6063铝合金三价铬化学转化膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯铝表面上有一薄层天然氧化物,它在空气及水中一般比较稳定,但纯铝缺乏某些必要的机械及物理性能,如较高的强度系数、弹性模量、抗蠕变强度、抗疲劳强度、硬度、耐磨性及较低的热膨胀系数。因此,纯铝在作为工程材料应用之前,通常与其它元素形成合金。一旦当铝与其它元素形成合金,铝表面上的氧化物的保护性能往往降低。为了提高铝合金的防腐蚀能力,必须进一步开发出有效且经济的表面改性技术。
     传统上使用六价铬转化膜来提高铝及其它金属如锌及钢铁的防腐蚀性能。然而,六价铬有毒,在电器及电子工业中,欧盟禁止使用六价铬化合物。因此对环保友好工艺的需求导致开发不同种类的无六价铬转化膜。最近的研究涉及到钛(Ti)、钼(Mo)、钨(W)、钴(Co)、锡(Sn)、锌(Zn)及稀土盐等新型转化膜,所有这些元素被认为低毒,在自然界也相对丰富。最近有专利报道过在铝合金上制备三价铬转化膜,然而进一步对其性能及机理研究的报道却很少。鉴于上述情况,作了以下详细的研究:
     在制备转化膜之前,使用单因素实验及正交实验系统地研究了添加剂(如铝离子(Al~(3+))、硼酸(H_3BO_3)、硫酸镍(NiSO_4)、缓蚀剂A及硫酸钴(CoSO_4))在三酸(硝酸、硫酸及磷酸)中对6063铝合金光泽度及外观的影响。铝离子(Al~(3+))、硼酸(H_3BO_3)、硫酸镍(NiSO_4)、缓蚀剂A及硫酸钴(CoSO_4)的适宜浓度范围分别为:6至10 g L~(-1)、0.9至1.2 g L~(-1)、0.8至1.1 g L~(-1)、0.5至0.8 g L~(-1)及0.8至1.2 g L~(-1)。最优工艺条件:铝离子(Al~(3+))的浓度为6 g L~(-1),硼酸(H_3BO_3)的浓度为1.2 g L~(-1),硫酸镍(NiSO_4)的浓度为1.1 g L~(-1),缓蚀剂A的浓度为0.5 g L~(-1),硫酸钴(CoSO_4)的浓度为1.2 g L~(-1)。采用扫描电镜(SEM)对处理过和未处理过的铝合金表面形貌进行了分析。
     研究了一种新的6063铝合金三价铬转化膜工艺,采用单因素实验及正交法研究了五个变量(如沉积温度、时间、槽液pH及硫酸铬钾与磷酸的浓度)对三价铬转化膜的防腐蚀性能的影响,获得了比较适宜的成膜条件及最佳条件。适宜的条件如下:温度为30-40℃,沉积时间为9 min,pH为2.0-3.0,硫酸铬钾与磷酸的浓度分别为15-25 gL~(-1)及10-20 g L~(-1)。最优工艺条件:温度为40℃,pH为2,硫酸铬钾的浓度为(KCr(SO_4)_2)20 g L~(-1),磷酸的浓度为(H_3PO_4)20 g L~(-1)。采用扫描电镜、能谱及光电子能谱对转化膜的形貌、成份及价态进行了表征,结果表明铬元素已沉积在铝合金表面上,价态为三价。
     采用极化曲线及交流阻抗技术研究了不同条件下形成的转化膜的电化学特性。极化曲线研究表明在适宜的条件下形成的转化膜具有更正的腐蚀电位(E_(corr))、小孔腐蚀电位(E_(pit))及较低的腐蚀电流(i_(corr))。因此在适宜的条件下形成的转化膜具有较大的腐蚀阻力。为了解释转化膜的电化学特性,建立了一个简单的表面模型。实验发现预测的模型与实验结果能较好地相吻合。通过对交流阻抗谱的拟合,获得表面电阻、电容、荷转移电阻及双电层电容等电化学参数。扫描电镜(SEM)分析了未处理过和处理过的电极,发现其结果支持提出的表面模型。
     采用扫描电镜、能谱、极化曲线及交流阻抗技术研究了转化膜浸泡在氯化钠溶液中的腐蚀行为。按照不同的腐蚀时期及其特性,提出并解析了不同过程的等效电路模型,对交流阻抗谱进行了拟合。
     为了改善三价铬转化膜的电化学性能,尿素、硫脲、乙醇胺,二乙醇胺及三乙醇胺分别加入镀液中。采用极化曲线及交流阻抗技术研究了加入不同浓度的尿素、硫脲、乙醇胺、二乙醇胺及三乙醇胺之后的转化膜的电化学行为。结果表明加入少量的上述缓蚀剂后,防腐蚀性能明显得到改善,然而过度的添加,腐蚀阻力减少。实验还发现添加硫脲的效果好于添加尿素的转化膜,添加三乙醇胺的效果好于二乙醇胺,添加二乙醇胺的效果好于乙醇胺。为了解释转化膜的交流阻抗谱,使用了等效电路对交流阻抗谱进行拟合,并获得了相关参数。无论是极化曲线还是交流阻抗结果都显示加入缓蚀剂的效果要好于未添加的转化膜。采用扫描电镜、能谱及光电子能谱分析了转化膜的形貌、成份及价态。采用极化曲线及交流阻抗技术研究添加缓蚀剂尿素及硫脲后的转化膜在不同浸泡时间下的腐蚀行为。结果表明含缓蚀剂的转化膜能经受较长时间的浸泡。
     为更加深入理解和提高膜层的防腐蚀效果,研制了三种复合转化膜。研究了在不同硫酸镍(NiSO_4)、硫酸钴(CoSO_4)及硫酸锆(Zr(SO_4)_2)浓度下制备的复合转化膜的电化学性能。为了更好地解释转化膜的交流阻抗谱,也对交流阻抗谱进行了拟合,并获得了相关参数。实验发现Cr-Zr复合转化膜的防腐蚀性能大于Cr-Co复合转化膜,Cr-Co复合转化膜的防腐蚀性能大于Cr-Ni复合转化膜,Cr-Ni复合转化膜又大于非复合转化膜。提出了三种复合转化膜的缓蚀机理,并与含有机缓蚀剂的转化膜的缓蚀机理作了比较,缓蚀机理显然不同。采用扫描电镜、能谱分析了转化膜的形貌、成份,其结果表明三种复合转化膜已制备。
     最后,对三价铬化学转化膜的沉积机理进行了探讨,并采用光电子能谱(XPS)对提出的沉积机理进行了验证。应用分布系数及迭代法对铝及铬元素沉积的临界pH值进行了理论计算。
Pure aluminum has a thin surface oxide layer which is generally stable in air and aqueous solution,but it lacks some necessary mechanical and physical properties,such as high specific strength,specific modulus of elasticity,creep strength,fatigue strength,hardness,wear resistance and low thermal expansion.Therefore pure aluminum is often alloyed with other elements for engineering applications.The protection imparted by the surface oxide to the Al substrate tends to decrease when Al is alloyed with other elements.This leads to further advancements in the development of effective and economic use of surface modification technologies with the aim of improving the corrosion resistance.
     Traditionally,chromate(Cr~(+6)) conversion coatings have been successfully used on Al alloys and other metals such as Zn and steel to improve the corrosion resistance.However,Cr~(+6) species are toxic,and European Union has prohibited them in the electrical and electronic industries.Therefore the need for more environmentally friendly processes has led to the development of various Cr~(+6)-free candidates. Recent research covers a wide variety of new chemical conversion coatings,including Ti,Mo,W,Co,Sn,Zn compounds and rare earth metal salts.All these elements are thought of low toxicity and are relatively abundant in nature.Recently,patents for trivalent chromium coatings on Al alloys have been reported.However,further study on the mechanism has rarely been reported.Considering the above situation,the following investigations are carried out in details:
     Before the conversion,the influence of the additives(i.e.Al~(3+) ion, H_3BO_3,NiSO_4,inhibitor A and CoSO_4) on the gloss and appearance was investigated systemically using the orthogonal and single factor experiments in three acids(HNO_3,H_2SO_4 and H_3PO_4).The suitable concentrations of Al~(3+) ion,H_3BO_3,NiSO_4,inhibitor A and CoSO_4 were 6 -10gL~(-1),0.9-1.2gL~(-1),0.8-1.1 gL~(-1),0.5-0.8gL~(-1),0.8-1.2gL~(-1), respectively.The optimal quantities of the additives were as follows:Al~(3+) ion 6 g L~(-1),H_3BO_3 1.2 g L~(-1),NiSO_4 1.1 g L~(-1),inhibitor A 0.5 g L~(-1), CoSO_4 1.2 g L~(-1).SEM was used to analyse the untreated and treated Al alloy surfaces.
     A new process for trivalent chromium conversion coatings on Al 6063 alloy has been developed by us,and the influence of five variables(i.e. deposition temperature,time,bath pH,and concentrations of Cr~(3+) compound(KCr(SO_4)_2) and H_3PO_4) on the corrosion resistance of Cr~(3+) coatings on Al 6063 alloy was investigated using the orthogonal and single factor experiments.The optimal conditions and the suitable ranges of the above variables were determined.The suitable conditions were obtained as following:temperature was 30 - 40℃,deposition time 9 min, the pH was adjusted to 2.0 - 3.0,the KCr(SO4)2 and H3PO4 concentrations were controlled within 15 - 25 g L~(-1) and 10 - 20 g L~(-1), respectively.The optimal conditions were as follows:temperature 40℃, Bath pH 2,KCr(SO_4)_2 20 g L~(-1),H_3PO_4 20 g L~(-1).The morphologies and composition and valence state of the coatings were analyzed by scanning electron microscopy(SEM) and energy dispersive spectrometry(EDS) and X-ray photoelectron spectroscopy(XPS),respectively.The result indicates that the trivalent chromium chemical conversion coatings were made on aluminum alloy surface.
     Electrochemical properties of trivalent chromium coatings on 6063 aluminium alloy were studied.The polarization result showed that the coatings had more positive corrosion potential(Ecorr) and pitting corrosion potential(Epit),and lower corrosion current density(icorr), indicating that the coatings formed under the optimum conditions had better corrosion resistance.To explain the electrochemical properties of the coatings,A simple surface model was derived and experimentally tested in terms of an equivalent circuit.Good agreement was found between the model predictions and the experimental results. Electrochemical parameters of EIS,such as the surface resistance(Rcoat) and capacitance(Qcoat),the charge transfer resistance(Rct) and double layer capacitance(Qdl),were obtained by fitting the EIS plots.The morphologies of the coated and uncoated electrodes were examined by scanning electron microscopy(SEM),and the results also support the proposed surface model.
     The corrosion behavior of the coatings was studied by polarization curves and electrochemical impedance spectroscopy at the different immersion times and temperatures.The different equivalent circuit models were also designed and explained according to the different corrosion periods and their properties and carried out simulating.SEM and EDS were used to confirm the mechanism.
     In order to improve the electrochemical performance of trivalent-chrome coatings,urea,thiourea,monethanolamine(MEA), diethanolamine(DEA) and triethanolamine(TEA) inhibitors were added into the deposition bath.The electrochemical behaviors of coatings formed with different concentrations of urea,thiourea, monethanolamine(MEA),diethanolamine(DEA) and triethanolamine (TEA) were investigated in 3.5wt%NaCl solution at 25 oC,using potentiodynamic polarization curves and EIS.The corrosion resistance of coatings is improved greatly by adding a small amount of inhibitors, whereas the excessive addition deteriorates the corrosion resistance. Thiourea addition presents better effect than urea,TEA better than DEA, DEA better than MEA.To explain the EIS results of the coatings,a simple equivalent circuit was applied.The EIS parameters were obtained by fitting the EIS plots.The results of the polarization curves and EIS show that the inhibitor-containing coatings present better corrosion resistance than the coating without inhibitor.The morphology and composition and valence state of the conversion coatings were examined by SEM and EDS and XPS,respectively.The results indicated that the trivalent chromium coating was developed on Al 6063 alloy,inhibitors were also deposited on the substrates,respectively.A noticeable chemical shift was also observed.The corrosion behaviors of the inhibitor-containing(urea and thiourea) coatings were studied by polarization curves and electrochemical impedance spectroscopy at the different immersion times,the results show that the inhibitor-containing coatings remained unchanged after a longer immersion.
     To deeply understand and improve performance of the coatings,three complex coatings were prepared.The electrochemical behaviors of the complex coatings formed with different concentrations of NiSO4, CoSO4,Zr(SO4)2 were also investigated.To better explain the EIS results of the coatings,the EIS parameters were also obtained by fitting the EIS plots.The corrosion resistance of Cr-Zr complex coating is larger than that of Cr-Co,the Cr-Co larger than Cr-Ni,and Cr-Ni larger than the basic coating.A mechanism was also proposed and compared with the inhibition mechanism of organic inhibitor-containing coatings,the mechanism is obviousely different.The morphology and composition of the conversion coatings were examined by SEM and EDS,respectively. The results showed that the three complex coatings were prepared.
     At last,a deposition process model for trivalent chromium conversion coatings was proposed,the XPS was used to confirm the model.In theory, the critical pH of Al,and Cr deposition was calculated using the distributing coefficient and the method of simple iteration.
引文
[1]李珍芳.Al-Si基铸铝合金阳极氧化[J].表面技术,2007,36(6):56-58
    [2]蔡千华.铝的表面处理[J].国外金属热处理,2005,26(1):40-45
    [3]袁海兵,黄承亚,谢刚.铝合金硬质阳极氧化工艺的研究[J].表面技术,2007,36(5):46-47,58
    [4]Fratila-Apachitei L E,Tichelaar F D,Thompson G E,Terryn H,Skeldon P,Duszczyk J,Katgerman L.A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys[J].Electrochimica Acta,2004,49(19):3169-3177
    [5]杨蔺孝,杨岑.铝材耐磨耐烧蚀特种氧化成膜机理的研究与应用[J].电镀与环保,1992,12(2):13-14
    [6]阮阳屏.铸铝合金脉冲硬质阳极氧化[J].电镀与环保,1994,14(4):22-23
    [7]李素琴,段绍范,段晓楠.铝合金脉冲硬质阳极氧化工艺与膜层性能的研究[J].材料保护,1994,27(3):6-9
    [8]周建军,蒋忠锦,施东娥.铸造铝合金硬质阳极氧化工艺研究[J].材料保护,1998,31(9):15-17
    [9]Moutarlier V,Gigandet M P,Pagetti J,Normand B.An electrochemical approach to the anodic oxidation of Al 2024 alloy in sulfuric acid containing inhibitors[J].Surface and Coatings Technology,2002,161(2-3):267-274
    [10]Ishikawa Y.,Matsumoto Y.Electrodeposition of TiO2 photocatalyst into porous alumite prepared in phosphoric acid[J].Solid State Ionics,2002,151(1-4):213-218
    [11]#12
    [12]#12
    [13]#12
    [14]曾凌三,梁东.难溶粉体对铝阳极氧化膜交流电解着色的影响[J].材料保护,1997,30(3):14-16
    [15]曾祥勇,旷亚非,曾凌三.难溶粉体对硫酸溶液中阳极氧化膜性能的影 响[J].材料保护,1998,31(12):6-8
    [16]#12
    [17]#12
    [18]#12
    [19]刘海平,徐源,张文奇,等.铝阳极氧化膜二次阳极电解沉积MoS_2[J].北京科技大学学报,1991,13(3):273-275
    [20]李克,孙宝德,王俊,李天晓,疏达.铸造铝硅合金表面铬酸盐转化膜的制备及其耐蚀性[J].材料保护,1999,32(8):8-10
    [21]郭红霞.铝及铝合金化学氧化工艺[J].电镀与涂饰,2003,22(4):17-18
    [22]蒙文坚.铝合金型材涂装前的铬酸盐转化处理工艺[J].新技术新工艺,2005,(7):66-69
    [23]Wan J,Thompson G E,Lu K,Smith C J E.Chromium valence state in chromate conversion coatings on aluminium[J].Physica B,1995,208&209:511-512
    [24]Bonnel K,Le Pen C,Pebere N.E.I.S.characterization of protective coatings on aluminium alloys[J].Electrochimica Acta 1999,44(24):4259-4267
    [25]Treacy G M,Wilcox G D,.Richardson M O W.Monitoring the corrosion behaviour of chromate-passivated aluminium alloy 2014 A-T6 by electrochemical impedance spectroscopy during salt fog exposure[J].Surface and Coatings Technology,1999:114:260-268
    [26]Treacy G M,Wilcox G D.Surface analytical study of the corrosion behaviour of chromate passivated Al 2014 A T-6 during salt fog exposure[J].Applied Surface Science,2000,157(1-2):7-13
    [27]Sun X,Li R,Wong K C,Mitchell K A R,Foster T.Surface effects in chromate conversion coatings on 2024-T3 aluminum alloy[J]:Journal of materials science,2001,36(7):3215-3220
    [28]Kendig M,Jeanjaquet S,Addison R,Waldrop J.Role of hexavalent chromium in the inhibition of corrosion of aluminum alloys[J].Surface and Coatings Technology,2001,140(1):58-66
    [29]Zhao J,Xia L,Sehgal A,Lu D,McCreery R L,Frankel G S.Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024-T3[J].Surface and Coatings Technology,2001,140(1):51-57
    [30]Campestrini P,Bohm S,Schram T,Terryn H,de Wit J H W.Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy[J].Electrochimica Acta,2001,46(16):2553-2571
    [31]Campestrini P,Bohm S,Schram T,Terryn H,de Wit J H W.Study of the formation of chromate conversion coatings on Alclad 2024 aluminum alloy using spectroscopic ellipsometry[J].Thin Solid Films,2002,410(1-2):76-85
    [32]Tan Y J,Bailey S,Kinsella B.Studying the formation process of chromate conversion coatings on aluminium using continuous electrochemical noise resistance measurements[J].Corrosion Science,2002,44(6):1277-1286
    [33]Szymanski R,Jamieson D N,Hughes A E,Mol A,van der Zwaag S,Ryan C G Filiform corrosion imaged beneath protection layers on Al alloys[J].Nuclear Instruments and Methods in Physics Research B,2002,190(1):365-369
    [34]Juffs L,Hughes A E,Furman S,Paterson P J K.The use of macroscopic modelling of intermetallic phases in aluminium alloys in the study of ferrieyanide accelerated chromate conversion coatings[J].Corrosion Science,2002,44(8):1755-1781
    [35]Vander Kloet J,Schmidt W,Hassel A W,Stratmann M.The role of chromate in filiform corrosion inhibition[J].Electrochimica Acta,2003,48(9):1211-1222
    [36]Liu Y,Skeldon P,Thompson G E,Habazaki H,Shimizu K.Chromate conversion coatings on aluminium:influences of alloying[J].Corrosion Science,2004,46(2):297-312
    [37]Lunder O,Walmsley J C,Mack P,Nisancioglu K.Formation and eharaeterisation of a chromate conversion coating on AA6060 aluminium[J].Corrosion Science,2005,47(7):1604-1624
    [38]刘槟,易茂中,熊翔,蒋建纯,梁英.铸造铝合金化学转化膜及其性能测试[J].材料保护,2000,33(9):23-24
    [39]王成,江峰.LY12Al合金铬磷化处理[J].腐蚀科学与防护技术,2002,14(2):82-85
    [40]曹鹏军,仵海东,范培耕,周安若.铝合金的转化膜处理工艺研究[J].表面技术,2003,32(2):44-60
    [41]谈华民.铝及铝合金的铬酸盐转化膜[J].电镀与精饰,2003,25(2):8-10
    [42]李杨.铸铝合金的化学氧化[J].电镀与涂饰,2004,23(3):15-16
    [43]De Rosa L,Monetta T,Bellucci E Mitton D B,Atienza A,Sinagra C.The effect of a conversion layer and organic coating on the electrochemical behavior of 8006 and 8079 aluminum alloys[J].Progress in Organic Coatings,2002,44(2):153-160
    [44]Hinton B RW.Corrosion protection and chromates:the end of an era? Part 1.[J].Metal Finishing,1991,89(9):55-61
    [45]Susac D,Leung C W,Sun X,Wong K C,Mitchell K A R.Comparison of a chromic acid and a BTSE final rinse applied to phosphated 2024-T3 aluminum alloy[J].Surface & Coatings Technology,2004,187(2-3):216-224
    [46]Liu Y,Skeldon P,Thompson G E,Habazaki H,Shimizu K.Chromate conversion coatings on aluminium-copper alloys[J].Corrosion Science,2005,47(2):341-354
    [47]Kulinich S A,Akhtar A S,Susac D,Wong P C,Wong K C,Mitchell K A R.On the growth of conversion chromate coatings on 2024-Al alloy[J].Applied Surface Science,2007,253(6):3144-3153
    [48]Whitten M C,Lin C T.An in situ phosphatizing coating on 2024 T3 aluminum cupons[J].Progress in Organic Coatings,2000,38(3-4):151-162
    [49]Schram T,Laet J D,Terryn H.Non-destructive optical charactedsation of chromium conversion layers on aluminium[J].Thin Solid Films 1998,313-314(2):727-731
    [50]Kok W H,SUN X,Shi L,Wong K C,Mitchell K A R.Formation of zinc phosphate coatings on AA6061 aluminum alloy[J].Journal of Materials Science,2001,36(8):3941-3946
    [51]Sun X,Susac D,Lia R,Wonga K C,Fosterb T,Mitchell K A R.Some observations for effects of copper on zinc phosphate conversion coatings on aluminum surfaces[J].Surface and Coatings Technology,2002,155(1):46-50
    [52]Akhtar A S,Susac D,Glaze P,Wong K C,Wong P C,Mitchell K A R.The effect of Ni~(2+) on zinc phosphating of 2024-T3 Al alloy[J].Surface & Coatings Technology,2004,187(2-3):208-215
    [53]Akhtar A S,Wong K C,Mitchell K A R.The effect ofpH and role of Ni~(2+) in zinc phosphating of 2024-Al alloy Part Ⅰ:Macroscopic studies with XPS and SEM[J].Applied Surface Science,2006,253(2):493-501
    [54]Akhtar A S,Susac D,Wong P C,Mitchell K A R.The effect of pH and role of Ni~(2+) in zinc phosphating of 2024-Al alloy Part Ⅱ:Microscopic studies with SEM and SAM[J].Applied Surface Science,2006,253(2):502-509
    [55]Akhtar A S,Wong K C,Wong P C,Mitchell K A R.Effect of Mn~(2+) additive on the zinc phosphating of 2024-Al alloy[J].Thin Solid Films,2007,515(20-21):7899-7905
    [56]Benjamin Y.Prepaint treatments for aluminum[J].Met Finish,1986,84(7):11-14.
    [57]邹洪庆.铸铝合金锆系非铬化学成膜处理工艺应用[J].材料保护,2001,34(2):29-30.
    [58]周谟银.铝及铝合金涂装前预处理[Ⅱ]-无铬转化膜综合介绍[J].腐蚀与防护,1996,17(5):236-239.
    [59]郭瑞光,杨杰,康娟.铝合金表面钛酸盐化学转化膜研究[J].电镀与涂饰,2006,25(1):46-48
    [60]Cain B L,Croisant W J.Electrical contact resistance of titanium nitride coatings for electromagnetic shielding applications[J].Surface and Coatings Technology,1996,82(1-2):83-89
    [61]罗坤英,余国强,李大旭.环保型铝及铝合金表面化学转化工艺及性能研究[J].材料保护,2001,39(10):74-75
    [62]Deck P D,Moon M,Sujdak R J.Investigation of fluoacid based conversion coatings on aluminum[J].Progress in Organic Coatings,1997,34(1-4):39-48.
    [63]Fedrizzi L,Deflorian F,Bonorap L.Corrosion behaviour of fluotitanate pretreated and painted aluminium sheets[J].Electrochimica Acta,1997,42(6):969-978.
    [64]Smit M A,Hunter J A,Sharman J D B,Scamans G M,Sykes J M.Effect of organic additives on the performance of titanium-based conversion coatings[J].Corrosion Science,2003,45(9):1903-1920.
    [65]Smit M A,Hunter J A,Sharman J D B,Scamans G M,Sykes J M.Effects of thermal and mechanical treatments on a titanium-based conversion coating for aluminium alloys[J].Corrosion Science,2004,46(7):1713-1727
    [66]Lunder O,Simensen C,Yu Y,Nisancioglu K.Formation and characterisation of Ti-Zr based conversion layers on AA6060 aluminium[J].Surface and Coatings Technology,2004,184(2-3):278-290
    [67]Paloumpa I,Yfantis A,Hoffmann P.Mechanisms to inhibit corrosion of Al alloys by polymeric conversion coatings[J].Surface&Coatings technology,2004, 180/181:308-312
    [68]Chidambaram D,Clayton C R,Halada G P.The role of hexafluorozirconate in the formation of chromate conversion coatings on aluminum alloys[J].Electrochimica Acta 2006,51(14):2862-2871
    [69]Wilox G D,Gabed R,Warwick M E.The development of passivation coatings by cathodic reduction in sodium molybdate solutions[J].Corrosion Science,1988,28(6):577-587.
    [70]谌虹.铝合金钼酸盐转化膜[J].电镀与环保,1999,19(5):23-25
    [71]王成,江峰,林海潮,姜喜奎.铝合金钼酸盐转化膜研究[J].电镀与精饰,2001,23(3):8-10
    [72]王成,江峰,林海潮.LY12铝合金铝酸盐转化膜研究[J].稀有金属材料与工程,2003,32(2):130-133.
    [73]杨玉香,葛圣松,邵谦.铸铝合金黑色转化膜工艺[J].电镀与涂饰,2006,25(2):36-38.
    [74]刘建平,旷亚非,许岩,侯朝辉.铝在磷酸和钨酸钠体系中的高压氧化行为[J].中国腐蚀与防护学报,2001,21(4):234-239
    [75]林生岭,谢春生,王俊德,李清.Al及LY12Al的表面处理与复合转化膜的耐蚀性能研究[J].腐蚀与防护,2003,24(4):142-145.
    [76]陈东初,黄柱周,李文芳.铝合金表面无铬化学转化膜的研究[J].表面技术,2005,34(6):38-39
    [77]唐鋆磊,唐聿明,左禹.稀土转化膜钼酸盐后处理工艺研究[J].材料保护,2006,39(11):27-28
    [78]Hamdy A S,Beccaria A M,Traverso P.Corrosion protection of AA6061T6-10%Al_2O_3 composite by molybdate conversion coatings[J].Journal of Applied Electrochemistry,2005,35:467-472
    [79]Hamdy A S.A clean low cost anti-corrosion molybdate based nano-particles coating for aluminum alloys[J].Progress in Organic Coatings,2006,56(2-3):146-150
    [80]Kulinich S A,Akhtar A S,Wong P C,Wong K C,Mitchell K A R.Growth of permanganate conversion coating on 2024-Al alloy[J].Thin Solid Films,2007,515(23):8386-8392
    [81]Danilidis I,Hunter J,Scamans G M,Sykes J M.Effects of inorganic additions on the performance of manganese-based conversion treatments[J].Corrosion Science,2007,49(3):1559-1569
    [82]Danilidis I,Davenport A J,Sykes J M.Characterisation by X-ray absorption near-edge spectroscopy of KMnO_4-based no-rinse conversion coatings on Al and Al alloys[J].Corrosion Science,2007,49(4):1981-1991
    [83]章娴君,郑慧雯,王显祥.钼钨纳米合金膜的制备及其微结构研究[J].西南师范大学学报(自然科学版),2003,28(5):762-765
    [84]Castro M R S,Nogueira J C,Thim G P,Oliveira M A S.Adhesion and corrosion studies of a lithium based conversion coating film on the 2024 aluminum alloy[J].Thin Solid Films,2004,457(2):307-312
    [85]Rangel C M,Travassos M A.Li-based conversion coatings on aluminium:An electrochemical study of coating formation and growth[J].Surface & Coatings Technology,2006,200(20-21):5823-5828
    [86]Battocchi D,Simoes A M,Tallman D E,Bierwagen G P.Electrochemical behaviour of a Mg-rich primer in the protection of Al alloys[J].Corrosion Science,2006,48(5):1292-1306
    [87]Simoes A M,Battocchi D,Tallman D E,Bierwagen G P.SVET and SECM imaging of cathodic protection of aluminium by a Mg-rich coating[J].Corrosion Science,2007,49(10):3838-3849
    [88]谢伟杰,李荻,郭宝兰.铝合金无铬转化膜研究[J].新技术新工艺,1998,(1):36-37
    [89]王爱荣,马春全,潘庆祥.铝的黑色化学转化膜制备工艺[J].电镀与涂饰,2006,25(12):46-48.
    [90]葛圣松,杨玉香,邵谦.铸铝表面无铬黑色转化膜的形貌及耐蚀性[J].腐蚀科学与防护技术,2006,18(3):228-230
    [91]Xuefeng Lei,Jiangfeng Xiang,Xiaoling Ma,Chiwei Wang,Jutang Sun,Surface modification of aluminum with tin oxide coating[J].Journal of Power Sources,2007,166(2):509-513
    [92]Buchhet R G,Drewien C A,Martinnez M A.Chromate-free corrosion resistant conversion coatings for aluminum alloys[C]//Proceedings of Annual Meeting &Exhibition of the Minerals,Metals and Materials Society.[S.1.]:[s.n.],1995:173-182.
    [93]郑辅养,丁红波,马廷椿,温国谋.铝合金上锂盐抗蚀层的研究[J].电镀与涂饰,2000,19(4):1-13
    [94]Battocchi D,Simoes A M,Tallman D E,Bierwagen G P.Comparison of testing solutions on the protection of Al-alloys using a Mg-rich primer[J].Corrosion Science,2006,48(8):2226-2240
    [95]Hinton B R W.The inhibition of aluminum corrosion by cerium cations[J].Metal Forum,1984,7(4):211-217
    [96]Hinton B R W.The inhibition of aluminum alloy corrosion by rare earth metal cations[J].Corrosion Australas,1985,10(3):12-17
    [97]李凌杰,李荻.稀土元素在铝合金转化膜中的应用[J].稀土,2001,22(5):49-54
    [98]旷亚非,许岩,李国希.铝及其合金材料表面处理研究进展[J].电镀与精饰,2000,22(1):16-20
    [99]陈根香,曹经倩,吴纯素.铝合金上铈氧化膜的电化学研究[J].材料保护,1995.28(3):1-4
    [100]Bethencourt M,Botana F J,Cano M J,Marcos M.High protective,environmental friendly and short-time developed conversion coatings for aluminium alloys[J].Applied Surface Science,2002,189(1-2):162-173
    [101]Mansfeld F.Surface modification of aluminum alloys in molten salts containing CeCl_3[J].Thin Solid Films,1995;270(1-2):417-421
    [102]Hinton B R W.Cerium conversion coating for the corrosion protection of aluminum[J].Materials Forum,1986,9(3):162-173
    [103]Bethencourt M,Botana F J,Cano M J,Marcos M.Advanced generation of green conversion coatings for aluminium alloys[J].Applied Surface Science,2004,238(1-4):278-281
    [104]Pardo A,Merino M C,Arrabal R,Merino S,Viejo F,Coy A E.Effect of La surface treatments on corrosion resistance of A3xx.x/SiCp composites in salt fog[J].Applied Surface Science,2006,252(8):2794-2805
    [105]李凌杰,李荻.稀土铈在铝合金氧化膜中沉积机制的研究[J].材料工程,2001,(3):23-27
    [106]石铁,左禹,赵景茂,张晓丰.铝合金表面电解沉积稀土转化膜工艺研究[J].电镀与涂饰,2005,24(6):22-25
    [107]于兴文,曹楚南,林海潮.铝基复合材料表面四价铈转化膜的研究[J].电镀与涂饰,2000,22(3):6-9
    [108]王成,江峰,林海潮,姜喜奎.铝合金铈盐转化膜的研究[J].2001,电镀与涂饰,2001,20(1):24-26
    [109]陈溯,陈晓帆,刘传烨,朱莉,孙际琪.铝合金表面稀土转化膜工艺研究[J].材料保护,2003,36(8):33-36
    [110]王均涛,吴建华,陈光章.铝合金稀土转化膜成膜工艺研究[J].电化学,2003,9(3):350-356
    [111]Dabala M,Armelao L,Buchberger A,Calliafi I.Cerium-based conversion layers on aluminum alloys[J].Applied Surface Science,2001,172(3-4):312-322
    [112]Fahrenholtz W G,O'Keefe M J,Zhou H,Grant J T.Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys[J].Surface and Coatings Technology,2002,155(2-3):208-213
    [113]Campestrini P,Terryn H,Hovestad A,de Wit J H W.Formation of a cerium-based conversion coating on AA2024:relationship with the microstructure[J].Surface and Coatings Technology,2004,176(3):365-381
    [114]]于兴文,周育红,周德瑞,尹钟大.铝合金LY12表面四价铈转化膜工艺及耐蚀性研究[J].电镀与环保,1998,18(5):27-29
    [115]李久青,高陆生,卢翠英,罗秉柱.铝合金表面四价铈盐转化膜及其耐蚀性[J].腐蚀科学与防护技术,1996,18(4):271-275
    [116]Rivera B F,Johnson B Y,O'Keefe M J,Fahrenholtz W G.Deposition and characterization of cerium oxide conversion coatings on aluminum alloy 7075-T6[J].Surface and Coatings Technology,2004,176(3):349-356
    [117]Decroly A,Petitjean J P.Study of the deposition of cerium oxide by conversion on to aluminium alloys[J].Surface & Coatings Technology,2005,194(1):1-9
    [118]Scholes F H,Soste C,Hughes A E,Hardin S G,Curtis P R.The role of hydrogen peroxide in the deposition of cerium-based conversion coatings.Applied Surface Science,2006,253(4):1770-1780
    [119]Andrew K.Chromium-free method and composition to protect aluminum.U.S.Patent 5 192 374,1993
    [120]Ravi R.Coating with alumina eeria film for corrosion resistant barrier on aluminum alloys.US Pat.5 362 335,1994
    [121]Wang Chunyu,Zhang Qiang,Zhou Ji,W u Gaohui.Study on anticorrosive cerium conversion coating of Cf/6061A1 composite surface[J].Journal of rare earths,2006,24(4):64-67
    [122]Mansfeld F,Shih H,Wang Y.,Method for Creating a Corrosion Resistant Aluminium Surface,U.S.Patent No.5,194,138,1993.
    [123]Mansfeld F,Wang Y.Development of "stainless" aluminum alloys by surface modification[J].Materials Science and Engineering A,1995,198(A)(1-2),51-61
    [124]Mansfeld F,Wang Y,Shih H.The Ce-Mo process for the development of a stainless aluminum[J].Electrochimica Acta,1992,37(12):2277-2282
    [125]李国强,李荻,李久青,郭宝兰,彭明霞.新型铝合金Ce-Mo基转化膜[J].材料工程,2001,(6):6-9
    [126]于兴文,曹楚南,林海潮,周育红,周德瑞,尹钟大.LY12铝合金表面双层稀土转化膜的研究[J].材料研究学报,2000,14(3):289-295
    [127]于兴文,周育红,周德瑞,等12024铝合金表面混合稀土转化膜的研究[J].高技术通讯,1998,8(7):35-38
    [128]于兴文,曹楚南,林海潮,周育红,周德瑞,尹钟大.Al 6061/SiCp稀土转化膜的组成、结构及性能[J].物理化学学报,2000,16(6):547-552
    [129]于兴文,曹楚南,林海潮.LY12铝合金表面稀土转化膜腐蚀行为的研究[J].中国稀土学报,2000,18(3):243-248
    [130]李久青,田虹,卢翠英.铝合金稀土转化膜碱性成膜工艺T3/T7的研究[J].腐蚀科学与防护技术,1998,10(2):98-102
    [131]李久青,田虹,卢翠英.铝合金稀土转化膜的碱性成膜工艺[J].材料保护,1998,31(9):11-13
    [132]张巍,李久青,许江涛,陈昆.LC4铝合金稀土转化膜耐蚀性及影响因素[J].腐蚀科学与防护技术,1999,11(6):341-345
    [133]Gorman J D,Johnson S T,Johnston P N,Paterson P J K,Hughes A E.The characterisation of Ce-Mo-based conversion coatings on Al-alloys Part Ⅰ[J].Corrosion Science,1996,38(11):1957-197
    [134]Gorman J D,Johnson S T,Johnston P N,Paterson P J K,Hughes A E.The characterisation of Ce-Mo-based conversion coatings on Al-alloys Part Ⅱ[J].Corrosion Science,1996,38(11):1977-1990
    [135]Yu Xingwen,Cao Chunan,Yao Zhiming,Zhou Derui,Yin Zhongda.Corrosion behavior of rare earth metal(REM) conversion coatings on aluminum alloy LY12 Materials Science and Engineering A[J].2000,284(1-2):56-63
    [136]Xingwen Yu,Chunan Cao.Electrochemical study of the corrosion behavior of Ce sealing of anodized 2024 aluminum alloy[J].Thin Solid Films,2003,423(2):252-256
    [137]Johnson BY,Edington J,O'Keefe M J.Effect of coating parameters on the microstructure of cerium oxide conversion coatings[J].Materials Science and Engineering A,2003,A361(1-2):225-231
    [138]Xingwen Yu,Guoqiang Li.XPS study of cerium conversion coating on the anodized 2024 aluminum alloy[J]. Journal of Alloys and Compounds, 2004, 364(1-2): 193-198
    [139] Johnson B Y, Edington J, Williams A, O'Keefe M J. Microstructural characteristics of cerium oxide conversion coatings obtained by various aqueous deposition methods[J]. Materials Characterization, 2005, 54(1): 41- 48
    [140] Pardo A, Merino M C, Arrabal R, Merino S, Viejo F, Carboneras M. Effect of Ce surface treatments on corrosion resistance of A3xx.x/SiCp composites in salt fog[J]. Surface & Coatings Technology, 2006,200(9): 2938 - 2947
    [141] Pardo A, Merino M C, Arrabal R, Viejo F, Carboneras M, Munoz J A. Influence of Ce surface treatments on corrosion behaviour of A3xx.x/SiCp composites in 3.5 wt.% NaCl[J]. Corrosion Science, 2006,48(10): 3035-3048
    [142] Hu J, Zhao X H, Tang S W, Sun M R. Corrosion protection of aluminum borate whisker reinforced AA6061 composite by cerium oxide-based conversion coating[J]. Surface & Coatings Technology, 2006,201(6): 3814-3818
    [143] ] Pardo A, Merino M C, Arrabal R, Viejo F, Munoz J A. Ce conversion and electrolysis surface treatments applied to A3xx.x alloys and A3xx.x/SiCp composites[J]. Applied Surface Science, 2007,253(6): 3334-3344
    [144] Hu J, Zhao X H, Tang S W, Ren W C, Zhang Z Y. Corrosion resistance of cerium-based conversion coatings on alumina borate whisker reinforced AA6061 composite[J]. Applied Surface Science, 2007,253(22): 8879-8884
    [145] Davo B, de Damborenea J J. Use of rare earth salts as electrochemical corrosion inhibitors for an Al-Li-Cu (8090) alloy in 3.56% NaCl [J]. Electrochimica Acta, 2004,49(27): 4957-4965
    [146] Palomino L E M, Aoki I V, de Melo H G. Microstructural and electrochemical characterization of Ce conversion layers formed on Al alloy 2024-T3 covered with Cu-rich smut [J]. Electrochimica Acta, 2006, 51(26): 5943-5953
    [147] Rangel C M, Paiva T I, da Luz P P. Conversion coating growth on 2024-T3 Al alloy. The effect of pre-treatments [J]. Surface & Coatings Technology, 2008, 202(14): 3396-3402
    [148] Gaohui Wu, Chunyu Wang, Qiang Zhang, Pengchao Kang. Characterization of Ce conversion coating on Gr-f/6061 Al composite surface for corrosion protection [J]. Journal of Alloys and Compounds, 2008,461(1-2): 389-394
    [149] Mishra A K, Balasubramaniam R. Corrosion inhibition of aluminium by rare earth chlorides [J]. Materials Chemistry and Physics, 2007,103(2-3): 385-393
    [150]Mishra A K,Balasubramaniam R.Corrosion inhibition of aluminum alloy AA 2014 by rare earth chlorides[J].Corrosion Science,2007,49(3):1027-1044
    [151]Pardo A,Merino M C,Arrabal R,Feli(?) J S,Viejo F,Carboneras M.Enhanced corrosion resistance of A3xx.x/SiCp composites in chloride media by La surface treatments[J].Electrochimica Acta,2006,51(21):4367-4378
    [152]Pardo A,Merino M C,Arrabal R,Feliu' J S.Effect of La Surface Coatings on Oxidation Behavior of Aluminum Alloy/SiCp Composites[J].Oxidation of Metals,2007,67(1/2):67-86
    [153]Xingwen Yu,Chuanwei Yan,Chunan Cao.Study on the rare earth sealing procedure of the porous film of anodized A16061/SiCp[J].Materials Chemistry and Physics,2002,76(3):228-235
    [154]Arnott D R,Ryan N E,Hinton B R W,Sexton B A,Hughes A E.Auger and XPS studies of cerium corrosion inhibition on 7075 aluminum alloy[J]..Applications of Surface Science,1985,22-23:236-251
    [155]王继徽,蒋忠锦,孙际琪.铝合金表面稀土转化膜成膜机理初探[J].湖南大学学报(自然科学版),27(4):31-35
    [156]于兴文,周育红,周德瑞,尹钟大,崔岩.铝金属基复合材料A16061/S iCP表面稀土转化膜的研究[J].复合材料学报,2000,17(2):30-33
    [157]于兴文,曹楚南,林海潮.LY12铝合金表面稀土转化膜腐蚀行为的研究[J].中国稀土学报,2000,18(3):243-248
    [158]邵敏华,付燕,胡融刚,林昌健.Al合金铈盐转化膜缓蚀机理研究[J].电化学,2002,8(1):15-20
    [159]顾宝珊,刘建华.铝合金在铈盐溶液中成膜过程的电化学阻抗谱研究[J].中国稀土学报,2007,25(2):210-216
    [160]纪红,许越,周德瑞,周育红.LY12铝合金表面铈纳米膜的制备及显微组织特征[J].航空材料学报,2003,23(1):21-23
    [161]Hamdy A S.Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys[J].Materials Letters,2006,60(21-22):2633-2637
    [162]Shaoxin You,Philip Jones,Ajay Padwal,Paul Yu,Matthew O'Keefe,William Fahrenholtz,Thomas O'Keefe.Response of nanocrystalline cerium-based conversion coatings on Al 2024-T3 to chloride environments[J].Materials Letters 2007,61(17):3778-3782
    [163]Metroke T L,Parkhill Robert L,Knobbe E T.Passivation of metal alloys using sol-gel-derived materials-a review[J].Progress in Organic Coatings,2001,41(4):233-238
    [164]Khobaib M,Reynolds L B,Donley M S.A comparative evaluation of corrosion protection of sol-gel based coatings systems[J].Surface and Coatings Technology,2001,140(1):16-23
    [165]Li Y S,Tran T,Xu Y,Vecchio N E.Spectroscopic studies of trimetoxypropylsilane and bis(trimethoxysilyl)ethane sol-gel coatings on aluminum and copper[J].Spectrochimica Acta Part A 2006,65(3-4):779-786
    [166]Li Y X,Fedkiw P S.Effect of gel electrolytes containing silica nanoparticles on aluminum corrosion[J].Electrochimica Acta 2007,52(7):2471-2477
    [167]Fir M,Orel B,Vuk A S,Vilcnik A,Jese R,Francetic V.Corrosion Studies and Interracial Bonding of Urea/Poly(dimethylsiloxane) Sol/Gel Hydrophobic Coatings on AA 2024 Aluminum Alloy[J].Langmuir,2007,23(10):5505-5514
    [168]Du Y J,Damron M,Tang G,Zheng H,Chu C J,Osborne J H.Inorganic /organic hybrid coatings for aircraft aluminum alloy substrates[J].Progress in Organic Coatings,2001,41(4):226-232
    [169]Yang X F,Tallman D E,Gelling V J,Bierwagen G P,Kasten L S,Berg J.Use of a sol-gel conversion coating for aluminum corrosion protection[J].Surface and Coatings Technology,2001,140(1):44-50
    [170]Kasten L S,Grant J T,Grebasch N,Voevodin N,Amold F E,Donley M S.An XPS study of cerium dopants in sol-gel coatings for aluminum 2024-T3[J].Surface and Coatings Technology,2001,140(1):11-15
    [171]Khramov A N,Balbyshev V N,Voevodin N N,Donley M S.Nanostructured sol-gel derived conversion coatings based on epoxy- and amino-silanes[J].Progress in Organic Coatings,2003,47(3-4):207-213
    [172]Hamdy A S,Butt D P.Environmentally compliant silica conversion coatings prepared by sol-gel method for aluminum alloys[J].Surface & Coatings Technology,2006,201(1-2):401-407
    [173]曾庆冰,李效东,陆逸.溶胶-凝胶法基本原理及其在陶瓷材料中的应用[J].高分子材料科学与工程,1998,14(2):138-143
    [174]张勤俭,吴春丽.溶胶-凝胶工艺制备Al203涂层对工程陶瓷表面改性的研究[J].工具技术,2001,35(7):19-25
    [175]奚红霞,黄仲涛.氧化锆膜的制备与表征[J].无机材料学,1996,11(4):627-633
    [176]李海滨,梁开明,顾守仁.溶胶-凝胶法制备定向排开的纳米结构二氧化锆薄膜[J].清华大学学报(自然科学版),2001,41(4):48-50
    [177]Masklski J,Gluszek J,Zabrzeski J.Improvement in corrosion resistance of the 3161 stainless steel by means of Al_2O_3 coatings deposited by the sol-gel method[J].Thin Solid Films,1999,34(9):186-190
    [178]Pierre A C.Porous sol-gel ceramic[J].Ceramics International,1997,23(3):229-238
    [179]Khobai M,Reynolds L B,Donley M S.A comparative evaluation of corrosion protection of sol-gel based coatings systems[J].Surface and Coatings Technology,2001,140(1):16-23
    [180]Hamdy A S,Butt D P.Novel anti-corrosion nano-sized vanadia-based thin films prepared by sol-gel method for aluminum alloys[J].Journal of Materials Processing Technology,2007,181(1-3):76-80
    [181]Parkhil R L,Knobbe E T,Donley M S.Application and evaluation of environmentally compliant spray-coated ormosil films as corrosion resistant treatments for aluminum 20242 T3[J].Progress in Organic Coatings,2001,41(4):261-265
    [182]Osborne H J,Blohowiak K Y,Taylor S R.Testing and evaluation of nonchromated coating systems for aerospace applications[J].Progress in Organic Coatings,2001,41(4):217-225
    [183]Berwagen G P,Tallman D E.Choice and measurement of crucial aircraft coatings system properties[J].Progress in Organic Coatings,2001,41(4):201-216
    [184]Beccaria A M,ChiaruttiniL.The inhibitive action of metacryloxypropylmethoxysilane(MAOS) on aluminium corrosion in NaCl solutions[J].Corrosion Science,1999,41(5):885-899
    [185]王秀华,孙益民,刘守华,等.有机-无机杂化涂层制备及耐腐蚀性能研究[J].腐蚀科学与防护技术,2006,18(4):292-294
    [186]苏红来,尤宏,姚杰,等.LY12铝合金表面有机-无机杂化膜特性研究[J].材料科学与工艺,2006,14(4):349-352,357
    [187]Chu L,Daniels M W,Francis L F.Use of(glycidoxypropyl) trimethoxysilane as a binder in colloidal silica coatings[J].Chemical Material,1997,9(11):2577-2582.
    [188]Metroke T L,Kachurina O,Knobbe E.Spectroscopic and corrosion resistance characterization of amine and super acid-cured hybrid organic-inorganic thin films on 2024-T3 aluminum alloy[J].Progress in Organic Coatings,2002,44(3):185-199
    [189]Van Ooij W J,Zhu D Q,Prasad G;Silane based chromate replacements for corrosion control,paint adhesion,and rubber bonding[J].Surface Engineering,2000,16(5):386-391
    [190]Zandi-Zand R,Ershad- Langroudi A,Rahimi A.Organic-inorganic hybrid coatings for corrosion protection of 1050 aluminum alloy[J].J Non-Cryst Solids,2005,351(14/15):1307-1311
    [191]Wu K H,Chang T C,Yang C C.Dynamics and corrosion resistance of amine-cured organically modified silicate coatings on aluminum alloys[J].Thin Solid Films,2006,513(1/2):84-89
    [192]"Directive 2002/95/EC of the European Parliament and the Council on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipments," Official Journal of the European Union,Jan.27,L 37/19,2003
    [193]中华人民共和国国家标准,GB/T 8013-200X
    [194]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社(第二版),2008:74 - 98
    [195]Cho K W,Rao V S,Kwon H S.Microstructure and electrochemical characterization of trivalent chromium based conversion coating on zinc[J].Electrochim.Acta 2007,52:4449-4456.
    [196]张鉴清,曹楚南.电化学阻抗谱方法研究评价有机涂层[J].腐蚀与防护,1998,19(3):99-104
    [197]李鑫庆,陈迪勤,余静琴.化学转化膜技术与其应用[M].北京:机械工业出版社(第一版),2005:57-79
    [198]邵敏华,黄若双,付燕,等.铝合金表面ce转化膜成膜机理研究[J].物理化学学报,2002,18(9):791-795
    [199]王成,江峰.LY12铝合金铈化学转化膜的结构及耐蚀性研究[J].材料保护,2002,35(4):23-25
    [200]吴敏,孙勇.铝及其合金表面处理的研究现状[J].表面技术,2003,32(3):13-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700