HPV16/18 E7对宫颈癌细胞中HDAC1表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:宫颈癌是女性多发的恶性肿瘤,而人类乳头瘤病毒(HPV)感染是早已被临床和流行病学研究证实的宫颈癌发生发展的主要因素。其中HPV16、18是临床检出率相对较高的两种HPV高危亚型。HPV病毒编码的E7是重要的原癌蛋白,在肿瘤发生中起着重要作用。表观遗传学改变是另一个与肿瘤发生相关的因素,很多肿瘤中都观察到异常水平的HDAC1的表达。而HPV感染类型不同与HDAC1表达的关系未见报道,因此我们设计了本实验观察不同HPV感染情况的宫颈癌细胞系中HDAC1的表达情况,以及E7对HDAC1表的的影响。另外,E7蛋白分为三个结构域,对HDAC1的表达改变有重要作用的分区尚不明确,因此我们构建了分别缺失各一个结构域的突变体,以期在后续实验中检测其功能改变。
     方法及结果:
     1.HDAC1在人宫颈癌细胞系C-33A中表达高于CaSki和HeLa
     用RT-PCR和Western Blot的方法检测人宫颈癌细胞系C-33A、CaSki和HeLa中HDAC1的转录水平和蛋白水平差异。结果显示,HDAC1在C-33A(无HPV感染)中表达最高,CaSki(HPV16感染)中次之,HeLa(HPV18感染)中最低。
     2.转染HPV16E7,HPV18E7后C-33A细胞系中HDAC1表达降低
     向无HPV感染的C-33A细胞转染pEGFP-HPV18E7和pEGFP-N1空载体,通过RT-PCR和Western Blot观察转染后两组HDAC1表达量差异。结果显示,转染pEGFP-HPV18E7组的C-33A细胞中的HDAC1的表达明显低于转染pEGFP-N1组。
     3.RNAi策略沉默CaSki细胞HPV16E7导致HDAC1表达上调
     向HPV16感染的CaSki细胞转染siRNA沉默HPV16E7,对照组转染无关序列,通过RT-PCR观察转染后HDAC1表达改变。结果显示,转染siRNA组的HDAC1的表达明显高于转染无关序列组。
     4.构建HPV16E7不同结构域缺失表达载体
     用已克隆到pEGFP-N1载体上测序正确的HPV16E7的cDNA为模板,经常规PCR或一步反向PCR致突变策略扩增得到不同HPV16E7结构域缺失的表达载体:pEGFP-HPV16E7/CR1&2、pEGFP- HPV16E7/CR1&3和pEGFP- HPV16E7/CR2&3。
     结论:
     1.HDAC1在不同HPV感染的宫颈癌细胞系中表达有差异,在C-33A(无HPV感染)细胞中表达最高,在CaSki(HPV16感染)细胞中表达次之,在HeLa(HPV18感染)细胞中表达最低。
     2.HPV病毒E7原癌蛋白可以下调宫颈癌细胞系中HDAC1表达。
Objective: Cervical cancer is one of the most common malignancies among women worldwide. Human papillomavirus (HPV) has been identified as the major etiological factor in cervical cancer through clinical medicine and epidemiological research. And the HPV16, 18 classified into high-risk group are associated with more than 90% of cervical cancer. E7 oncoprotein plays an important role in transformation. On the other hand, the abnormal expression of histone deacetylase1 (HDAC1) is observed in many cancer. Therefore, these reseaches were conducted to investigate the expression level of HDAC1 in HPV positive and negative cervical cells and regulation of HDAC1 by HPV E7 oncoprotein.
     Methods and Results:
     1. Studied using RT-PCR and western blot, the expression of HDAC1 was differently in the C-33A, CaSki and HeLa cervical cancer lines, highest in C-33A followed by CaSki and HeLa in turn.
     2. After transient transfection of plasmid pEGFP-HPV18 E7, mRNA and protein of HDAC1 were observed downregulation.
     3. siRNA targeting HPV16 E7 was transfected into CaSki human cervical cancer cells, then mRNA of HDAC1 was observed upregulation.
     4. The encoding fragements of three different deleted mutants in HPV16 E7 were constructed by PCR or one-step opposite-direction PCR, which were lacking its CR1, CR2 and CR3 respectively. They were consistent with the sequence reported in GenBank. Conclusion: We concluded that the expression of HDAC1 may be associated with HPV infection and its subtypes, and downregulation by HPV E7 oncoprotein.
引文
1 Narisawa-Saito M, Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins[J]. Cancer Sci, 2007,98(10):1505-11.
    2 Munger K, Baldwin A, Edwards KM, et al. Mechanisms of human papillomavirus-induced oncogenesis[J]. J Virol, 2004,78(21):11451-60.
    3 Wu SY, Chiang CM. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation[J]. J Biol Chem, 2007,282(18):13141-5.
    4 Gammoh N, Grm HS, Massimi P, et al. Regulation of human papillomavirus type 16 E7 activity through direct protein interaction with the E2 transcriptional activator[J]. J Virol, 2006,80(4):1787-97.
    5 Ronco LV, Karpova AY, Vidal M, et al. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity[J]. Genes Dev, 1998,12(13):2061-72.
    6 Lee SS, Weiss RS,Javier RT. Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein[J]. Proc Natl Acad Sci U S A, 1997,94(13):6670-5.
    7 Nakagawa S, Huibregtse JM. Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase[J]. Mol Cell Biol, 2000,20(21):8244-53.
    8 Lee SS, Glaunsinger B, Mantovani F, et al. Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins[J]. J Virol, 2000,74(20):9680-93.
    9 Glaunsinger BA, Lee SS, Thomas M, et al. Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins[J]. Oncogene, 2000,19(46):5270-80.
    10 Thomas M, Laura R, Hepner K, et al. Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation[J]. Oncogene, 2002,21(33):5088-96.
    11 Handa K, Yugawa T, Narisawa-Saito M, et al. E6AP-dependent degradation of DLG4/PSD95 by high-risk human papillomavirus type 18 E6 protein[J]. J Virol, 2007,81(3):1379-89.
    12 Lefort K, Mandinova A, Ostano P, et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases[J]. Genes Dev, 2007,21(5):562-77.
    13 Yugawa T, Handa K, Narisawa-Saito M, et al. Regulation of Notch1 gene expression by p53 in epithelial cells[J]. Mol Cell Biol, 2007,27(10):3732-42.
    14 Nakatani Y, Konishi H, Vassilev A, et al. p600, a unique protein required for membrane morphogenesis and cell survival[J]. Proc Natl Acad Sci U S A, 2005,102(42):15093-8.
    15 Munger K, Basile JR, Duensing S, et al. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein[J]. Oncogene, 2001,20(54):7888-98.
    16 Darnell GA, Schroder WA, Antalis TM, et al. Human papillomavirus E7 requires the protease calpain to degrade the retinoblastoma protein[J]. J Biol Chem, 2007,282(52):37492-500.
    17 Jewers RJ, Hildebrandt P, Ludlow JW, et al. Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes[J]. J Virol, 1992,66(3):1329-35.
    18 Anton M, Horky M, Kuchtickova S, et al. Immunohistochemical detection of acetylation and phosphorylation of histone H3 in cervical smears[J]. Ceska Gynekol, 2004,69(1):3-6.
    19 Yoo YG, Na TY, Seo HW, et al. Hepatitis B virus X protein induces the expression of MTA1 and HDAC1, which enhances hypoxia signaling in hepatocellular carcinoma cells[J]. Oncogene, 2008,27(24):3405-13.
    20余丽.表观遗传学的研究和发展[J].安徽农业科学, 2010,38 (2): 588-591.
    21 Plath K, Fang J, Mlynarczyk-Evans SK, et al. Role of histone H3 lysine 27 methylation in X inactivation[J]. Science, 2003,300(5616):131-5.
    22 Roth SY, Denu JM,Allis CD. Histone acetyltransferases[J]. Annu Rev Biochem, 2001,70:81-120.
    23 de Ruijter AJ, van Gennip AH, Caron HN, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family[J]. Biochem J, 2003,370(Pt 3):737-49.
    1 Narisawa-Saito M, Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins[J]. Cancer Sci, 2007,98(10):1505-11.
    2 Munger K, Baldwin A, Edwards KM, et al. Mechanisms of human papillomavirus-induced oncogenesis[J]. J Virol, 2004,78(21):11451-60.
    3 Steenbergen RD, de Wilde J, Wilting SM, et al. HPV-mediated transformation of the anogenital tract[J]. J Clin Virol, 2005,32 Suppl 1:S25-33.
    4 Stanley M. Immune responses to human papillomavirus[J]. Vaccine, 2006,24 Suppl 1:S16-22.
    5 Elfgren K, Kalantari M, Moberger B, et al. A population-based five-year follow-up study of cervical human papillomavirus infection[J]. Am J Obstet Gynecol, 2000,183(3):561-7.
    6 Pett M, Coleman N. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis?[J]. J Pathol, 2007,212(4):356-67.
    7 Wentzensen N, Vinokurova S,von Knebel Doeberitz M. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract[J]. Cancer Res, 2004,64(11):3878-84.
    8 Winder DM, Pett MR, Foster N, et al. An increase in DNA double-strand breaks, induced by Ku70 depletion, is associated with human papillomavirus 16 episome loss and de novo viral integration events[J]. J Pathol, 2007,213(1):27-34.
    9 Wu SY, Chiang CM. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation[J]. J Biol Chem, 2007,282(18):13141-5.
    10 Gammoh N, Grm HS, Massimi P, et al. Regulation of human papillomavirus type 16 E7 activity through direct protein interaction with the E2 transcriptional activator[J]. J Virol, 2006,80(4):1787-97.
    11 Nees M, Geoghegan JM, Hyman T, et al. Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes[J].J Virol, 2001,75(9):4283-96.
    12 Ronco LV, Karpova AY, Vidal M, et al. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity[J]. Genes Dev, 1998,12(13):2061-72.
    13 Park JS, Kim EJ, Kwon HJ, et al. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis[J]. J Biol Chem, 2000,275(10):6764-9.
    14 Barnard P, Payne E,McMillan NA. The human papillomavirus E7 protein is able to inhibit the antiviral and anti-growth functions of interferon-alpha[J]. Virology, 2000,277(2):411-9.
    15 Sherman L, Itzhaki H, Jackman A, et al. Inhibition of serum- and calcium-induced terminal differentiation of human keratinocytes by HPV 16 E6: study of the association with p53 degradation, inhibition of p53 transactivation, and binding to E6BP[J]. Virology, 2002,292(2):309-20.
    16 Rangarajan A, Talora C, Okuyama R, et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation[J]. EMBO J, 2001,20(13):3427-36.
    17 Nicolas M, Wolfer A, Raj K, et al. Notch1 functions as a tumor suppressor in mouse skin[J]. Nat Genet, 2003,33(3):416-21.
    18 Zagouras P, Stifani S, Blaumueller CM, et al. Alterations in Notch signaling in neoplastic lesions of the human cervix[J]. Proc Natl Acad Sci U S A, 1995,92(14):6414-8.
    19 Talora C, Sgroi DC, Crum CP, et al. Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation[J]. Genes Dev, 2002,16(17):2252-63.
    20 Talora C, Cialfi S, Segatto O, et al. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways[J]. Exp Cell Res, 2005,305(2):343-54.
    21 Lefort K, Mandinova A, Ostano P, et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases[J]. Genes Dev, 2007,21(5):562-77.
    22 Yugawa T, Handa K, Narisawa-Saito M, et al. Regulation of Notch1 gene expression by p53 in epithelial cells[J]. Mol Cell Biol, 2007,27(10):3732-42.
    23 Stiewe T. The p53 family in differentiation and tumorigenesis[J]. Nat Rev Cancer, 2007,7(3):165-8.
    24 Veeraraghavalu K, Subbaiah VK, Srivastava S, et al. Complementation of human papillomavirus type 16 E6 and E7 by Jagged1-specific Notch1-phosphatidylinositol 3-kinase signaling involves pleiotropic oncogenic functions independent of CBF1;Su(H);Lag-1 activation[J]. J Virol, 2005,79(12):7889-98.
    25 Watson RA, Thomas M, Banks L, et al. Activity of the human papillomavirus E6 PDZ-binding motif correlates with an enhanced morphological transformation of immortalized human keratinocytes[J]. J Cell Sci, 2003,116(Pt 24):4925-34.
    26 Simonson SJ, Difilippantonio MJ,Lambert PF. Two distinct activities contribute to human papillomavirus 16 E6's oncogenic potential[J]. Cancer Res, 2005,65(18):8266-73.
    27 Lee SS, Weiss RS,Javier RT. Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein[J]. Proc Natl Acad Sci U S A, 1997,94(13):6670-5.
    28 Nakagawa S, Huibregtse JM. Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase[J]. Mol Cell Biol, 2000,20(21):8244-53.
    29 Lee SS, Glaunsinger B, Mantovani F, et al. Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins[J]. J Virol, 2000,74(20):9680-93.
    30 Glaunsinger BA, Lee SS, Thomas M, et al. Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins[J]. Oncogene, 2000,19(46):5270-80.
    31 Thomas M, Laura R, Hepner K, et al. Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation[J]. Oncogene, 2002,21(33):5088-96.
    32 Handa K, Yugawa T, Narisawa-Saito M, et al. E6AP-dependent degradation of DLG4/PSD95 by high-risk human papillomavirus type 18 E6 protein[J]. J Virol,22 Yugawa T, Handa K, Narisawa-Saito M, et al. Regulation of Notch1 gene expression by p53 in epithelial cells[J]. Mol Cell Biol, 2007,27(10):3732-42.
    23 Stiewe T. The p53 family in differentiation and tumorigenesis[J]. Nat Rev Cancer, 2007,7(3):165-8.
    24 Veeraraghavalu K, Subbaiah VK, Srivastava S, et al. Complementation of human papillomavirus type 16 E6 and E7 by Jagged1-specific Notch1-phosphatidylinositol 3-kinase signaling involves pleiotropic oncogenic functions independent of CBF1;Su(H);Lag-1 activation[J]. J Virol, 2005,79(12):7889-98.
    25 Watson RA, Thomas M, Banks L, et al. Activity of the human papillomavirus E6 PDZ-binding motif correlates with an enhanced morphological transformation of immortalized human keratinocytes[J]. J Cell Sci, 2003,116(Pt 24):4925-34.
    26 Simonson SJ, Difilippantonio MJ,Lambert PF. Two distinct activities contribute to human papillomavirus 16 E6's oncogenic potential[J]. Cancer Res, 2005,65(18):8266-73.
    27 Lee SS, Weiss RS,Javier RT. Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein[J]. Proc Natl Acad Sci U S A, 1997,94(13):6670-5.
    28 Nakagawa S, Huibregtse JM. Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase[J]. Mol Cell Biol, 2000,20(21):8244-53.
    29 Lee SS, Glaunsinger B, Mantovani F, et al. Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins[J]. J Virol, 2000,74(20):9680-93.
    30 Glaunsinger BA, Lee SS, Thomas M, et al. Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins[J]. Oncogene, 2000,19(46):5270-80.
    31 Thomas M, Laura R, Hepner K, et al. Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation[J]. Oncogene, 2002,21(33):5088-96.
    32 Handa K, Yugawa T, Narisawa-Saito M, et al. E6AP-dependent degradation of DLG4/PSD95 by high-risk human papillomavirus type 18 E6 protein[J]. J Virol,
    44 Darnell GA, Schroder WA, Antalis TM, et al. Human papillomavirus E7 requires the protease calpain to degrade the retinoblastoma protein[J]. J Biol Chem, 2007,282(52):37492-500.
    45 Jewers RJ, Hildebrandt P, Ludlow JW, et al. Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes[J]. J Virol, 1992,66(3):1329-35.
    46 Chan HM, Krstic-Demonacos M, Smith L, et al. Acetylation control of the retinoblastoma tumour-suppressor protein[J]. Nat Cell Biol, 2001,3(7):667-74.
    47 Nguyen DX, McCance DJ. Role of the retinoblastoma tumor suppressor protein in cellular differentiation[J]. J Cell Biochem, 2005,94(5):870-9.
    48 Avvakumov N, Torchia J,Mymryk JS. Interaction of the HPV E7 proteins with the pCAF acetyltransferase[J]. Oncogene, 2003,22(25):3833-41.
    49 Pim D, Massimi P, Dilworth SM, et al. Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A[J]. Oncogene, 2005,24(53):7830-8.
    50 Menges CW, Baglia LA, Lapoint R, et al. Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein[J]. Cancer Res, 2006,66(11):5555-9.
    51 Wise-Draper TM, Allen HV, Thobe MN, et al. The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7[J]. J Virol, 2005,79(22):14309-17.
    52 Bischof O, Nacerddine K,Dejean A. Human papillomavirus oncoprotein E7 targets the promyelocytic leukemia protein and circumvents cellular senescence via the Rb and p53 tumor suppressor pathways[J]. Mol Cell Biol, 2005,25(3):1013-24.
    53 Rajagopalan H, Lengauer C. Aneuploidy and cancer[J]. Nature, 2004,432(7015):338-41.
    54 Duensing S, Munger K. Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins[J]. Int J Cancer, 2004,109(2):157-62.
    55 Duensing S, Munger K. Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation ofretinoblastoma protein family members[J]. J Virol, 2003,77(22):12331-5.
    56 Tritarelli A, Oricchio E, Ciciarello M, et al. p53 localization at centrosomes during mitosis and postmitotic checkpoint are ATM-dependent and require serine 15 phosphorylation[J]. Mol Biol Cell, 2004,15(8):3751-7.
    57 Liu Y, Heilman SA, Illanes D, et al. p53-independent abrogation of a postmitotic checkpoint contributes to human papillomavirus E6-induced polyploidy[J]. Cancer Res, 2007,67(6):2603-10.
    58 Schaeffer AJ, Nguyen M, Liem A, et al. E6 and E7 oncoproteins induce distinct patterns of chromosomal aneuploidy in skin tumors from transgenic mice[J]. Cancer Res, 2004,64(2):538-46.
    59 Patel D, Incassati A, Wang N, et al. Human papillomavirus type 16 E6 and E7 cause polyploidy in human keratinocytes and up-regulation of G2-M-phase proteins[J]. Cancer Res, 2004,64(4):1299-306.
    60 Anand S, Penrhyn-Lowe S,Venkitaraman AR. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol[J]. Cancer Cell, 2003,3(1):51-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700