水稻RH1基因的遗传分析与基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻不仅是重要的粮食作物,还是单子叶植物中的模式植物。因此对水稻功能基因组的研究不仅关乎人们的吃饭问题,还能揭示植物发育的机理。在水稻中得到的一些研究成果可以直接或间接的应用到其他植物的研究中去。
     花器官的正常发育是植物赖以繁衍的基础。在水稻中,颖壳的发育决定了谷粒的大小和形状,而颖壳的颜色和形状也是鉴定水稻品种和稻米品质的一个重要标准。有关花色苷积累的研究己经超过了半个世纪。目前了解到花色苷的合成与积累受到大量结构基因与调节基因的控制,其中一些主控基因的突变会造成颖壳、果皮等表现出红、褐、紫等颜色。花色苷是类黄酮类色素,在植物体中类黄酮在增强植物抗逆性方面起着重要的作用。因此,研究花色苷的合成和沉积,对水稻品质改良和抗逆性提高具有重要的意义。转录因子,是一类能与真核生物基因启动子区域中的顺式作用元件发生特异性相互作用的DNA结合蛋白,通过自身或与其它蛋白间的相互作用,激活或抑制转录。转录因子的失活往往会引起一系列基因表达量的改变,从而引起较明显的表型。与花色苷合成有关的转录因子主要有有MYB类和Zinc-finger类等。我们通过EMS诱变粳稻品种日本晴,得到锈颖突变体rh1。本研究对该突变体进行了遗传分析以及基因定位,主要结果如下。
     通过对水稻rh1突变体的形态观察发现,突变体呈披叶状,颖壳在灌浆期开始出现锈色斑点,成熟后整个颖壳呈锈色;突变体的叶子失水很快,叶子从植株上取下后很快卷缩。通过对rh1与9311、TN1、和ZF802的杂交后代F1及F2的分析表明RH1基因是一对单隐性的核基因。利用图位克隆技术,我们将RH1基因锁定在第2号染色体上256.54kb的范围内。在NCBI(http://www.ncbi.nlm.nih.gov)上对该段DNA进行预测发现有23个基因。对这23个基因在NCBI上进行功能分析,寻找可能与花色苷代谢有关的基因,其中9个基因可能与突变体表型有关。我们对这9基因进行测序,发现一个编码Zinc-finger结构域的基因在编码区缺失了一个碱基,我们推测该基因可能就是RH1。
Rice is not only the main food crop, but also the model plant of monocotyledonous investigation. The research of rice functional genomes is not only related about people’s food, but also a great impulse on the realization of plant development mechanisms.
     The natural development of flowers is the base of breeding. In rice, the size and shape of grain is decided by the development of hull. The accumulation of anthocyanin in some organizations had been studied for more than fifty years.The shape and color of hull is a important criterion to evaluate rice character and breed.They have been controlled by some construction genes and regulator genes. Any change of the key genes can cause hull and pericarp shift their colors. Anthocyanin is one of major class of flavonoids, which plays an important role in plant development, in the protection against UV radiation, attraction of insects for pollination and plant defense response.Thereby, the synthesis and accumulation of anthocyanin play an important role in rice character and quality improvement. Transcription factor are proteins, which can activate or inactivate the expression of gene by binding to gene’s promoter region. The deactivation of transcriptions factor can change expression of a series of gene. Transcriptions factors relate to anthocyanin synthesize are MYB class and Zinc-finger class. We had found a rh1 from Nippobare (O. sativa ssp.joponica) mutant date. In this study, the genetics analysis and mapping were done. The main results are as follows.
     The leaf of rh1 mutant is sagged. Brown pigment start to accumulate as a ppoint under the hull and with seed maturing, it diffuses lowly and reach a maximum level when seed matured. The leaf of rh1 dehydrate quickly. When cut from the whole plant, it curls in a minute. The F1 and F2 progenies from the crosses between rh1 and any of 9311,TN1 and ZF802 were investigated. The result is that, the phenotype of rh1 is controlled by a pair of recessive genes.The mutant trait was mapped by Map-based colning and delimited in the 256.546kb region on the chromosome 2. Here are 23 open reading frames (ORF) within this region (http://www.ncbi.nlm.nih.gov). We predicted the functions of the 23 genes online .Search genes are likely relateded to anthocyanin accumulation. At last, 9 genes were selected. Within the 9 genes, we found one gene which encode a Znic-finger likely domain, lose one base. We infered it is RH1 gene.
引文
[1] Parkinson C L, Adams K L, Palmer J D. Multigene analyses identify the three earliest 1ineages of extant flowering Plants[J]. CurrBiol, 1999, 9 (24): 1485-1488.
    [2]高晶涵,李清驹.控制植物花器官发育的分子机理[J].生物学通报, 2008, 43(2): 19-21.
    [3]刘坚,郭龙彪,钱前.水稻花器官发育基因的研究进展[J].中国稻米, 2007, 3: 8-9.
    [4] Coen E S, Meyerowitz E M. The war of the whorls: genetic intera ctions controlling flower development [J].Nature, 1991, 353(6339):31-37.
    [5]许智宏.植物发育与生殖的研究:进展和展望[J].植物学报, 1999, 41(9): 909-930.
    [6] Theissen G, Saedler H. Floral quartets [J] Nature, 2001,409 (6819): 469-471.
    [7] Finding M. Grasses as a Single Genetic System Resssessment[J]. 2001, Plant Physiol,125: 1191-1197.
    [8] Prasad K, Vijayraghavan U. Double-stranded RNA interference of a rice Pl/GLO paralog, OsMADS2, uncovers its second-whorl-specific function in floral organ patterning[J]. Genetics, 2003, 165:2301-2305.
    [9] Gale M D, Devos K D. Comparative genetics in the grasses[J]. Proc Natl Acad Sci USA, 1998, 95: 1971-1974.
    [10] Greco R, Stagi L, Colombo L, Angenent G C, et al. MADS box genes expressed in developing in florescences of rice and sorghum[J]. Molecular and General Genetics 1997, 253: 615-623.
    [11] Huang N, Pareo A, Mew T, et al. RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice Population[J]. Mol Breed, 1997, 3: 105-113.
    [12]徐是雄,徐雪宾.稻的形态与解剖[M].北京:农业出版社, 1984: 37-38.
    [13]张文绪.稻属植物21个种颖花俘尖的比较研究[J].中国农业大学学报, 1996, 1: 53-56.
    [14] Kyozuka J, Kobayashi T, Morita M, et al. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes[J]. Plant cell physiology, 2000, 41: 710-718.
    [15] Pelucchi N, Fornara F, Favalli C, et al. Comparative analysis of rice MADS- box genes expressed during flower development[J]. Sexual Plant Reproduction 2002, 15:113-122.
    [16]Agrawal G K, Abe K, Yamazaki M, et al. Conservation of the E-function for Floral Organ Identity in Rice Revealed by the Analysis of Tissue Culture-induced Loss-of-Function Mutants of the OsMADSI[J]. Gene Plant Molecular Biology, 2005, Plant MolBiol, (59):125-135.
    [17] Yuan Z, Gao S, Xue D W, Luo D, et al. RETARDED PALEA1(REP1) Controls Palea Development and Floral Zygomorphy in rice[J]. Plant Physiology, 2009, 149: 235-244.
    [18]肖跃成,王宝金.水稻“褐壳”现象与控制技术.耕作与栽培[J]. 2006. 2: 64-65.
    [19] Kewei Z, Qian Q, Zejun H, et.al. GOLD HULL AND INTERNODE2 Encodes a Primarily Multifunctional Cinnamyl- Aleohol Dehydrogenase in Rice[J]. Plant Physiology, 2006, 140: 972-983
    [20]孙明茂,韩龙植,李圭星等.水稻花色昔含量的遗传研究进展[J].植物遗传资源学报, 2006, 7(2): 239-245.
    [21] Tsutomu F, Masahiko M, Tomoyuki O, et.al. The Rc and Rd genes are involved in Proanthoeyanidin synthesis in rice Periearp[J]. The Plant Joumal, 2007, 49: 91-102
    [22] Wataru S, Taku O, Keisuke K, et.al. The Purple leaf(Pl) Locus of Riee:the Plw Allele has a ComPlex Organization and Includes Two Genes Encoding Basic Helix-LooP-Helix Proteins Involved in Anthocyanin Biosynthesis[J]. The Plant Joumal, 2001, 42(9): 982-991
    [23] Harborne J, Williams C. Advances in fiavonoid research since 1992[J]. Phytoehemistry, 55, 481-504.
    [24] De Majnik J, Tanner G J, JosePhRG, et al.Transient expression of maize anthoeyanin regulatory genes infiuences anthoeyanin Production in white clover and Peas[J].Plant Physiol, 1998, 25: 335-343.
    [25] Holton T A, Comish E C. Genetics and biochemistry of anthoeyanin biosynthesis[J]. The Plant Cell, 1995, 7: 1071- 1083.
    [26] Forkmann G., Heller W. Biosynthesis of Flavonoids, in: Polyketids and other secondary metabolizes including fatty and their derivates. 1999,713-748.
    [27] Tanaka Y, Tsuda S, Kusumi T. Metabolic engineering to modify flower color[J]. Plant Cell Physiol, 1998, 39(11): 1119-1126.
    [28] Kinoshita. Report of committee on gene symbolization, nomenelature and linkage groups[J]. 1995. Rice Genet Newsl, 12, 9-153.
    [29] Nagao S, Takahashi M. Trial construetion of twelve linkage groups in Japanese riee[J]. Fae.Agr. Hokkaido Univ. 1963, 53, 76-131.
    [30] Nagao S, Takahashi M. and Kinoshita T. Genetic studies on rice Plant, XXVI.J. Fac. Agr. ,Hokk aido Univ. 1962. 52, 20-50.
    [31] Nagao S, Takahashi M, Miyamoto T. Genetic studies on rice Plant, XXI. Bioehemical studies on red rice Pigmentation. JaP J. Genet. 1957. 32, 124-1.
    [32] Chen M, SanMiguel P, Bennetzen J. Sequence organization and conservation in sh2/a1-homologous regions of sorghum and rice[J]. Geneties. 1998. 148, 435-443.
    [33] Hu J, Anderson B, Wessler S. Isolation and characterization of rice R genes: evidence for distinct evolutionary paths in rice and maize[J]. Genetics, 1996. 142, 1021-1031.
    [34] Reddy V, Seheffier B, Wienand U, et al. Cloning and characterization of the rice homologue of maize C1 anthocyanin regulatory gene. Plant Mol[J]. Biol. 1998. 36, 497-498.
    [35] Sakamoto W, Ohmori T, Kageyama K, et al. The Purple leaf (PI) locus of rice : the PI (w) allele has a complex organization and includes two genes encoding basic helix-loop-helix pretions involved in anthocyanin biosynthesis[J]. 2001. Plant Cell Physiol. 42,982-991.
    [36] Hu J, Aanderson B, Wessler, S. Isolation and characterization of rice R genes: evidence for distinct evolutionary paths in rice and maize[J]. Geneties, 1996, 42: 1021-1031.
    [37] Hu J, Reddy V, Wessler S. The rice R gene family: Two distinct subfamilies containing several miniature inverted-repeat transposable elements[J]. Plant Mol. Biol. 2000. 42: 667-678.
    [38]石帮志,阮仁超,孙灿慧等.水稻红米性状的遗传及利用研究[J].贵州农业科学, 2000, 28(6): 3-5.
    [39]顾信媛,黄超武,伍时照.稻米黑色种皮的遗传分析[J].谷类作物品质遗传研究进展,1990,113-117.
    [40]石帮志,陈丽平.贵州紫香稻紫色性状的遗传规律及其在育种中的应用初探[J].种子. 2002.2: 29-30.
    [41] Zheng G Z. Effcets of blackish purple colored seed coat on grain quality and yield assoeiated charaeters in rice (Oryza sativa L.). MS thesis, Seoul University(Korea), 2000, l-41.
    [42] Majumder N D. Genetic studied in rice (Oryza sativa L.) differential nature of inheritance of anthocyanin pigmentation. Oryza. 1985, 29(2): 93-106.
    [43] Saitoh K, Onishi K, Mikami I, et al. Allelic diversification at the C (OsCI) locus of wild and cultivated rice: nucleotide changes associated with phenotypes[J]. Genetics. 2004. 168, 997-1007.
    [44]陈廷文.稻谷黑米种皮的遗传特性研究[J].四川农业大学学报, 1995, 13(4): 498-505.
    [45]唐巍.植物DNA分子标记技术的研究和应用[J].大自然探索, 1998, 17: 51-56.
    [46]王关林,方红筠.植物基因工程原理与技术[M].北京:科学出版社,1998.
    [47]Sakamoto H, Maruyama K, Sakuma Y, et al. Arabidopsis Cys(2) His (2)-type zinc-finger Proteins function as transcription repressors under drought, cold, and high-salinity stress conditions [J]. Plant Physiol, 2004, 36: 2734-746.
    [48]陈丽.植物转录因子的结构与功能[J].植物生理学通讯, 1997, 33(6): 401-409.
    [49] Sainz M B, Grotewold V L, Chandler. Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain Proteins [J]. Plant Cell, 1997, 9(4): 611-625.
    [50]部亚文,谢科,李靖,等.利用dsRNA干涉方法研究水稻WRKY转录因子的抗病性.中国水稻科学, 2005, 19(6): 489-494.
    [51]罗赛男,杨国顺,石学晖,等.转录因子在植物抗逆性上的应用研究[J].湖南农业大学学报, 2005, 31(2): 219-223.
    [52] Hu, J., Reddy,V.S. and Wessler,S.R. The rice R gene family: Two distinct subfamilies containing several miniature inverted-repeat transposable elements. Plant Mol.Biol.2000.42:667-678
    [53]张名位,杜应琼,彭仲明,等.黑米中矿质元素铁、锌、锰、磷含量的遗传效应[J].遗传学报. 2000, 27(9): 792-799.
    [54] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA [J]. Nucleic Acids Research 1980, 8(19): 4321-4325.
    [55]孙玲,陈俊秋,张名位,等.稻米种皮颜色与其抗氧化性的关系[J].中国粮油学报. 2002, 17, (4): 25-27.
    [56] Ichikawa H, Ichiyanagi T, Xu B, et al. Antioxidant activitye of anthocyanin extract from purpIe black rice. [J] Med Food: 2001, 4(4): 211-218.
    [57] Koide H J, Won Y J, Cha G W, et al. Varietal variation of pigmentation and some nutritive characteristics in colored rices [J]. Korean J Crop Sci, 1996, 41(5): 600-607.
    [58] Nam S H, Choi S P, Kang M Y, et al. Antioxidative, antimutagenic and anticarcinogenic aetivities of rice bran extracts in chemical and cell assays[J]. Agric Food Chem, 2005, 53(3): 816-822.
    [59] Toyokunj S, Itani T, Morimitsu Y, et al. Protective effect of colored rice over white rice on Fenton reaction- based renal lipid peroxidation in rats[J]. Free Radic Res, 2002, 36(5): 583-592.
    [60]刘范沫,刘宪虎,许明子,等.延农黑稻果皮颜色的遗产分析.延边大学农学学报. 1998. 20(3): 151-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700