [126]Tang W,Wang Q,Wang S,Lu F.Adhenent diamond coating on cemented carbide substrates with different cobalt contents.Diamond and Related Materials,2001,10(9-10):1700-1704.
    [127]Schwarzkopf M.Kinetik der Bildung von Mischkarbidfreien Randzonen auf Hartmetallen.PhD thesis.Montanuniversit(a|¨)t Leoben;1987.
    [128]Ekroth M,Frykholm R,Lindholm M,et al.Gradient zones in WC-Ti(C,N)-based cemented carbides:experimental study and computer simulations.Acta mater,2000,48:2177-2185.
    [129]Frykholm R,Ekroth M,Jansson B,et al.Effect of cubic phase composition on gradient zone formation in cemented carbides.Int J Refractory Hard Mater,2001,19:527-538.
    [130]Engstrom A,Hoglund L,Agren J.Computer simulation of diffusion in multiphase systems.Metall Mater Trans A,1994,25:1127-1134.
    [131]Engstr(o|¨)m A,A° gren J.Simulation of diffusion in multicomponent and multiphase systems.Defect Diffus Forum,1997,142:677-682.
    [132]Frykholm R,Ekrothb M,Jansson B,et al.A new labyrinth factor for modelling the effect of binder volume fraction on gradient sintering of cemented carbides.Acta Materialia,2003,51:1115-1121
    [133]姚学祥,张桂香.超硬材料刀具研究现状和趋势.硬质合金,2001,18(3):182-186.
    [134]叶伟昌,严卫平,叶毅.涂层硬质合金刀具的发展与应用.硬质合金,1998,15(1):54-57.
    [135]王宝友,崔丽华.涂层刀具的涂层材料、涂层方法及发展方向.机械,2002,29(4):63-65.
    [136]叶伟昌,谷勇霞.涂层刀具的发展与应用.机械制造,1997,5:4-6.
    [137]杨仕娥,马丙现,李会军,等.金刚石涂层刀具的研究进展.真空与低温,2001,7(2):68-71.
    [138]Matsumoto S,Sato Y,Kamo M.Vapour deposition of diamond particles from methane.J Appl Phys,1982,24(4):183-189.
    [139]于映,陈跃.NiCr溅射薄膜内应力的研究.真空电子技术,2000,5:9-12.
    [140]曲恒磊,周廉,魏海荣,赵永庆.TiAl基合金的氧化分层.中国有色金属学报,2001,11(3):398-403.
    [141]Bckel W.Internal stresses.J.Vac Sci Technol,1969,6(4):606-610.
    [142] Springer RW, Hoffman RW. Growth effects on stress in nickel films. J Vac Sci Techno 1,1973,1:238-243.
    [143] MakiK, Nakajima Y, Kinosita K. Stress in vacuum-deposited film s of Ag, Au and Cu. J Vac Sci Technol, 1969,6: 622-628.
    [144] Bilek MMM, Mckenzie DR. A comprehensive model of stress generation and relief processes in thin films deposited with energetic ions. Surface and coating technology, 2006,200: 4345-4354.
    [145] Gunnars J, Alahelisten A. Thermal stresses in diamond coatings and their influence on coating wear and failure. Surface & coatings technology, 1996, 80:303-312.
    [146] Rohde J, Schmauder S, GBao. Mesoscopic modeling of gradient zones in hardmetals. Comp mater Sci, 1996, 7: 63-67.
    [147] Walter Lengauer, Klaus Dreyer. Functionally graded hardmetals. J Alloy Compd, 2002,338:194-212.
    [148] Paggett JW, Drake EF, Krawitz A D, et al. Residual stress and stress gradients in polycrystalline diamond compacts. International Journal of refractory metals & hard materials, 2002,20: 187-194.
    [149] Bull SJ, Bhat DG, Staia M H. Properties and performance of commercial TiCN coating.Part I: coating architecture and hardness modeling. Surface and Coating Technology, 2003, 163-164: 499-506.
    [150] SHEN YL, FINOT M, NEEDLEMAN A, et al. Effective plastic response of two-phase composites. Acta metal mater, 1995, 43(4): 1701 -1722.
    [151] Julfikar Haider, Mahfujur Rahman, Brian Corcoran, et al. Simulation of thermal stress in magnetron sputtered thin coating by finite element analysis. Journal of Materials Processing Technology, 2005, 168: 36-41.
    [152] Gunnars J, Alahelisten A. Thermal stresses in diamond coatings and their influence on coating wear and failure. Surface and Coating Technology, 1996, 80:303-312.
    [153] Tonshoff HK, Hillmann-Apmann H. Diamond tools for wire sawing metal components. Diamond and Related Materials. 2002,11: 742-748.
    [154] Tonshoff HK, Hillmann-Apmann H, Asche J. Diamond tools in stone and civil engineering industry: cutting principles, wear and applications. Diamond and Related Materials, 2002, 11: 736-741.
    [155] Hanada K, Matsuzaki K, Sano T. Thermal properties of diamond particle-dispersed Cu composites. Journal of Materials Processing Technology, 2004,153-154: 514-518.
    [156] Ishikawa Tadao, Kida Tomohisa, Kamiya Osamu, Moritoki Hitoshi. Grinding ability of tungsten-coated diamond composite sintered tool. Nippon Kikai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1997, 63(616): 2694-2700.
    [157] Breval Else, Cheng Jiping, Aqrawal Dinesh K. Development of titanium coatings on particulate diamond. J Amer Ceramic Society, 2000, 83 (8): 2106-2108.
    [158] Wang YH, Zang JB, Wang MZ, et al. Properties and applications of Ti-coated diamond grits. Journal of Materials Processing Technology, 2002, 129: 369-372.
    [159] Narasimhan K, Boppana P S, Deepak G Development of a graded TiCN coating for cemented carbide cutting tools-a design approach. Wear, 1995, 188: 123-129.
    [160] Su Y L, Yao S H, Wei C S, Wu C T. Analysis and design of a WC milling cutter with TiCN coating. Wear, 1998,21: 559-566.
    [161] Urscheler R, Nygard S, Koponen J, et al. High speed coating concepts - Strengths and weaknesses. Professional Papermaking, 2008, 5(1): 65-69.
    [162] Michael Bromark, Mats Larsson, Per Hedenqvist, Hogmark S. Wear of PVD Ti/TiN multilayer coatings. Surf Coat Technol, 1997, 90: 217-223.
    [163] Dahan I, Admon U, Frage N, et al. The development of a functionally graded TiC-Ti multilayer hard coating. Surf Coat Technol, 2001, 137: 111-115.
    [164] Bull SJ, Bhat DG, Staia MH. Properties and performance of commercial TiCN coatings. Part 1: coating architecture and hardness modeling. Surf Coat Technol, 2003,163-164:499-506.
    [165] Casas B, Lousa A, Calderon J, et al. Mechanical strength improvement of electrical discharge machined cemented carbides through PVD (TiN, TiA1N) coatings. Thin Solid Films, 2004,447-448: 258-263.
    [ 166] Castanho J M, Vieira M T. Effect of ductile layers in mechanical behavior of TiAIN thin coatings. J Mater Process Tech, 2003, 143-144: 352-357.
    [167] Ding-Fwu Lii, Jow-Lay Huang, Ming-Hung Lin. The effect of TiAl interlayer on PVD TiAIN films. Surf Coat Technol, 1998, 99: 197-202.
    [168] Morant C, Prieto P, Forn A, et al. Hardness enhancement by CN/TiCN/TiN multilayer films.Surf Coat Technol,2004,180-181:512-518.
    [169]Manaila R,Devengi A,Biro D,et al.Multilayer TiAlN coatings with composition gradient.Surf Coat Teehnol,2002,151-152:21-25.
    [170]Cawalho NJM,Zoestbergen E,Kooi BJ,Hosson De.Stress analysis and microstructure of PVD monolayer TiN and multilayer TiN/(Ti,Al)N coating.Thin Solid Films,2003,429:179-189.
    [171]劳技军,胡晓萍,虞晓江,等.AlN在AlN/VN纳米多层膜中的相转变及其薄膜力学性能的影响.物理学报,2003,52(9):2259-2263.
    [172]毛延发,唐为国,刘金良,等.TiAlN纳米复合涂层的技术进展.工具技术,2006,40(4):20-24.
    [173]基费尔R,施华尔茨柯普弗P.硬质合金(王少刚译).北京,中国工业出版社,1963,337-338.
    [174]章德铭,陈贵清,韩杰才,孟松鹤.γ-TiAl基高温结构材料研究评述.中国稀土学报,2005,23:163-167.
    [175]Jinolal PC,Santhanam AT,Schleinkofer U,Shuster A F.Performance of PVD TiN,TiCN,and TiAlN coated cemented carbide tools in turning.International Journal of Refractory Metals & Hard materials,1999,17:163-170.
    [176]Bielawski M.Residual stress control in TiN/Si coatings deposited by unbalanced magnetron sputtering.Surf Coat Technol,2006,200:3987-3995.
    [177]Leiste H,Dambacher U,Ulrich S,Holleck H.Microstructure and properties of multilayer coatings with covalent bonded hard materials.Surface and Coatings Technology,1999,116-119:313-320.
    [178]Subramanian C,Stratford KN,Wilks T P,Ward LP.On the design of coating systems.Journal of Materials Processing Technology,1996,56:385-397.
    [179]Mills B.Recent developments in cutting tool materials.Journal of Materials Processing Technology,1996,56:16-23.
    [180]Sahin Y,Sur G..The effect of Al O,TiN and Ti(C,N) based CVD coatings on tool wear in machining metal matrix composites.Surface and Coatings Technology,2004,179:349-355.
    [181]Sahin Y.The effects of various multilayer ceramic coatings on the wear of carbide cutting tools when machining metal matrix composites.Surface &Coatings Technology,2005,199:112-117.
    [182]Beake BD,Ranganathan N.An investigation of the nanoindentation and nano/micro-tribological behaviour of monolayer,bilayer and trilayer coatings on cemented carbide.Materials Science and Engineering,2006,A 423:46-51.
    [183]Tsuchiya Shin.Effect of Interfacial Layers on Stress Depth Profile of Ceramic Layers for Cutting Tools.Industrial Applications,2005,8:125-126.
    [184]Bull S J,Bhat D G,Staia M H.Properties and performance of commercial TiCN coatings.Part 1:coating architecture and hardness modeling.Surface and Coatings Technology,2003,163-164:499-506.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700