人源异戊二烯焦磷酸异构酶及真核起始因子2B的结构生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.人源异戊二烯焦磷酸异构酶的结构生物学研究
     人源异戊二烯焦磷酸异构酶(IPP异构酶)是异戊二烯类化合物生物合成途径中的关键性的酶,它催化异戊二烯焦磷酸(IPP)与二甲基烯丙基焦磷酸(DMAPP)之间的相互异构转化,而异戊二烯焦磷酸和二甲基烯丙基焦磷酸则是数目众多的异戊二烯类化合物的共同前体。这里我们首先用单波长反常散射的办法解析了人源IPP异构酶1.6(?)的晶体结构,其空间群为P212121,并随后得到了另外两种不同晶型的晶体结构,空间群分别是C2和P1,其中空间群P1的晶体中是无机培养基表达的硒代蛋白,它们都与大肠杆菌中同源蛋白的结构相似。这些结构首先展示了在人源IPP异构酶的N端区域存在着一个不稳定的α螺旋,在空间群C2和P1的晶体结构中这个α螺旋是形成的,但是在空间群P212121的晶体结构中却打开成了一个无规则卷曲,这个α螺旋覆盖在IPP异构酶活性口袋的上方,可能控制底物的进出。然后在空间群P1的晶体结构中,发现在活性口袋中结合了一个可能来自大肠杆菌的底物类似物焦磷酸乙醇胺(EIPP),根据这个结构我们认为IPP异构酶催化的底物IPP质子化与去质子化反应中质子的供体可能是结合在活性口袋中的一个水分子,并且很可能IPP和DMAPP采用不同的构象结合IPP异构酶。另外这三个不同晶型的晶体结构中活性相关的氨基酸的构象并不完全相同,据此我们认为人源IPP异构酶中存在着一个底物诱导的活性位点构象变化的过程。最后根据空间群P212121的晶体结构,我们提出了一个高浓度的Mn~(2+)抑制人源IPP异构酶活性的机理。
     2.人源真核翻译起始因子eIF2B的结构生物学研究
     真核翻译起始过程是一个复杂的过程,其主要目的是为了使mRNA能够结合在核糖体上并使得起始Met-tRNA_i与mRNA上的AUG起始密码子正确配对,从而可以开始肽链的延伸过程。这个翻译起始过程需要很多蛋白质的帮助,它们被称为真核起始因子(eukaryotic initiation factor,eIF)。其中eIF2是携带起始Met-tRNA_i结合到核糖体的重要因子,它只有在结合GTP时才能携带起始Met-tRNA_i,但是正常情况下eIF2对GDP的亲和力要高于GTP,所以这时就需要一个鸟苷酸交换因子eIF2B的帮助把eIF2·GDP变为eIF2·GTP,这个鸟苷酸交换反应是整个翻译起始过程最重要的调控点之一。eIF2B是一个包含五个亚基的大复合物,它又可以分为调节亚复合物和催化亚复合物,其中由α,β和δ亚基组成的调节亚复合物主要应对eIF2磷酸化对eIF2B活性的抑制作用,而由γ和ε亚基组成的催化亚复合物则主要发挥催化鸟苷酸交换的活性。我们表达纯化了人源eIF2Bα亚基并用分子置换的方法解析了其2.6(?)分辨率的晶体结构,eIF2Bα的结构包含两个结构域,N端结构域和C端结构域,根据以前生化研究的结果我们描述了eIF2Bα上一个可能与eIF2或磷酸化eIF2相互作用的表面,并认为其C端结构域中的Rossmann折叠花样可能介导了其与β及δ亚基形成调节亚复合物,除此之外,我们还根据eIF2Bα的结构提出了其中两个被鉴定与一类人遗传疾病VWM相关的突变致病的可能机理。另外,我们克隆并表达纯化了人源eIF2Bε亚基的C端结构域并收集了两套不同分辨率的晶体衍射数据,这个结构域被证明是整个eIF2B复合物中最核心的发挥催化鸟苷酸交换活性的区域,其晶体结构的解析还在进行中,同时我们还克隆表达并纯化了融合MBP的人源eIF2Bβ和γ亚基蛋白。所有的这些工作为以后进一步eIF2B复合物的结构生物学研究打下了基础。
1. Structural studies on human IPP isomerase
     Human IPP isomerase is an essential enzyme in isoprenoid biosynthetic pathway. It catalyzes isomerization of IPP and DMAPP, which are the basic building blocks for the subsequent biosynthesis of numerous isoprenoid products. Here we solved the crystal structure of human IPP isomerase at 1.6A resolution in space group P212121 by single-wavelength anomalous diffraction (SAD) method. High similarity between structures of human and E.coli IPP isomreases was discovered. Then we got another two different structures which belong to space group C2 and P1. The protein used for crystals belonging to space group P1 was expressed in inorganic M9 medium containing selenomethionine. These structures of human IPP isomerase show a flexible N-terminalα-helix covering the active pocket blocking the substrate entrance. Thisα-helix is formed in the structures of space group C2 and P1, but absent in the structure of space group P212121. In the structure of space group P1, a natural substrate analog ethanol amine pyrophosphate (EIPP) which is probably from E.coli was discovered binding in the active pocket. Based on this structure, a water molecule in the active pocket was proposed to be the direct proton donor for IPP and different conformations of IPP and DMAPP bound in the enzyme were also proposed. Besides, the conformations of the catalytically essential residues are not the same in these three structures and we proposed a possible substrate-induced conformation change of the active pocket for human IPP isomerase. The inhibition mechanism of high Mn~(2+) concentrations for human IPP isomerase is also discussed based on the structure of space group P212121.
     2. Structural studies on human eukaryotic initiation factor 2B (eIF2B)
     Eukaryotic translation initiation is a sophisticated process that is to ensure the binding of mRNA to ribosome and the initiator Met-tRNA_i is correctly positioned at the AUG start cordon of each mRNA. Multiple proteins named eukaryotic initiation factors (eIFs) are needed in this process. Among these, eIF2 could deliver the initiator Met-tRNA_i to the ribosome with GTP. Because that eIF2 has a higher affinity for GDP than GTP, a guanine nucleotide exchange factor eIF2B is needed to promote the exchange of GTP to GDP and results in the formation of active eIF2·GTP. complex. This reaction is one of the most important regulation points during the whole translation initiation process. eIF2B is a big complex containing five subunits. It could be divided into two subcomplexes, a regulatory subcomplex and a catalytic subcomplex. The regulatory subcomplex containing subunitsα,βand 5 sensitises eIF2B to inhibition by phosphorylation of eIF2, and the catalytic subcomplex containing subunits y and s possesses the guanine nucleotide exchange activity. We expressed and purified human eIF2Ba subunit and solved its structure at 2.6A resolution by MR method. The structure of eIF2Ba contains two domains, an N terminal domain and a C terminal domain. According to former biochemical studies, we proposed a potential binding surface on eIF2Ba for the interaction with eIF2 or phosphorylated eIF2. We also proposed that the Rossmann fold in its C terminal domain may mediate the interaction betweenα,βandδsubunits and discussed two residues in eIF2Ba of which the mutations were characterized before in a severe genetic disease VWM. Besides, we cloned, expressed, purified and crystallized a C terminal domain of human eIF2Bs subunit and collected two sets of diffraction data. The structure determination is undergoing. This segment was proven to be the core domain in eIF2B that possesses the guanine nucleotide exchange activity. In the meantime, we cloned, expressed and purified two other subunitsβandγfused with MBP tag. All these work laid solid foundation for further structural studies on the whole eIF2B complex.
引文
A.Vagin, A. T. (1997). MOLREP: an automated program for molecular replacement. J Appl Cryst 50,1022-1025.
    Abrahams, J. P., and Leslie, A. G. (1996). Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr D Biol Crystallogr 52, 30-42.
    Agranoff, B. W., Eggerer, H., Henning, U., and Lynen, F. (1960). Biosynthesis of terpenes. VII. Isopentenyl pyrophosphate isomerase. J Biol Chem 235,326-332.
    Carrigan, C. N., and Poulter, C. D. (2003). Zinc is an essential cofactor for type I isopentenyl diphosphate:dimethylallyl diphosphate isomerase. J Am Chem Soc 125,9008-9009.
    Clarke, S. (1992). Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 61, 355-386.
    de Ruyck, J., Durisotti, V., Oudjama, Y., and Wouters, J. (2006). Structural role for TYR 104 in E. coli isopentenyl diphosphate isomerase: Site-directed mutagenesis, enzymology and protein crystallography. J Biol Chem.
    Dever, T. E., Sripriya, R., McLachlin, J. R., Lu, J., Fabian, J. R., Kimball, S. R., and Miller, L. K. (1998). Disruption of cellular translational control by a viral truncated eukaryotic translation initiation factor 2alpha kinase homolog. Proc Natl Acad Sci U S A 95,4164-4169.
    Ding, V. D., Sheares, B. T., Bergstrom, J. D., Ponpipom, M. M., Perez, L. B., and Poulter, C. D. (1991). Purification and characterization of recombinant human farnesyl diphosphate synthase expressed in Escherichia coli. Biochem J 275 (Pt 1), 61-65.
    Dougherty, D. A. (1996). Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271, 163-168.
    Durbecq, V., Sainz, G, Oudjama, Y., Clantin, B., Bompard-Gilles, C., Tricot, C, Caillet, J., Stalon, V., Droogmans, L., and Villeret, V. (2001). Crystal structure of isopentenyl diphosphate:dimethylallyl diphosphate isomerase. Embo J 20,1530-1537.
    Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132.
    Hahn, F. M., Hurlburt, A. P., and Poulter, C. D. (1999). Escherichia coli open reading frame 696 is idi, a nonessential gene encoding isopentenyl diphosphate isomerase. J Bacteriol 181, 4499.4504.
    Hahn, F. M., Xuan, J. W., Chambers, A. F., and Poulter, C. D. (1996). Human isopentenyl diphosphate: dimethylallyl diphosphate isomerase: overproduction, purification, and characterization. Arch Biochem Biophys 332, 30-34.
    Kabsch, W., and Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22,2577-2637.
    Kaneda, K., Kuzuyama, T., Takagi, M., Hayakawa, Y., and Seto, H. (2001). An unusual isopentenyl diphosphate isomerase found in the mevalonate pathway gene cluster from Streptomyces sp. strain CL190. Proc Natl Acad Sci U S A 98, 932-937.
    Krissinel, E., and Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60, 2256-2268.
    Kuzuyama, T., and Seto, H. (2003). Diversity of the biosynthesis of the isoprene units. Nat Prod Rep 20,171-183.
    Lange, B. M., Rujan, T., Martin, W., and Croteau, R. (2000). Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci U S A 97, 13172-13177.
    Lee, S., and Poulter, C. D. (2006). Escherichia coli type I isopentenyl diphosphate isomerase: structural and catalytic roles for divalent metals. J Am Chem Soc 128,11545-11550.
    Lu, X. J., Christensen, D. J., and Poulter, C. D. (1992). Isopentenyl-diphosphate isomerase: irreversible inhibition by 3-methyl-3,4-epoxybutyl diphosphate. Biochemistry 31, 9955-9960.
    Luckman, S. P., Hughes, D. E., Coxon, F. P., Graham, R., Russell, G., and Rogers, M. J. (1998). Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13, 581-589.
    McCaskill, D., and Croteau, R. (1997). Prospects for the bioengineering of isoprenoid biosynthesis. Adv Biochem Eng Biotechnol 55, 107-146.
    Muehlbacher, M., and Poulter, C. D. (1988). Isopentenyl-diphosphate isomerase: inactivation of the enzyme with active-site-directed irreversible inhibitors and transition-state analogues. Biochemistry 27, 7315-7328.
    Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53,240-255.
    Notredame, C, Higgins, D. G, and Heringa, J. (2000). T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302,205-217.
    Otwinowski, Z. M., W. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode.. Methods in Enzymology 276, 307-326.
    Painter, J., and Merritt, E. A. (2005). A molecular viewer for the analysis of TLS rigid-body motion in macromolecules. Acta Crystallogr D Biol Crystallogr 61,465-471.
    Paton, V. G., Shackelford, J. E., and Krisans, S. K. (1997). Cloning and subcellular localization of hamster and rat isopentenyl diphosphate dimethylallyl diphosphate isomerase. A PTS1 motif targets the enzyme to peroxisomes. J Biol Chem 272,18945-18950.
    Perrakis, A., Morris, R., and Lamzin, V. S. (1999). Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6,458-463.
    Ramos-Valdivia, A. C, van der Heijden, R., and Verpoorte, R. (1997). Isopentenyl diphosphate isomerase: a core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function. Nat Prod Rep 14, 591-603.
    Reardon, J. E., and Abeles, R. H. (1986). Mechanism of action of isopentenyl pyrophosphate isomerase: evidence for a carbonium ion intermediate. Biochemistry 25, 5609-5616.
    Richarme, G., and Caldas, T. D. (1997). Chaperone properties of the bacterial periplasmic substrate-binding proteins. J Biol Chem 272,15607-15612.
    Rodan, G A., and Martin, T. J. (2000). Therapeutic approaches to bone diseases. Science 289,1508-1514.
    Rohdich, F., Bacher, A., and Eisenreich, W. (2004). Perspectives in anti-infective drug design. The late steps in the biosynthesis of the universal terpenoid precursors, isopentenyl diphosphate and dimethylallyl diphosphate. Bioorg Chem 32,292-308.
    Rohmer, M., Knani, M., Simonin, P., Sutter, B., and Sahm, H. (1993). Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295 (Ft 2), 517-524.
    Russell, G, Mueller, G, Shipman, C, and Croucher, P. (2001). Clinical disorders of bone resorption. Novartis Found Symp 232,251-267; discussion 267-271.
    Satterwhite, D. M. (1985). Isopentenyldiphosphate delta-isomerase. Methods Enzymol 110, 92-99.
    Schneider, T. R, and Sheldrick, G. M. (2002). Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr 58, 1772-1779.
    Schuttelkopf, A. W., and van Aalten, D. M. (2004). PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60,1355-1363.
    Schwender, J., Seemann, M., Lichtenthaler, H. K., and Rohmer, M. (1996). Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316 (Pt 1), 73-80.
    Spurgeon,S.L.P.,J.W.(1981).Biosynthesis of Isoprenoid Compounds,Vol 1(New York:John Wiley and Sons).
    Street,I.P.,Christensen,D.J.,and Poulter,C.D.(1990).Hydrogen Exchange during the Enzyme-Catalyzed Isomerization of Isopentenyl Diphosphate and Dimethylallyl Diphosphate.J Am Chem Soc 112,8577-8578.
    Street,I.P.,Coffman,H.R.,Baker,J.A.,and Poulter,C.D.(1994).Identification of Cys139 and Glu207 as catalytically important groups in the active site of isopentenyl diphosphate:climethylallyl diphosphate isomerase.Biochemistry 33,4212-4217.
    Vonrhein,C.,Blanc,E.,Roversi,P.& Bricogne,G.(2005).Crystallographic Methods (Totowa,NJ:Humana Press).
    Watts,N.B.(2001).Treatment of osteoporosis with bisphosphonates.Rheum Dis Clin North Am 27,197-214.
    Wilhelm,M.,Kunzmann,V.,Eckstein,S.,Reimer,P.,Weissinger,F.,Ruediger,T.,and Tony,H.P.(2003).Gammadelta T cells for immune therapy of patients with lymphoid malignancies.Blood 102,200-206.
    Winn,M.D.,Murshudov,G.N.& Papiz,M.Z.(2003).Macromolecular TLS refinement in REFMAC at moderate resolutions.Methods Enzymol 374,300-321.
    Winter-Vann,A.M.,and Casey,P.J.(2005).Post-prenylation-processing enzymes as new targets in oncogenesis.Nat Rev Cancer 5,.405-412.
    Wouters,J.,Oudjama,Y.,Barkley,S.J.,Tricot,C.,Stalon,V.,Droogmans,L.,and Poulter,C.D.(2003a).Catalytic mechanism of Escherichia coli isopentenyl diphosphate isomerase involves Cys-67,Glu-116,and Tyr-104 as suggested by crystal structures of complexes with transition state analogues and irreversible inhibitors.J Biol Chem 278,11903-11908.
    Wouters,J.,Oudjama,Y.,Ghosh,S.,Stalon,V.,Droogmans,L.,and Oldfield,E.(2003b).Structure and mechanism of action of isopentenylpyrophosphate-dimethylallylpyrophosphate isomerase.J Am Chem Soc 125,3198-3199.
    Wouters,J.,Oudjama,Y.,Stalon,V.,Droogmans,L.,and Poulter,C.D.(2004).Crystal structure of the C67A mutant of isopentenyl diphosphate isomerase complexed with a mechanism-based irreversible inhibitor.Proteins 54,216-221.
    Wouters,J.,Yin,F.,Song,Y.,Zhang,Y.,Oudjama,Y.,Stalon,V.,Droogmans,L.,Morita,C.T.,and Oldfield,.E.(2005).A crystallographic investigation of phosphoantigen binding to isopentenyl pyrophosphate/dimethylallyl pyrophosphate isomerase.J Am Chem Soc 127,536-537.
    Alone,P.V.,and Dever,T.E.(2006).Direct binding of translation initiation factor eIF2gamma-G domain to its GTPase-activating and GDP-GTP exchange factors eIF5 and eIF2B epsilon.J Biol Chem 281,12636-12644.
    Altmann,M.,Muller,P.P.,Wittmer,B.,Ruchti,F.,Lanker,S.,and Trachsel,H.(1993).A Saccharomyces cerevisiae homologue of mammalian translation initiation factor 4B contributes to RNA helicase activity.Embo J 12,3997-4003.
    Asano,K.,Clayton,J.,Shalev,A.,and Hinnebusch,A.G.(2000).A multifactor complex of eukaryotic initiation factors,eIF1,eIF2,eIF3,eIF5,and initiator tRNA(Met)is an important translation initiation intermediate in vivo.Genes Dev 14,2534-2546.
    Asano,K.,Krishnamoorthy,T.,Phan,L.,Pavitt,G.D.,and Hinnebusch,A.G.(1999).
    Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon,GTPase-activating and GDP-GTP exchange factors in translation initiation,mediate binding to their common substrate eIF2.Embo J 18,1673-1688.
    Ashida,H.,Saito,Y.,Kojima,C.,Kobayashi,K.,Ogasawara,N.,and Yokota,A.(2003).A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO.Science 302,286-290.
    Aslanidis,C.,and de Jong,P.J.(1990).Ligation-independent cloning of PCR products (LIC-PCR).Nucleic Acids Res 18,6069-6074.
    Baumann,N.,and Pham-Dinh,D.(2001).Biology of oligodendrocyte and myelin in the mammalian central nervous system.Physiol Rev 81,871-927.
    Biason-Lauber,A.,Lang-Muritano,M.,Vaccaro,T.,and Schoenle,E.J.(2002).Loss of kinase activity in a patient with Wolcott-Rallison syndrome caused by a novel mutation in the EIF2AK3 gene.Diabetes 51,2301-2305.
    Boesen,T.,Mohammad,S.S.,Pavitt,G.D.,and Andersen,G.R.(2004).Structure of the catalytic fragment of translation initiation factor 2B and identification of a critically important catalytic residue.J Biol Chem 279,10584-10592.
    Boriack-Sjodin,P.A.,Margarit,S.M.,Bar-Sagi,D.,and Kuriyan,J.(1998).The structural basis of the activation of Ras by Sos.Nature 394,337-343.
    Brickwood,S.,Bonthron,D.T.,Al-Gazali,L.I.,Piper,K.,Hearn,T.,Wilson,D.I.,and Hanley,N.A.(2003).Wolcott-Rallison syndrome:pathogenic insights into neonatal diabetes from new mutation and expression studies of EIF2AK3.J Med Genet 40,685-689.
    Bumann, M., Djafarzadeh, S., Oberholzer, A. E., Bigler, P., Altmann, M., Trachsel, H., and Baumann, U. (2004). Crystal structure of yeast Ypr118w, a methylthioribose-1-phosphate isomerase related to regulatory eIF2B subunits. J Biol Chem 279, 37087-37094.
    Choi, S. K., Lee, J. H, Zoll, W. L., Merrick, W. C, and Dever, T. E. (1998). Promotion of met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast. Science 280, 1757-1760.
    Dar, A. C, Dever, T. E., and Sicheri, F. (2005). Higher-order substrate recognition of eEF2alpha by the RNA-dependent protein kinase PKR. Cell 122, 887-900.
    Delepine, M., Nicolino, M., Barrett, T., Golamaully, M., Lathrop, G M., and Julier, C. (2000). EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 25,406-409.
    Dever, T. E., Feng, L., Wek, R. C, Cigan, A. M., Donahue, T. F., and Hinnebusch, A. G. (1992). Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68,585-596.
    Dever, T. E., Sripriya, R., McLachlin, J. R., Lu, J., Fabian, J. R., Kimball, S. R., and Miller, L. K. (1998). Disruption of cellular translational control by a viral truncated eukaryotic translation initiation factor 2alpha kinase homolog. Proc Natl Acad Sci U S A 95,4164-4169.
    Dholakia, J. N., and Wahba, A. J. (1989). Mechanism of the nucleotide exchange reaction in eukaryotic polypeptide chain initiation. Characterization of the guanine nucleotide exchange factor as a GTP-binding protein. J Biol Chem 264,546-550.
    Donnelly, M. I., Zhou, M., Millard, C. S., Clancy, S., Stols, L., Eschenfeldt, W. H., Collart, F. R., and Joachimiak, A. (2006). An expression vector tailored for large-scale, high-throughput purification of recombinant proteins. Protein Expr Purif 47,446-454.
    Dougherty, W. G, and Parks, T. D. (1989). Molecular genetic and biochemical evidence for the involvement of the heptapeptide cleavage sequence in determining the reaction profile at two tobacco etch virus cleavage sites in cell-free assays. Virology 172, 145-155.
    Dougherty, W. G, Parks, T. D., Cary, S. M., Bazan, J. F., and Fletterick, R. J. (1989). Characterization of the catalytic residues of the tobacco etch virus 49-kDa proteinase. Virology 772,302-310.
    Fabian, J. R., Kimball, S. R., Heinzinger, N. K., and Jefferson, L. S. (1997). Subunit assembly and guanine nucleotide exchange activity of eukaryotic initiation factor-2B expressed in Sf9 cells. J Biol Chem 272,12359-12365.
    Fabian, J. R., Kimball, S. R., and Jefferson, L. S. (1998). Reconstitution and purification of eukaryotic initiation factor 2B (eIF2B) expressed in Sf21 insect cells. Protein Expr Purif 75, 16-22.
    Fogli, A., and Boespflug-Tanguy, O. (2006). The large spectrum of eIF2B-related diseases. Biochem Soc Trans 34, 22-29.
    Fogli, A., Rodriguez, D., Eymard-Pierre, E., Bouhour, F., Labauge, P., Meaney, B. F., Zeesman, S., Kaneski, C. R., Schiffinann, R., and Boespflug-Tanguy, O. (2003). Ovarian failure related to eukaryotic initiation factor 2B mutations. Am J Hum Genet 72,1544-1550.
    Fox, J. D., and Waugh, D. S. (2003). Maltose-binding protein as a solubility enhancer. Methods Mol Biol 205, 99-117.
    Gomez, E., Mohammad, S. S., and Pavitt, G. D. (2002). Characterization of the minimal catalytic domain within eIF2B: the guanine-nucleotide exchange factor for translation initiation. Embo J 21, 5292-5301.
    Gomez, E., and Pavitt, G. D. (2000). Identification of domains and residues within the epsilon subunit of eukaryotic translation initiation factor 2B (eIF2Bepsilon) required for guanine nucleotide exchange reveals a novel activation function promoted by eIF2B complex formation. Mol Cell Biol 20,3965-3976.
    Gouet, P., Courcelle, E., Stuart, D. I., and Metoz, F. (1999). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15,305-308.
    Grifo, J. A., Tahara, S. M., Morgan, M. A., Shatkin, A. J., and Merrick, W. C. (1983). New initiation factor activity required for globin mRNA translation. J Biol Chem 258, 5804-5810.
    Hashimoto, N. N., Carnevalli, L. S., and Castilho, B. A. (2002). Translation initiation at non-AUG codons mediated by weakened association of eukaryotic initiation factor (eIF) 2 submits. Biochem J 367, 359-368.
    Haun, R. S., Serventi, I. M., and Moss, J. (1992). Rapid, reliable ligation-independent cloning of PCR products using modified plasmid vectors. Biotechniques 73, 515-518.
    He, H., von der Haar, T., Singh, C. R., Ii, M., Li, B., Hinnebusch, A. G., McCarthy, J. E., and Asano, K. (2003). The yeast eukaryotic initiation factor 4G (eIF4G) HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection. Mol Cell Biol 23, 5431-5445.
    Hein, L, and Kobilka, B. K. (1995). Adrenergic receptor signal transduction and regulation. Neuropharmacology 34, 357-366.
    Hinnebusch, A. G. (1984). Evidence for translational regulation of the activator of general amino acid control in yeast. Proc Natl Acad Sci U S A 81,6442-6446.
    Hinnebusch, A. G. (2000). Translation Control of Gene Expression (Cold Spring Harbor Laboratory, New York: Cold Spring Harbor Laboratory Press).
    Holcik, M., and Sonenberg, N. (2005). Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6,318-327.
    Holm,L.,and Sander,C.(1993).Protein structure comparisonby alignment of distance matrices.J Mol Biol 233,123-138.
    Hutchinson,J.P.,and Eccleston,J.F.(2000).Mechanism of nucleotide release from Rho by the GDP dissociation stimulator protein.Biochemistry 39,11348-11359.
    Jeffrey,I.W.,Kelly,F.J.,Duncan,R.,Hershey,J.W.,and Pain,V.M.(1990).Effect of starvation and diabetes on the activity of the eukaryotic initiation factor eIF-2 in rat skeletal muscle.Biochlmie 72,751-757.
    Jiang,H.Y.,and Wek,R.C.(2005).GCN2 phosphorylation of eIF2alpha activates NF-kappaB in response to UV irradiation.Biochem J 385,371-380.
    Julier,C.(2001).Lost in translation.Nat Genet 29,358-359.
    Kabsch,W.,and Sander,C.(1983).Dictionary of protein secondary structure:pattern recognition of hydrogen-bonded and geometrical features.Biopolymers 22,2577-2637.
    Kakuta,Y.,Tahara,M.,Maetani,S.,Yao,M.,Tanaka,I.,and Kimura,M.(2004).Crystal structure of the regulatory subunit of archaeal initiation factor 2B(aIF2B)from hyperthermophilic archaeon Pyrococcus horikoshii OT3:a proposed structure of the regulatory subcomplex of eukaryotic IF2B.Biochem Biophys Res Commun 319,725-732.
    Kapp,L.D.,and Lorsch,J.R.(2004a).GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2.J Mol Biol 335,923-936.
    Kapp,L.D.,and Lorsch,J.R.(2004b).The molecular mechanics of eukaryotic translation.Annu Rev Biochem 73,657-704.
    Kapust,R.B.,and Waugh,D.S.(1999).Eschedchia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused.Protein Sci 8,1668-1674.
    Karinch,A.M.,Kimball,S.R.,Vary,T.C.,and Jefferson,L.S.(1993).Regulation of eukaryotic initiation factor-2B activity in muscle of diabetic rats.Am J Physiol 264,E101-108.
    Kaufman,R.J.(2004).Regulation of mRNA translation by protein folding in the endoplasmic reticulum.Trends Biochem Sci 29,152-158.
    Kawashima,T.,Berthet-Colominas,C.,Wulff,M.,Cusack,S.,and Leberman,R.(1996).The structure of the Escherichia coli EF-Tu.EF-Ts complex at 2.5 A resolution.Nature 379,511-518.
    Kimball,S.R.(2001).Regulation of translation initiation by amino acids in eukaryotic cells.Prog Mol Subcell Biol 26,155-184.
    Kimball,S.R.,Everson,W.V.,Myers,L.M.,and Jefferson,L.S.(1987).Purification and characterization of eukaryotic initiation factor 2 and a guanine nucleotide exchange factor from rat liver. J Biol Chem 262,2220-2227.
    Kimball, S. R., Heinzinger, N. K., Horetsky, R. L., and Jefferson, L. S. (1998). Identification of interprotein interactions between the subunits of eukaryotic initiation factors eIF2 and eIF2B. J Biol Chem 273,3039-3044.
    Kimball, S. R., and Jefferson, L. S. (1988). Effect of diabetes on guanine nucleotide exchange factor activity in skeletal muscle and heart. Biochem Biophys Res Commun 156, 706-711.
    Klein, U., Ramirez, M. T., Kobilka, B. K., and von Zastrow, M. (1997). A novel interaction between adrenergic receptors and the alpha-subunit of eukaryotic initiation factor 2B. J Biol Chem 272,19099-19102.
    Kobilka, B. (1992). Adrenergic receptors as models for G protein-coupled receptors. Annu Rev Neurosci 15, 87-114.
    Kolupaeva, V. G, Unbehaun, A., Lomakin, I. B., Hellen, C. U., and Pestova, T. V. (2005). Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. Rna 11,470-486.
    Kozak, M. (1980). Role of ATP in binding and migration of 40S ribosomal subunits. Cell 22, 459-467.
    Kozak, M. (1994). Determinants of translational fidelity and efficiency in vertebrate mRNAs. Biochimie 76, 815-821.
    Krishnamoorthy, T., Pavitt, G. D., Zhang, F., Dever, T. E., and Hinnebusch, A. G. (2001). Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol Cell Biol 21, 5018-5030.
    Kubica, N., Jefferson, L. S., and Kimball, S. R. (2006). Eukaryotic initiation factor 2B and its role in alterations in mRNA translation that occur under a number of pathophysiological and physiological conditions. Prog Nucleic Acid Res Mol Biol 81,271-296.
    Larocca, J. N., and Rodriguez-Gabin, A. G. (2002). Myelin biogenesis: vesicle transport in oligodendrocytes. Neurochem Res 27, 1313-1329.
    Laursen, B. S., Sorensen, H. P., Mortensen, K. K., and Sperling-Petersen, H. U. (2005). Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 69,101-123.
    Lee, J. H., Pestova, T. V., Shin, B. S., Cao, C, Choi, S. K, and Dever, T. E. (2002). Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation. Proc Natl Acad Sci U S A 99,16689-16694.
    Leegwater,P.A.,Vermeulen,G,Konst,A.A.,Naidu,S.,Mulders,J.,Visser,A.,Kersbergen,P.,Mobach,D.,Fonds,D.,van Berkel,C.G,et al.(2001).Subunits of the translation initiation factor eIF2B are mutant in leukoencephalopathy with vanishing white matter.Nat Genet 29,383-388.
    Lenzen,C.,Cool,R.H.,Prinz,H.,Kuhimann,J.,and Wittinghofer,A.(1998).Kinetic analysis by fluorescence of the interaction between Ras and the catalytic domain of the guanine nucleotide exchange factor Cdc25Mm.Biochemistry 37,7420-7430.
    Li,W.,Wang,X.,Van Der Knaap,M.S.,and Proud,C.G.(2004).Mutations linked to leukoenecphalopathy with vanishing white matter impair the function of the eukaryotic initiation factor 2B complex in diverse ways.Mol Cell Biol 24,3295-3306.
    Mathews,M.B.,Sonenberg,N.Hershey,J.W.B.(1996).Translational Control(Cold Spring Harbor,NY:Cold Spring Harbor Laboratory Press).
    McCoy,A.J.(2007).Solving structures of protein complexes by molecular replacement with Phaser.Acta Crystallogr D Biol Crystallogr 63,32-41.
    Merrick,W.C.(1979).Evidence that a single GTP is used in the formation of 80 S initiation complexes.J Biol Chem 254,3708-3711.
    Mohammad-Qureshi,S.S.,Haddad,R.,Palmer,K.S.,Richardson,J.P.,Gomez,E.,and Pavitt,G.D.(2007).Purification of FLAG-tagged eukaryotic initiation factor 2B complexes,subcomplexes,and fragments from Saccharomyces cerevisiae.Methods Enzymol 431,1-13.
    Mossessova,E.,Gulbis,J.M.,and Goldberg,J.(1998).Structure of the guanine nucleotide exchange factor See7 domain of human amo and analysis of the interaction with ARF GTPase.Cell 92,415-423.
    Mueller,P.P.,and Hinnebusch,A.G.(1986).Multiple upstream AUG codons mediate translational control of GCN4.Cell 45,201-207.
    Nika,J.,Yang,W.,Pavitt,G D.,Hinnebusch,A.G.,and Hannig,E.M.(2000).Purification and kinetic analysis of eIF2B from Saccharomyces cerevisiae.J Biol Chem 275,26011-26017.
    Notredame,C.,Higgins,D.G.,and Heringa,J.(2000).T-Coffee:A novel method for fast and accurate multiple sequence alignment.J Mol Biol 302,205-217.
    Pavitt,G.D.(2005).eIF2B,a mediator of general and gene-specific translational control.Biochem Soc Trans 33,1487-1492.
    Pavitt,G.D.,Ramaiah,K.V.,Kimball,S.R.,and Hinnebusch,A.G.(1998).eIF2independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange.Genes Dev 12,514-526.
    Pavitt,G.D.,Yang,W.,and Hirmebusch,A.G.(1997).Homologous segments in three subunits of the guanine nucleotide exchange factor eIF2B mediate translational regulation by phosphorylation of eIF2. Mol Cell Biol 17,1298-1313.
    Pestova, T. V., Borukhov, S. I., and Hellen, C. U. (1998). Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394, 854-859.
    Pestova, T. V., and Kolupaeva, V. G. (2002). The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev 16,2906-2922.
    Pestova, T. V., Lomakin, I. B., Lee, J. H., Choi, S. K., Dever, T. E., and Hellen, C. U. (2000). The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403,332-335.
    Preiss, T., and Hentze, M. W. (1998). Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392, 516-520.
    Proud, C. G. (2005). eIF2 and the control of cell physiology. Semin Cell Dev Biol 16, 3-12.
    Richarme, G., and Caldas, T. D. (1997). Chaperone properties of the bacterial periplasmic substrate-binding proteins. J Biol Chem 272,15607-15612.
    Richter-Cook, N. J., Dever, T. E., Hensold, J. O., and Merrick, W. C. (1998). Purification and characterization of a new eukaryotic protein translation factor. Eukaryotic initiation factor 4H. J Biol Chem 273, 7579-7587.
    Richter, N. J., Rogers, G. W., Jr., Hensold, J. O., and Merrick, W. C. (1999). Further biochemical and kinetic characterization of human eukaryotic initiation factor 4H. J Biol Chem 274, 35415-35424.
    Rogers, G. W., Jr., Richter, N. J., Lima, W. F., and Merrick, W. C. (2001). Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. J Biol Chem 276,30914-30922.
    Roll-Mecak, A., Cao, C, Dever, T. E., and Burley, S. K. (2000). X-Ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell 103, 781-792.
    Ron, D. (2002). Translational control in the endoplasmic reticulum stress response. J Clin Invest 110, 1383-1388.
    Rowlands, A. G, Panniers, R., and Henshaw, E. C. (1988). The catalytic mechanism of guanine nucleotide exchange factor action and competitive inhibition by phosphorylated eukaryotic initiation factor 2. J Biol Chem 263, 5526-5533.
    Rozen, F., Edery, I., Meerovitch, K., Dever, T. E., Merrick, W. C, and Sonenberg, N. (1990). Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol Cell Biol 10, 1134-1144.
    Sarah S. Mohammad-Qureshi, R. H., Karren S. Palmer, Jonathan P. Richardson, Edith Gomez, Graham D. Pavitt (2007). Methods in Enzymology).
    Shin,B.S.,Maag,D.,Roll-Mecak,A.,Arefin,M.S.,Burley,S.K.,Lorsch,J.R.,and Dever,T.E.(2002).Uncoupling of initiation factor eIF5B/IF2 GTPase and translational activities by mutations that lower ribosome affinity.Cell 111,1015-1025.
    Spurlino,J.C.,Lu,G.Y.,and Quiocho,F.A.(1991).The 2.3-A resolution structure of the maltose-or maltodextrin-binding protein,a primary receptor of bacterial active transport and chemotaxis.J Biol Chem 266,5202-5219.
    Sterne-Marr,R.,and Benovic,J.L.(1995).Regulation of G protein-coupled receptors by receptor kinases and arrestins.Vitam Horm 51,193-234.
    Terwilliger,T.C.(2000).Maximum-likelihood density modification.Acta Crystallogr D Biol Crystallogr 56,965-972.
    Tuhackova,Z.,Sloncova,E.,Hlavacek,J.,Sovova,V.,and Velek,J.(1999).Activity of glycogen synthase kinase-3beta is down-regulated during transient differentiation of human colon cancer HT-29 cells.Oncol Rep 6,827-832.
    Unbehaun,A.,Borukhov,S.I.,Hellen,C.U.,and Pestova,T.V.(2004).Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP.Genes Dev 18,3078-3093.
    Valasek,L.,Hasek,J.,Nielsen,K.H.,and Hinnebusch,A.G.(2001).Dual function of eIF3j/Hcrlp in processing 20 S pre-rRNA and translation initiation.J Biol Chem 276,43351-43360.
    van der Knaap,M.S.,Leegwater,P.A.,Konst,A.A.,Visser,A.,Naidu,S.,Oudejans,C.B.,Schutgens,R.B.,and Pronk,J.C.(2002).Mutations in each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter.Ann Neurol 51,264-270.
    Vazquez de Aldana,C.R.,and Hinnebusch,A.G.(1994).Mutations in the GCD7 subunit of yeast guanine nucleotide exchange factor eIF-2B overcome the inhibitory effects of phosphorylated eIF-2 on translation initiation.Mol Cell Biol 14,3208-3222.
    Vojtechova,M.,Sloncova,E.,Kucerova,D.,Jiricka,J.,Sovova,V.,and Tuhackova,Z.(2003).Initiation factor eIF2B not p70 S6 kinase is involved in the activation of the PI-3K signalling pathway induced by the v-src oncogene.FEBS Lett 543,81-86.
    Waskiewicz,A.J.,Johnson,J.C.,Penn,B.,Mahalingam,M.,Kimball,S.R.,and Cooper,J.A.(1999).Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnkl in vivo.Mol Cell Biol 19,1871-1880.
    Welsh,G.I.,and Proud,C.G.(1993).Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B.Biochem J 294(Pt 3),625-629.
    Williams,D.D.,Pavitt,G.D.,and Proud,C.G.(2001a).Characterization of the initiation factor eIF2B and its regulation in Drosophila melanogaster.J Biol Chem 276,3733-3742.
    Williams,D.D.,Price,N.T.,Loughlin,A.J.,and Proud,C.G.(2001b).Characterization of the mammalian initiation factor eIF2B complex as a GDP dissociation stimulator protein.J Biol Chem 276,24697-24703.
    Woods,Y.L.,Cohen,P.,Becker,W.,Jakes,R.,Goedert,M.,Wang,X.,and Proud,C.G.(2001).The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212:potential role for DYRK as a glycogen synthase kinase 3-priming kinase.Biochem J 355,609-615.
    Worthylake,D.K.,Rossman,K.L.,and Sondek,J.(2000).Crystal structure of Racl in complex with the guanine nucleotide exchange region of Tiam 1.Nature 408,682-688.
    Yin,X.,Warner,D.R.,Roberts,E.A.,Pisano,M.M.,and Greene,R.M.(2005).Identification of novel CBP interacting proteins in embryonic orofacial tissue.Biochem Biophys Res Commun 329,1010-1017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700