Hexarelin对心血管系统的保护作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成的生长激素释放肽具有很强的促生长激素释放作用,还有许多其它生物活性。最近研究发现,肽类的GHS有明显的心血管作用。本实验选用合成的生长激素释放肽之一hexarelin,通过离体和在体实验,从整体、细胞、分子水平研究了hexarelin对心力衰竭过程心肌细胞凋亡、心肌细胞肥大、以及对动脉粥样硬化的影响。首先,在第一、二部分实验,我们以离体和在体实验,研究了hexarelin对Ang Ⅱ诱导的原代培养新生乳鼠心肌细胞凋亡的作用和四种GHRP对心衰大鼠心肌细胞凋亡的影响。结果表明,hexarelin可明显抑制Ang Ⅱ诱导的心肌细胞凋亡,而且四种GHRP对压力负荷型心衰大鼠的心功能有明显改善作用,对心衰时心肌细胞的凋亡有明显抑制作用。其作用机制可能与抑制caspase-3酶活性,抑制bax mRNA的表达,增加bcl-2 mRNA表达,抑制p38MAPK蛋白表达有关。鉴于GHRP对心衰大鼠有明显治疗作用,而心肌细胞肥大是心力衰竭的重要发病过程之一,在第三部分我们观察了hexarelin对Ang Ⅱ诱发的心肌细胞肥大的作用以及hexarelin对SHR心肌肥厚的作用。结果提示hexarelin有明显抗Ang Ⅱ诱发的心肌细胞肥大和抑制SHR心肌肥厚的作用。其作用机制与抑制AT1受体mRNA表达和上调AT2受体mRNA的表达,抑制ERK1/2的活性有关。从前三部分实验结果可见,hexarelin对心血管系统中的肾素-血管紧张素系统有明显影响,提示hexarelin对动脉粥样硬化的发生发展可能也有重要作用。因此在第四部分,我们观察了hexarelin对动脉粥样硬化大鼠的影响和对AngⅡ诱发的血管平滑肌细胞增殖的作用。结果显示,hexarelin有明显的抗动脉粥样硬化作用,其机制可能与增加血清HDL-c,NO,减少LDL-c,减少主动脉中脂质和钙的沉积,抑制Ang Ⅱ诱发的血管平滑肌细胞增殖密切相关,还可能与CD36 mRNA的表达上调有关。在离体和在体状态下,给予GHRP或hexarelin,都可以明显上调GHS-R mRNA的表达,提示hexarelin的心血管保护作用还可能与GHS-R mRNA的表达增加有关。
Synthetic growth hormone releasing peptides possess strong growth hormone-releasing effects and effusive peripheral activities. Recently, several independent observations indicated that GHRP exerts cardiovascular activities. We investigated the effects of hexarelin on cardiomyocyte apoptosis in rats with heart failure, cardiac hypertrophy and atherosclerosis in in vivo and in vitro models. At first, the effects of hexarelin on cardiomyocyte apoptosis induced by Ang II, and effects of four GHRPs (GHRP-1, GHRP-2, GHRP-6, hexarelin) on cardiomyocyte apoptosis in pressure-over load heart failure rat model were observed in part I and part II. The results showed that (1) hexarelin inhibited cardiomyocyte apoptosis induced by AngII; (2) GHRPs improved cardiac dysfunction and inhibit the cardiomyocyte apoptosis in rats with heart failure. These results indicated that hexarelin abates cardiomyocytes from Ang II-and heart failure-induced cardiomyocyte apoptosis in rat. The possible mechanisms were possibly via inhibiting the activity of caspase-3, inhibiting bax mRNA expression, increasing the expression of bcl-2 mRNA and inhibiting the expression of p38MAPK protein. (3) Hexarelin inhibited cardiomyocyte hypertrophy induced by Ang II and inhibit the cardiac hypertrophy of SHR. The mechanisms of the antihypertrophy effect of hexarelin may be associated with inhibition of ATI receptor mRNA expression, with upregulation of the expression of AT2 receptor mRNA and ERK1/2 activity. As hexarelin could affect the renin-angiotensin system, with the inhibition of hexarelin may have effect on the development of atherosclerosis. We investigated the effect of hexarelin on the astherosclerosis model of rat and the effect of hexarelin on proliferation of vascular smooth muscle cell(VSMC) induced by Ang II. (4) Hexarelin showed obvious antiatheosclerosis effects. The underlying mechanisms may related with the increasing of serum HDL-c and NO, the decreasing of serum LDL-c, the attenuate of accumulation of lipid and calcium deposits in aorta and the inhibition of VSMC proliferation induced by Ang II. These effects of GHRP may be also associated with the upregulation of CD36 mRNA. Taken together, administration of
引文
1. Anversa P, Kajstura J, Olivetti G. Myocyte death in heart failure. Curr Opin Cardiol. 1996; 11:245-251
    
    2. Colucci WS. Apoptosis in the heart. N Engl J Med. 1996; 335: 1224-1226
    
    3. MacLellan WR, Schneider MD. Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res. 1997; 81: 137-144
    
    4. Narula J, Haider N, Virmani R, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med. 1996; 335: 1182-1189
    
    5. Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the failing human heart. N Engl J Med. 1997; 336: 1131-1141
    
    6. Olivetti G, Quaini F, Sala R, et al. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol. 1996; 28: 2005-2016
    
    7. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med. 1992; 327: 685-691
    
    8. Li Z, Bing OH, Long X, et al. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol. 1997; 272:H2313-H2319
    
    9. Cheng W, Kajstura J, Nitahara JA, et al. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res. 1996; 226: 316-327
    
    10. Sharov VG, Sabbah HN, Shimoyama H, et al. Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol. 1996; 148: 141-14911. Wollert KC, Drexler H. The renin-angiotensin system and experimental heart failure. Cardiovasc Res. 1999; 43:838-849
    
    12. Kajstura J, Cigola E, Malhotra A, et al. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol. 1997; 29: 859-870,
    
    13. Hasegawa K, Iwai-Kanai E, Sasayama S. Neurohormonal regulation of myocardial cell apoptosis during the development of heart failure. J Cell Physiol. 2001, 186: 11-18
    
    14. Teiger E, Than VD, Richard L, et al. Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest. 1996; 97: 2891-2897
    
    15. Weinberg EO, Schoen FJ, George D, et al. Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation 1994; 90: 1410-1422
    
    16. Casanueva FF, Dieguez C. Growth Hormone Secretagogues: Physiological Role and Clinical Utility. Trends Endocrinol Metab. 1999; 10: 30-38
    
    17. Muccioli G, Broglio F, Valetto MR, et al. Growth hormone-releasing peptides and the cardiovascular system. Ann. Endocrinol. (Paris) 2000; 61: 27-31
    
    18. Locatelli V, Rossoni G, Schweiger F, et al. Growth hormone-independent cardioprotective effects of hexarelin in the rat. Endocrinology. 1999; 140: 4024-4031
    
    19. Bisi G, Podio V, Valetto MR, et al. Acute cardiovascular and hormonal effects of GH and hexarelin, a synthetic GH-releasing peptide, in humans. J Endocrinol Invest. 1999; 22: 266-272
    
    20. Filigheddu N, Fubini A, Baldanzi G, et al. Hexarelin protects H9c2 cardiomyocytes from doxorubicin-induced cell death. Endocrine. 2001, 14: 113-119
    21. Ekhterae D, Lin Z, Lundberg MS, et al. ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res. 1999; 85: E70-E77
    
    22. Wang L, Ma W, Markovich R, et al. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ Res. 1998; 83: 516-522
    
    23. Wang L, Ma W, Markovich R, et al. Insulin-like growth factor I modulates induction of apoptotic signaling in H9C2 cardiac muscle cells. Endocrinology. 1998; 139: 1354-1360
    
    24. Pettersson I, Muccioli G, Granata R, et al. Natural (ghrelin) and synthetic (hexarelin) GH secretagogues stimulate H9c2 cardiomyocyte cell proliferation. J Endocrinol. 2002; 175:201-209
    
    25. Iwaki K, Sukhatme VP, Shubeita HE, et al. Alpha- and beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an alpha 1-mediated response. J Biol Chem. 1990; 265: 13809-13817
    
    26. Miki N, Hamamori Y, Hirata K, et al. Transforming growth factor-beta 1 potentiated alpha 1-adrenergic and stretch-induced c-fos mRNA expression in rat myocardial cells. Circ Res. 1994; 75: 8-14
    
    27. Herrmann M, Lorenz HM, Voll R, et al. A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res. 1994; 22: 5506-5507
    
    28. Darzynkiewicz Z, Juan G, Li X, et al. Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry. 1997; 27: 1-20
    
    29. Fraker PJ, King LE, Lill-Elghanian D, et al. Quantification of apoptotic events in pure and heterogeneous populations of cells using the flow cytometer. Methods CellBiol. 1995; 46: 57-76
    
    30. Nagaya N, Kojima M, Uematsu M, et al. Hemodynamic and hormonal effects of human ghrelin in healthy volunteers. Am J Physiol Regul Integr Comp Physiol. 2001; 280: R1483-R1487
    
    31. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couple survival signals to the cell- intrinsic death machinery. Cell. 1997; 91: 231-241
    
    32. Sato T, Irie S, Krajewski S, et al. Cloning and sequencing of a cDNA encoding the rat Bcl-2 protein. Gene. 1994; 140: 291-292
    
    33. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993; 74: 609-619
    
    34. Kumar S. The apoptotic cysteine protease CPP32. Int J Biochem Cell Biol. 1997; 29: 393-396
    
    35. Vaux DL , A Strasser. The molecular biology of apoptosis. Proc Natl Acad Sci USA. 1996; 93:2239-2244
    
    36. Cigola E, Kajstura J, Li B, et al. Angiotensin II activates programmed myocyte cell death in vitro. Exp Cell Res. 1997; 231: 363-371
    
    37. Bodart V, Bouchard JF, N McNicoll, et al. Identification and characterization of a new growth hormone-releasing peptide receptor in the heart. Circ Res. 1999; 85: 796-802
    
    38. Nagaya N, Uematsu M, Kojima M, et al. Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation. 2001; 104:1430-1435
    
    39. Amato G, Carella C, Fazio S, et al. Body composition, bone metabolism, heartstructure and function in growth hormone deficient adults before and after growth hormone replacement therapy at low doses. J Clin Endocrinol Metab. 1993; 77: 1671-1676
    
    40. Fuller J, Mynett JR, Sugden PH. Stimulation of cardiac protein synthesis by insulin-like growth factors. Biochem J. 1992; 282: 85-90
    
    41. Yang R, Bunting S, Gillett N, et al. Growth hormone improves cardiac performance in experimental heart failure. Circulation. 1995; 92: 262-267
    
    42. Cittadini A, Stromer H, Katz SE, et al. Differential cardiac effects of growth hormone and insulin-like growth factor-1 in the rat: a combined in vivo and in vitro evaluation. Circulation. 1996; 93: 800-809
    
    43. Osterziel KJ, Strohm O, Schuler J, et al. Randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet. 1998; 351: 1233-1237
    
    44. Isgaard J, Bergh CH, Caidahl K, et al. A placebo-controlled study of growth hormone in patients with congestive heart failure. Eur Heart J. 1998; 19: 1704-1711
    
    45. Anker SD, Chua TP, Ponikowski P, et al . Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance in cardiac cachexia. Circulation. 1997; 96: 526-534
    
    46. Niebauer J, Pflaum CD, Clark AL, et al. Deficient insulin-like growth factor I in chronic heart failure predicts altered body composition, anabolic deficiency, cytokine and neurohormonal activation. J Am Coll Cardiol. 1998; 32: 393-397
    
    47. Itoh G, Tamura J, Suzuki M, et al. DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gelelectrophoresis. Am J Pathol. 1995; 146: 1325-1331
    48. Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardial infarction. Circulation.l997;95:320 -323
    
    49. Narula J, Haider N, Virmani R, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med. 1996;335:1182-1189
    
    50. MacLellan WR, Schneider MD. Death by design: programmed cell death in cardiovascular biology and disease. Circ Res. 1997; 81:137-144
    
    51. Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res. 1998;82:1111—1129
    
    52. Bisi G., Podio V, Valetto MR, et al. Cardiac effects of hexarelin in hypopituitary adults. Eur. J. Pharmacol. 1999 ; 381:31-38
    
    53. Okumura H, Nagaya N, Enomoto M, et al. Vasodilatory effect of ghrelin, an endogenous peptide from the stomach. J Cardiovasc Pharmacol. 2002; 39: 779-783
    
    54. Tivesten A, Bollano E, Caidahl K, et al. The growth hormone secretagogue hexarelin improves cardiac function in rats after experimental myocardial infarction. Endocrinology. 2000 ; 141:60-66
    
    55. King MK, Gay D M, Pan LC, et al. Treatment with a growth hormone secretagogue in a model of developing heart failure: effects on ventricular and myocyte function. Circulation. 2001; 103:308-313
    
    56. Gnanapavan S, Kola B, Bustin SA, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab. 2002; 87:2988
    
    57. Papotti M, Ghe C, Cassoni P, et al. Growth hormone secretagogue binding sites in peripheral human tissues. J Clin Endocrinol Metab. 2000 ;85:3803-3807
    58. Bodart V, Febbraio M, Demers A, et al. CD36 mediates the cardiovascular action of growth hormone-releasing peptides in the heart. Circ Res. 2002; 90:844-849
    
    59. Katugampola SD, Pallikaros Z, Davenport AP. [125I-His(9)]-ghrelin, a novel radioligand for localizing GHS orphan receptors in human and rat tissue: up-regulation of receptors with athersclerosis. Br J Pharmacol. 2001; 134: 143-149
    
    60. Pang JJ, Xu RK, Xu XB, et al. Hexarelin protects rat cardiomyocytes from angiotensin II-induced apoptosis in vitro. Am J Physio- Heart Circ Physiol. 2004; 286: H1063-1069
    
    61. Chung ES, Perlini S, Aurigemma GP, et al. Effects of chronic adenosine uptake blockade on adrenergic responsiveness and left ventricular chamber function in pressure overload hypertrophy in the rat. J Hypertens 1998; 16:1813-1822
    
    62. Douglas PS, Reichek N, Plappert T, et al. Comparison of echocardiographic methods for assessment of LV shortening and wall stress. J Am Coll Cardiol 1987; 9:945-951
    
    63. Ramakrishnan N, Catravas GN. N-(2-Mercaptoethyl)-1,3-propanediamine (WR-1065) protects thymocytes from programmed cell death. J Immunol. 1992; 148: 1817-1821
    
    64. Prigent P, Blanpied C, Aten J, et al. A safe and rapid method for analyzing apoptosis-induced fragmentation of DNA extracted from tissues or cultured cells. J mmunol Methods. 1993;160:139-140. Letter
    
    65. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309—1312
    
    66. Leri A, Claudio PP, Li Q, et al. Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest. 1998;101:1326 -1342
    
    67. Leri A, Liu Y, Malhotra A, et al. Pacing-induced heart failure in dogs enhances theexpression of p53 and p53-dependent genes in ventricular myocytes. Circulation. 1998 ;97:194-203
    
    68. Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995; 270;1326-1331
    
    69 . Ma XL, Kumar S, Gao F, et al. Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac fuction after myocardial ischemia and reperfusion. Circulation. 1999; 99: 1685-1691
    
    70. Cook SA, Sugden PH, Clerk A. Activation of c-Jun N-terminal kinases and p38-mitogen-activated protein kinases in human heart failure secondary to ischaemic heart diease. J Mol Cell Cardol. 1999; 31; 1429-1434
    
    71. Gillespie Brown J, Fuller SJ, Bogoyevitch MA, et al. The mitogen-activated protein kinase kinase MEK1 stimulates a pattern of gene expression typical of the hypertrophic phenotype in rat ventricular cardiomyocytes. J Biol Chem. 1995; 270; 28092-28096
    
    72. Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1993; 268;14553-14556
    
    73. Wang Y, Huang S, Sah VP, et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen- activated protein kinase family. J Biol Chem. 1998; 273;2161-2168
    
    74. Tajima M, Weinberg EO, Bartunek J, et al. Treatment with growth hormone enhances contractile reserve and intracellular calcium transients in myocytes from rats with postinfarction heart failure. Circulation. 1999; 99: 127-134
    
    75. Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990; 322: 1561-1566
    76. Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation. 2000; 102: 470-479
    
    77. Baker KM, Booz GW and Dostal DE. Cardiac actions of angiotensin II: Role of an intracardiac renin-angiotensin system. Annu Rev Physiol. 1992; 54: 227 - 241
    
    78. Lindpaintner K, Ganten D. The cardiac renin-angiotensinsystem, an appraisal of present experimental and clinical evidence. Circ Res. 1991; 68: 905 - 921
    
    79. XinShou OY, Kyoko T, Katsuko K, et al. Protective Effect of Salvia miltiorrhiza on Angiotensin Il-Induced Hypertrophic Responses in Neonatal Rat Cardiac Cells. Jpn J Pharmacol. 2001; 87, 289 - 296
    
    80. Wollert KC, Drexler H. The renin-angiotensin system and experimental heart failure. Cardiovasc Res. 1999; 43: 838 - 849
    
    81. Haber HL, Powers ER, Gimple LW, et al. Intracoronary angiotensin IIconverting enzyme inhibition improves diastolic function in patients with hypertensive left ventricular hypertrophy. Circulation. 1994; 89: 2616 - 2625
    
    82. Friedrich SP, Lorell BH, Rousseau MF, et al. Intracardiac angiotensinconverting enzyme inhibition improves diastolic function in patients with left ventricular hypertrophy due to aortic stenosis. Circulation. 1994; 90: 2761 - 2771
    
    83. Sudhir K, MacGregor JS, Gupta M, et al. Effect of selective angiotensin II receptor antagonism and angiotensin converting enzyme inhibition on the coronary vasculature in vivo: intravascular twodimensional and Doppler ultrasound studies. Circulation. 1993; 87: 931-938
    
    84. Sudhir K, Chou TM, Hutchison SJ et al: Coronary vasodilation induced by angiotensin-converting enzyme inhibition in vivo: differential contribution of nitric oxide and bradykinin in conductance and resistance arteries. Circulation. 1996; 93,1734-1739
    
    85. Antony I, Lerebours G and Nitenberg A. Angiotensin-convertingenzyme inhibition restores flow-dependent and cold pressor test-induced dilations in coronary arteries of hypertensive patients. Circulation. 1996; 94: 3115 - 3122
    
    86. Bowers CY, Momany F, Reynolds GA. Stucture-activity relationships of a synthetic pentapeptide that specifically release growth hormone in vitro. Endocrinology. 1980; 106:663-667
    
    87. Wu D, Chen C, Zhang J, et al. Effects in vitro of new growth hormone releasing peptide (GHRP-1) on growth hormone secretion from ovine pituitary cells in primary culture. J Neuroendocrinol. 1994; 6:185-190
    
    88. Wu D, Chen C, Katoh K, et al. The effects of GH-releasing peptide-2 (GHRP-2 or KP 102) on GH secretion from primary cultured ovine pituitary cells can be abolished by a specific GH-releasing factor (GHF) receptor antagonist. J Endocrinol. 1994; 140: R9-13
    
    89. Deghenghi R, Cananzi MM, Torsello A, et al. GH-releasing activity of Hexarelin, a new growth hormone releasing peptide, in infant and adult rats. Life Sci. 1994; 54: 1321-1328
    
    90. Naoki M, Masahiro S, Shoji O, et al. Molecular Mechanism of Angiotensin II Type I and Type II Receptors in Cardiac Hypertrophy of Spontaneously Hypertensive Rats. Hypertension. 1997; 30: 796-802
    
    91. Hanford DS, Thuerauf DJ, Murray SF, et al. Brain natriuretic peptide is induced by al-adrenergic agonists as a primary response gene in cultured rat cardiac myocytes. J Biol Chem. 1994; 269: 26227-26233
    
    92. Hasenfuss G. Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res. 1998; 37: 279-28993. De Gasparo M, Catt KJ, Inagami T, et al. International union of pharmacology: XXIII, the angiotensin II receptors. Pharmacol Rev. 2000; 52: 415-472
    
    94. Bogoyevitch MA, Sugden PH. The role of protein kinases in adaptational growth of the heart. Int J Biochem Cell Biol. 1996; 28: 1-12
    
    95. Olson EN, Molkentin JD. Prevention of cardiac hypertrophy by calcineurin inhibition: hope or hype? Circ Res. 1999; 84: 623-632
    
    96. Sadoshima J, Izumo S. Signal transduction pathways of angiotensin II-induced c-fos gene expression in cardiac myocytes in vitro. Roles of phospholipids-derived second messengers. Circ Res. 1993; 73:424-438
    
    97. Eguchi S, Numaguchi K, Iwasaki H, et al. Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem. 1998; 273: 8890-8896.
    
    98. Sadoshima J, Izumo S. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibrlblasts. Circ Res 1993; 73:413-423
    
    99. Sadoshima J, Qiu Z, Morgan JP, et al. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes. J Biol Chem. 1996; 271: 33592-33597
    
    100. Sadoshima J, Izumo S. The heterotrimeric Gq protein-coupled angiotensin II receptor activates p21ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes. EMBOJ. 1996;15:775-787
    101. Walter G, Thomas YB, Dominic J, et al. Adenoviral-Directed Expression of the Type 1A Angiotensin Receptor Promotes Cardiomyocyte Hypertrophy via Transactivation of the Epidermal Growth Factor Receptor. Cir Res. 2002; 90: 135
    
    102. Adams MA, Bobik A, Korner PI. Differential development of vascular and cardiac hypertrophy in genetic hypertension: relation to sympathetic function. Hypertension. 1989;14:191-202
    
    103. Korner P, Bobik A, Oddie C, et al. Sympathoadrenal system is critical for structural changes in genetic hypertension. Hypertension. 1993;22:243-252
    
    104. Baker KM, Booz GW, Dostal DE. Cardiac actions of angiotensin II: Role of an intracardiac renin-angiotensin system. Annu Rev Physiol. 1992; 54: 227 - 241
    
    105. Schnkert H, Dzau VJ, Tang SS, et al. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression, in pressure overload left ventricular hypertrophy: Effects on coronary resistance, contractility, and relaxation. J Clin Invest 1990; 86: 1913-1920
    
    106. Linz W, Schoelkens BA, Ganten D. Converting enzyme inhibition specifically prevents the development and induces regression of cardiac hypertrophy in rats. Clin Exp Hypertens. 1989; 11: 1325-135011
    
    107. Baker KM, Cherin MI, Wixon SK, et al. Renin-angiotensin system involvement in presure-overload cardiac hypertrophy in rats. Am J Physiol 1990; 259: H324-H332
    
    108. Issei K. Molecular Mechanism of CardiacHypertrophy and Development. Jpn Circ J. 2001; 65: 353-358
    
    109. Brondello JM, Brunet A, Pouyssegur J, et al. The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44 MAPK cascade. J Biol Chem. 1997; 272:1368-1376
    110. Booz GW, Baker KM. Role of typel and type2 angiotensin receptors in angiotensin II-induced cardiomyocyte hypertrophy. Hypertension. 1996; 28: 635-640
    
    111. Van Kesteren CAM, Van Heugten HAA, Lamers JMJ, et al. angiotensin II mediated growth and antigrowth effects in cultured neonatal rat cardiac myocytes and fibroblasts. J Mol Cell Cardiol. 1997; 29: 2147-2157
    
    112. Fischer TA, Singh K, O Hara DS, et al. Role of AT1 and AT2 receptors in regulation of MAPK and MKP-1 by ANG II in adult cardiac myocytes. Am J Physiol. 1998; 275: H906-H916
    
    113. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993; 362:801-809
    
    114. Ross R. Atherosclerosis: a inflammation disease. N Engl J Med. 1999; 340: 115-128
    
    115. Zhang SH, Reddick RL, Piedrahita JA, et al. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992; 258: 468-471.
    
    116. Fleckenstein KN, Kehel L, Bouayadi FE, et al. New model of atheosclerosis in insulin resistant sand rats: hypercholesterole mia combined with D_2 vitamin. Atherosclerosis. 2000: 150:55-61
    
    117. Kramsch DM. Atherosclerosis progression/regression: lipoprotein and vessel wall. Atherosclerosis. 1995; 118: s29-36
    
    118. Ross R. Cell biology of atherosclerosis. Annu Rev Physiol. 1995; 57: 791-804
    
    119. Johnston CI. Biochemistry and pharmacology of the rennin-angiotensin system. Drugs. 1990; 39(Suppl 1): 21-31
    
    120. Dzau VJ, Pratt RE, Gibbons GH. Angiotensin as local modulating factor in ventricular dysfunction and failure due to coronary artery disease. Drugs. 1994; 47(Suppl 4):1
    
    121. Dzau VJ. Cell biology and genetics of angiotensin in cardiovascular disease. J??Hypertension. 1994; 12(Suppl 4):S3
    122.张均田.现代药理实验方法。北京:北京医科大学.中国协和医科大学出版社,1998;1263-1271
    123. Potter DD, Sobey CG, Tompkins PK, et al. Evidence that macrophages in atherosclerotic lesions contain angiotensin Ⅱ. Circulation. 1998; 98:800-807
    124. Nickenig G, Jung O, Streholw K, et al. Hypercholesterolemia is associated with enhanced angiotensin ATl-receptor expression. Am J Physiol. 1997; 272: H2701-H 2707
    125. Hernandez-Presa MA, Bustos C, Ortego M, et al. ACE inhibitor quinapril reduces the arterial expression of NF-kappa B-dependent proinfammatory factors but not of collagen I in a rabbit model of atherosclerosis. Am J Pathol. 1998; 153:1825-1837
    126. Naftilan AJ, Pratt RE, Eldridge CS, et al. Angiotensin Ⅱ induces c-fos expression in smooth muscle cells via transcriptional control. Hypertension. 1989; 13:706-711
    127. Kawahara Y, Sunako M, Tsuda, et al. Angiotensin Ⅱ induces expression of c-fos gene through protein kinase C activation and calcium ion mobilization in cultured vascular smooth muscle cells. Biochem Biophys Res Commun. 1988:150:52-59
    128. Schieffer B, Drexler H, Ling BN, et al. G protein coupled receptors control vascular smooth muscle cell proliferation via pp60c-src and p21ras. Am J Physiol, 1997; 272:C2019-2030
    129. Carey RM, Wang ZQ, Siragy HM. Role of the angiotensin type 2 receptor in regulation of blood pressure and renal function. Hypertension. 2000; 35 [part2]:155-163
    130. Warnholtz A, Nickenig G, Schulz E, et al. Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis. Circulation. 1999; 99:2027-2033
    131. Berry C, Hamiolton CA, Brosnan MJ, et al. Investigation into the sources of superoxide in human blood vessels: Angiotensin II increases superoxide production in human internal mammary arteries. Circulation. 2000, 101:2206-2212
    
    132. Sckultz R, Triggle CR. Role of NO in vascular smooth muscle. Tips. 1994; 15:225-229
    
    133. Daviet L, McGregor JL. Vascular biology of CD36: roles of this new adhesion molecule family in different disease states. Thromb Haemost. 1997;78:65-69
    
    134. Endemann G, Stanton LW, Madden KS, et al. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem. 1993;268:11811-11816
    
    135. Nozaki S, Kashiwagi H, Yamashita S, et al. Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36-deficient subjects. J Clin Invest. 1995;96:1859-1865
    
    136. Nakata A, Nakagawa Y, Nishida M, et al. CD36, a novel receptor for oxidized low-density lipoproteins, is highly expressed on lipid-laden macrophages in human atherosclerotic aorta. Arterioscler Thromb Vasc Biol. 1999;19:1333—1339
    
    137. Feng J, Han J, Pearce SF, et al. Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR- (?). J Lipid Res. 2000; 41:688-696
    
    138. Febbraio M, Podrez EA, Smith JD,et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest. 2000; 105:1049-1056
    
    139. Zhong C; Shun I; St(?)phane P , et al. Troglitazone Inhibits Atherosclerosis in Apolipoprotein E-Knockout Mice.Pleiotropic Effects on CD36 Expression and HDLArteriosclerosis, Thrombosis, and Vascular Biology. 2001; 21: 372
    1. Narula J, Haider N, Virmani R et al. Programmed myocyte death in end stage heart failure. N Engl J Med. 1996; 335: 1182-1189
    
    2. Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the failing human heart. N Engl J Med. 1997; 336: 1131-1141
    
    3. Olivetti G, Quaini F, Sala R, et al. Acute myocardial infarction in humans is associated with the activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol. 1996; 28: 2005-2016
    
    4. Teiger E, Dam T-V, Richard L, et al. Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest. 1996; 97: 2891-2897
    
    5. Li Z, Bing OHL, Long X, et al. Increased cardiomyocyte apoptosis during transition to heart failure in the spontaneously hypertensive rat. Am J Physiol. 1997; 272: H2313-H2319
    
    6. Cheng W, Kajstura J, Nitahara JA, et al. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res. 1996; 226: 316-327
    
    7. Sharov VG, Sabbah HN, Shimoyama H, et al. Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol. 1996; 148:141—149
    
    8. Hengartner MO. The biochemistry of apoptosis. Nature. 2000; 407:770-776
    
    9. Reed JC. Mechanisms of apoptosis. Am J Pathol. 2000 ;157:1415-1430
    
    10. Imai Y, Kimura T, Murakami A, et al. The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis. Nature. 1999 ; 398:777-85
    
    11. Jiang X, Wang X. Cytochrome c promotes caspase-9 activation by inducing nucleotidebinding to Apaf-1. J Biol Chem. 2000; 275: 31199-312203
    
    12. Hasegawa K, Iwai-kanai E,Sasayama S. Neurohormonal Regulation of Myocardial Cell Apoptosis during the Development of Heart failure. J Cellular Physio. 2001; 186: 11-18
    
    13. Kajstura J, Cigola E, Malhotra A, et al. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cardiol. 1997; 29: 859-870
    
    14. Cigola E, Kajstura J, Li B, et al. Angiotensin II activates programmed myocyte cell death in vitro. Exp Cell Res. 1997; 231: 363-371
    
    15. Goussev A, Sharov VG, Shimoyama H, et al. Effects of ACE inhibition on cardiomyocyte apoptosis in dogs with heart failure. Am J Physiol. 1998; 275: H626-631
    
    16. Adams JW, Sakata Y, Davis MG, et al. Proc. Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure.Proc Natl Acad Sci U S A. 1998; 95: 10140-10145
    
    17. Communal C, Singh K, Pimentel DR, et al. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation. 1998; 98: 1329-1334
    
    18. Communal C, Colucci WS, Singh K. p38 mitogen-activated protein kinase pathway protects adult rat ventricular myocytes against beta -adrenergic receptor-stimulated apoptosis. Evidence for Gi-dependent activation. J Biol Chem. 2000 ; 275: 19395-19400
    
    19. Zaugg M, Xu W, Lucchinetti E, et al. Circulation. Beta-adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation. 2000 ; 102:344-350
    20. Bisognano JD, Weinberger HD, Boglmeyer TJ, et al. Myocardial-directed overexpression of the human beta(l)-adrenergic receptor in transgenic mice. J Mol Cell Cardiol. 2000 ;32:817-830
    
    21. Asai K, Yang GP, Geng YJ, et al. Beta-adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic G(salpha) mouse. J Clin Invest. 1999 ;104:551-558
    
    22. Saito S, Hiroi Y, Zou Y, et al. beta-Adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J Biol Chem. 2000; 275:34528 -34533
    
    23. Xiao RP, Ji X, Lakatta EG. Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol. 1995; 47: 322-329
    
    24. Adams JW, Brown JH, G-proteins in growth and apoptosis: lessons from the heart. Oncogene. 2001; 20: 1626-1634
    
    25. Cohen P. The search for physiological substrates of MAP and SAP kinases in mammalian cells. Trends Cell Biol. 1997;7: 353-361
    
    26. Kumar A, Middleton A, ChambersTC, et al. Differential roles of extracellular signal-regulated kinase-1/2 and p38(MAPK) in interleukin-1beta- and tumor necrosis factor-alpha-induced low density lipoprotein receptor expression in HepG2 cells. J Biol Chem. 1998; 273:15742-15748
    
    27. Schumann RR, Pfeil D, Lamping N et al. Lipopolysaccharide induces the rapid tyrosine phosphorylation of the mitogen-activated protein kinases erk-1 and p38 in cultured human vascular endothelial cells requiring the presence of soluble CD14. Blood. 1996; 87:2805-2814
    
    28. Alessi DR, Cuenda A, Cohen P, et al. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem.1995;270:27489-27494
    
    29. Favata MF, Horiuchi KY, Manos EJ, et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998;273: 18623-18632
    
    30. Lee JC, laydon JT, McDonnell PC et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 1994; 372: 739-746
    
    31. Dean JL, Brook M, Clark AR, et al. p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. J Biol Chem. 1999;274: 264-269
    
    32. Young P, McDonnell P, Dunnington D et al. Pyridinyl imidazoles inhibit IL-1 and TNF production at the protein level. Agents and Actions. 1993;39: C67-C69
    
    33. Wang Y, Huang S, Sah VP, et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem. 1998; 273: 2161-2168
    
    34. Wang Y, Su B, Sah VP, et al. Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J Biol Chem. 1998 ; 273: 5423-5426
    
    35. Sheng Z, Knowlton K, Chen J et al. CT-1 inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem. 1997; 28: 272: 5783-5791
    
    36. Baliga RR, Simmons WW,Sawyer DB et al. The role of MEK-MAPK-RSK pathway, PI3 kinase pathway and p70S~6K in neureguli induced growth of cardiac myocytes. Circulation. 1997; 96:1362
    
    37. Zechner D, Craig R, Hanford DS et al. MKK6 activates myocardial cell NF-kB and inhibits apoptosis in a p38 mitogen-activated protein kinase- dependent manner. J BiolChem. 1998;273:8232-8239
    
    38. Donehower LA, Harvey M, Slagle BL et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature. 1992; 356:215-221.
    
    39. Sharov VG, Sabbah HN, Shimoyama H et al. Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol. 1996; 148: 141-149
    
    40. Sabbah HN, Shimoyama H, Kono T, et al. Effects of long-term monotherapy with enalapril, metoprolol, and digoxin on the progression of left ventricular dysfunction and dilation in dogs with reduced ejection fraction. Circulation. 1994; 89: 2852-2859
    
    41. Pierzchalski P, Reiss K, Cheng W, et al. p53 Induces myocyte apoptosis via the activation of the renin-angiotensin system. Exp Cell Res. 1997; 234: 57-65
    
    42. Schumann H, Bartling B, Rueckschloss et al. Expression of the apoptosis- mediating ligand TRAIL and its death domain receptors DR4, DR5 and decoy receptor DcR1 in normal and failing human myocardium. Circulation. 1998; Suppll: 1-361
    
    43. Hockenbery D, Nunez G, Milliman C, et al. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990; 348:334-336
    
    44. Allsopp TE, Wyatt S, Paterson HF, et al. The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell. 1993; 73: 295- 307
    
    45. Cheng W, Kajstura J, Nitahara JA, et al. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res. 1996 ;226:316 -327
    
    46. Kirshenbaum LA, de Moissac D. The bcl-2 gene product prevents programmed cell death of ventricular myocytes. Circulation. 1997 ;96:1580-1585
    
    47. de Moissac D, Mustapha S, Greenberg AH, et al. Bcl-2 activates the transcriptionfactor NFkappaB through the degradation of the cytoplasmic inhibitor IkappaBalpha. J Biol Chem. 1998; 273:23946-23951
    
    48. Leri A, Claudio PP, Li Q, et al. Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest. 1998; 101:1326-1342
    
    49. Condorelli G, Morisco C, Stassi G, et al. Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation. 1999; 99:3071-3078
    
    50. Narula J, Virmani R, Ballestster M. Heart failure pathogenesis and treatment. Martin Dunitz. 2002, 304
    
    51. Bowers C Y, Momany F, Reynolds GA. Stucture-activity relationships of a synthetic pentapeptide that specifically release growth hormone in vitro. Endocrinology. 1980; 106:663-667
    
    52. Wu D, Chen C, Zhang J, et al. Effects in vitro of new growth hormone releasing peptide (GHRP-1) on growth hormone secretion from ovine pituitary cells in primary culture. J Neuroendocrinol. 1994; 6:185-190
    
    53. Wu D, Chen C, Katoh K, et al. The effects of GH-releasing peptide-2 (GHRP-2 or KP 102) on GH secretion from primary cultured ovine pituitary cells can be abolished by a specific GH-releasing factor (GHF) receptor antagonist. J Endocrinol. 1994; 140: R9-13
    
    54. Deghenghi R, Cananzi MM, Torsello A, et al. GH-releasing activity of Hexarelin, a new growth hormone releasing peptide, in infant and adult rats. Life Sc. 1994; 54:1321-1328
    55. Smith RG, Cheng K, Schoen WR, et al. a nonpeptidyl growth hormone secretagogue. Science. 1993; 260:1640-1643
    
    56. Jacks T, Smith R, Judith F, et al. MK-0677, a potent, novel, orally active growth hormone (GH) secretagogue: GH, insulin like growth factor I, and other hormone responses in beagles. Endocrinology. 1996; 137:5284-5289
    
    57. Papotti M, Ghe C, Cassoni P, et al. Growth hormone secretagogue binding sites in peripheral human tissues. J Clin Endocrinol Metab. 2000; 85: 3803-3807
    
    58. Bodart V, Bouchard JF, McNicoll N, et al. Identification and characterization of a new growth hormone-releasing peptide receptor in the heart. Circ Res. 1999; 85:796-802
    
    59. Palyha OC, Feighner SD, Tan CP, et al. Ligand activation domain of human orphan growth hormone (GH) secretagogue receptor (GHS-R) conserved from Pufferfish to humans. Mol Endocrinol. 2000; 14: 160-169
    
    60. Muccioli G, Broglio F, Valetto MR, et al. Growth hormone-releasing peptides and the cardiovascular system. Ann Endocrinol. (Paris) 2000; 61: 27-31
    
    61. Locatelli V, Rossoni G, Schweiger F, et al. Growth hormone-independent cardioprotective effects of hexarelin in the rat. Endocrinology. 1999; 140: 4024-4031
    
    62. Bisi G, Podio V, Valetto MR, et al. Acute cardiovascular and hormonal effects of GH and hexarelin, a synthetic GH-releasing peptide, in humans. J Endocrinol Invest. 1999;22:266-272
    
    63. Filigheddu N, Fubini A, Baldanzi G, et al. Hexarelin protects H9c2 cardiomyocytes from doxorubicin-induced cell death. Endocrine 2001, 14: 113-119
    
    64. Baldanzi G, Filigheddu N, Cutrupi S, et al. Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. J Cell Biol. 2002; 159: 1029-37
    65. Ekhterae D, Lin Z, Lundberg MS, et al. ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res. 1999; 85: E70-E77
    
    66. Wang L, Ma W, Markovich R, et al. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ Res. 1998; 83: 516-522
    
    67. Wang L, Ma W, Markovich R, et al. Insulin-like growth factor I modulates induction of apoptotic signaling in H9C2 cardiac muscle cells. Endocrinology 1998; 139: 1354-1360
    
    68. Pettersson I, Muccioli G, Granata R, et al. Natural (ghrelin) and synthetic (hexarelin) GH secretagogues stimulate H9c2 cardiomyocyte cell proliferation. J Endocrinol. 2002; 175:201-209
    
    69. Pang JJ, Xu RK, Xu XB, Cao JM, Ni C, Zhu WL, Asotra K, Chen MC, Chen C. Hexarelin protects rat cardiomyocytes from angiotensin Il-induced apoptosis in vitro. Am J Physio- Heart Circ Physiol. 2004; 286: H1063-1069
    
    70. Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990; 322: 1561-1566
    
    71. Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation. 2000; 102: 470-479
    
    72. Hongo M, Ryoke T, Ross J. Animal models of heart failure: Recent developments and perspectives. Trends Cardiovasc Med. 1997;7: 161-167
    
    73. Chien KR, Knowlton KU, Zhu H, Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J. 1991; 5: 3037-3046
    74. Sugden PH, Clerk A. Cellular mechanisms of cardiac hypertrophy. JMol Med. 1998; 76:725-746
    
    75. Hanford DS, Thuerauf DJ, Murray SF, et al. Brain natriuretic peptide is induced by a1-adrenergic agonists as a primary response gene in cultured rat cardiac myocytes. J Biol Chem. 1994; 269: 26227-26233
    
    76. Hasenfuss G. Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res. 1998; 37: 279-289
    
    77. Sugden P. Signaling in myocardial hypertrophy life after calcineurin? Circ Res. 1999; 84: 633-646
    
    78. Adams JW, Brown JH. G-proteins in growth and apoptosis: lessons from the heart. Oncogene. 2001; 20: 1626-1634
    
    79. Adams JW, Pagel AL, Means CK, et al. Cardiomyocyte apoptosis induced by Galphaq signaling is mediated by permeability transition pore formation and activation of the mitochondrial death pathway. Circ Res. 2000; 87: 1180-1187
    
    80. Takeishi Y, Ping P, Bolli R, et al. Transgenic overexpression of constitutively active protein kinase C epsilon causes concentric cardiac hypertrophy. Circ Res. 2000; 86: 1218-1223
    
    81. Sugden PH, Clerk A. "Stress-responsive" mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res. 1998; 83: 345-352
    
    82. Varma DR, Deng X. Cardiovascular alpha 1-adrenoceptor subtypes: functions and signaling. Can J Physiol Pharmacol. 2000; 78: 267-292
    83. Theroux TL, Esbenshade TA, Peavy RD, et al. Coupling efficiencies of human alpha 1-adrenergic receptor subtypes: titration of receptor density and responsiveness with inducible and repressible expression vectors.Mol Pharmacol. 1996; 50: 1376-1387
    
    84. McWhinney C, Wenham D, Kanwal S, et al. Constitutively active mutants of the alpha(1a)- and the alpha(1b)-adrenergic receptor subtypes reveal coupling to different signaling pathways and physiological responses in rat cardiac myocytes. J Biol Chem. 2000; 275: 2087-2097
    
    85. Zhu YC, Zhu YZ, Gohlke P, et al. Effects of angiotensin-converting enzyme inhibition and angiotensin II AT1 receptor antagonism on cardiac parameters in left ventricular hypertrophy. Am J Cardiol. 1997; 80 : 110A-117A
    
    86. Paradis P, Dali-Youcef N, Paradis FW, et al. Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci U S A. 2000; 97:931 -936
    
    87. Miyauchi T, Goto K. Heart failure and endothelin receptor antagonists. Trends Pharmacol Sci. 1999; 20: 210-217
    
    88. Widmann C, Gibson S, Jarpe MB, Johnson GL, Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999; 79:143-180.
    
    89. Sugden PH, Clerk A. "Stress-responsive" mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res. 1998; 24:345-352
    
    90. Rapacciuolo A, Esposito G, Caron K, et al. Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. J Am Coll Cardiol. 2001; 38: 876-882
    91. Takeishi Y, Huang Q, Abe Ji, et al. Src and multiple map kinase activation in cardiac hypertrophy and congestive heart failure under chronic pressure-overload: comparison with acute mechanical stretch. J Mol Cell Cardiol. 2001; 33: 1637 -1648
    
    92. Liang F, Lu S, Gardner DG. Endothelin-dependent and -independent components of strain-activated brain natriuretic peptide gene transcription require extracellular signal regulated kinase and p38 mitogen-activated protein kinase. Hypertension. 2000; 35: 188-192
    
    93. Kodama H, Fukuda K, Pan J, et al. Significance of ERK cascade compared with JAK/STAT and PI3-K pathway in gp130-mediated cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2000; 279: H1635-H1644
    
    94. Yue TL, Gu JL, Wang C, et al. Extracellular signalregulated kinase plays an essential role in hypertrophic agonists, endothelin-1 and phenylephrine-induced cardiomyocyte hypertrophy. J Biol Chem. 2000; 275: 37895-37901
    
    95. Ueyama T, Kawashima S, Sakoda T, et al. Requirement of activation of the extracellular signal-regulated kinase cascade in myocardial cell hypertrophy. J Mol Cell Cardiol. 2000; 32: 947-960
    
    96. Thorburn J, Frost JA, Thorburn A. Mitogen-activated protein kinases mediate changes in gene expression, but not cytoskeletal organization associated with cardiac muscle cell hypertrophy. J Cell Biol. 1994; 126: 1565-1572
    
    97. Thorburn J, McMahon M, Thorburn A. Raf-1 kinase activity is necessary and sufficient for gene expression changes but not sufficient for cellular morphology changes associated with cardiac myocyte hypertrophy. J Biol Chem. 1994; 269: 30580-30586
    
    98. Choukroun G, Hajjar R, Kyriakis JM, et al. Role of the stress-activated protein kinases in endothelininduced cardiomyocyte hypertrophy. J Clin Invest. 1998; 102: 1311-1320
    99. Liang Q, Wiese RJ, Bueno OF, et al. The transcription factor GATA4 is activated by extracellular signal-regulated kinase 1- and 2-mediated phosphorylation of serine 105 in cardiomyocytes. Mol Cell Biol. 2001; 21: 7460-7469
    
    100.Morimoto T, Hasegawa K, Kaburagi S, et al. Phosphorylation of GATA-4 is involved in 1- adrenergicagonist -responsive transcription of the endothelin-1 gene in cardiac myocytes. J Biol Chem. 2000; 275: 13721-13726
    
    101.Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase(JNK)-from inflammation to development. Curr Opin Cell Bio. 1998; 10:205-219
    
    102.Komuro I, Kudo S, Yamazaki T, et al. Mechanical strech activates the stress-activated protein kinases in cardiac myocyte. FASEB J. 1996;10; 631-636
    
    103.Kudoh S, Komuro I, Mizuno T, et al. Angiotension II stimulates c-Jun NH2- terminal kinase in cultured cardiac myocytes of neonatal rats. Circ Res. 1997; 80: 139-146
    
    104.Yamazaki T, Komuro I, Kudoh S, et al. Mechanical stress activates protein kiase cascade of phosphorylation in neonatal rat cardiac myocytes. J Clin Invest.1995; 96: 438-446
    
    105.Ichijo H, Nishida E, Irie K, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 1997; 275: 90-94
    
    106.New L, Han J. The p38MAP kinase pathway and its biological function. Trends Cardiovasc Med. 1998; 8: 220-228
    
    107.Bozkurt B, Kribbs SB, Clubb FJ Jr, et al. Pathphysiologically relevant concentrations of tumor necrosis factor-a promote progressive left ventricular dysfunction and remodeling in rats. Circulation. 1998; 97: 1382-1391
    108.Jiang Y, Chen C, Li Z, et al. Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem. 1996; 271: 17920-17926
    
    109.Takeda N, Nagano M, Narajin S. The hypertrophied heart. Kluwer Academin Publishers. 2000, 111
    
    110.Guerini D. Calcineurin: not just a simple protein phosphatase. Biochem Biophys Res Commun. 1997; 235: 271-275
    
    111.Klee CB, Ren H, Wang X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem. 1998; 273: 13367-13370
    
    112.Hasegawa K, Lee SJ, Jobe SM, et al. Cis-acting sequences that mediate induction of beta- myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation. 1997; 96: 3943-3953
    
    113.Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998, 93:7543-7548
    
    114.Sussman MA, Lim HW, Gude N, et al. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science. 1998; 281:1690-1693
    
    115.Juliano RL, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol. 1993; 120:577-585
    
    116.Hynes ro. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992; 69:11-25
    
    117.Mackay DJ, Hall A. Rho GTPases. J Biol Chem. 1998; 273:20685-20688
    
    118.Aikawa R, Komuro I, yamazaki T, et al. Rho family small G proteins play critical roles in mechanical stress-induced hypertrophic responses in cardiacmyocytes. Circ Res. 1999; 84:458-466
    119.Thorburn J, Xu S, Thorburn A. MAP kinase- and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. EMBO J. 1997;16:1888-1900
    
    120.Sah VP, Hoshijima M, Chien KR, et al. Rho is required for Galphaq and alphal-adrenergic receptor signaling in cardiomyocytes. Dissociation of Ras and Rho pathways. J Bio Chem. 1996; 271:31185-31190
    
    121.Chien KR, Zhu H, Knowlton KU, et al. Transcriptional regulation during cardiac growth and development. Annu Rev Physiol. 1993; 55: 77-95
    
    122.Komuro I, Yazaki Y. Control of cardiac gene expression by mechanical stress. Annu Rev Physiol. 1993; 55: 55-75
    
    123.Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol. 1997; 59: 551-571
    
    124.Shimkets RA, Lowe DG, Tai JT, et al. Gene expression analysis by transcript profiling coupled to a gene database query. Nat Biotechnol. 1999; 17: 798-1003
    
    125.Friddle CJ, Koga T, Rubin EM, et al. Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy. Proc Natl Acad Sci U S A. 2000; 97: 6745-6750
    
    126.Bruneau BG. Transcriptional regulation of vertebrate cardiac morphogenesis. Circ Res. 2002; 90: 509-519
    
    127.Patient RK, McGhee JD. The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev. 2002; 12:416-422
    
    128.Molkentin JD. The zinc finger-containing transcription factors GATA-4, -5, and -6: ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem. 2000; 275: 38949-38952
    129.Liang Q, Molkentin JD. Divergent signaling pathways converge on GATA4 to regulate cardiac hypertrophic gene expression. J Mol Cell Cardiol. 2002; 34: 611-616
    
    130.Hasegawa K, Lee SJ, Jobe SM, et al. Cis-acting sequences that mediate induction of β-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation. 1997; 96: 3943-3953
    
    131 .Herzig TC, Jobe SM, Aoki H, et al. Angiotensin II type la receptor gene expression in the heart: AP-1 and GATA-4 participate in the response to pressure overload. Proc Natl Acad Sci U S A. 1997; 94: 7543-7548
    
    132.Charron F, Tsimiklis G, Arcand M, et al. Tissue-specific GATA factors are transcriptional effectors of the small GTPase RhoA. Genes Dev. 2001; 15: 2702-2719
    
    133.Morimoto T, Hasegawa K, Kaburagi S, et al. Phosphorylation of GATA-4 is involved in a-adrenergic agonist-responsive transcription of the endothelin-1 gene in cardiac myocytes. J Biol Chem. 2000; 275: 13721-13726.
    
    134. Liang Q, Wiese RJ, Bueno OF, et al. The transcription factor GATA4 is activated by extracellular signal-regulated kinase 1 - and 2-mediated phosphorylation of serine 105 in cardiomyocytes. Mol Cell Biol. 2001; 21: 7460-7469
    
    135.Kerkela R, Pikkarainen S, Majalahti PT, et al. Distinct roles of mitogen-activated protein kinase pathways in GATA-4 transcription factor-mediated regulation of B-type natriuretic peptide gene. J Biol Chem. 2002; 277: 13752-3760
    
    136.Dai YS, Markham BE. p300 functions as a coactivator of transcription factor GATA-4. J Biol Chem. 2001; 276: 37178-37185
    
    137.Belaguli NS, Sepulveda JL, Nigam V, et al. Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators. Mol Cell Biol. 2000; 20: 7550-7558138. Morin S, Charron F, Robitaille L, et al. GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J. 2000; 19:2046-2055
    139. Black BL, Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Ann Rev Cell Dev Biol. 1998; 14:167-196
    140. McKinsey TA, Zhang CL, Olson EN. MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci. 2002; 27:40-47
    141. Liu ZP, Nakagawa O, Nakagawa M, et al. CHAMP, a novel cardiac-specific helicase regulated by MEF2C. Dev Biol. 2001; 234:497-509
    142. Zhu H, Garcia AV, Ross RS, et al. A conserved 28-base-pair element (HF-1) in the rat cardiac myosin light-chain-2 gene confers cardiac-specific and α-adrenergic-inducible expression in cultured neonatal rat myocardial cells. Mol Cell Biol. 1991; 11: 2273-2281
    143. Han J, Molkentin JD. Regulation of MEF2 by p38 MAPK and its implication in cardiomyocyte biology. Trends Cardiovasc Med. 2000; 10:19-22
    144. Kato Y, Kravchenko VV, Tapping RI, et al. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J. 1997; 16: 7054-7066
    145. Yang CC, Ornatsky OI, McDermott JC, et al. Interaction of myocyte enhancer factor 2 (MEF2) with a mitogen-activated protein kinase, ERK5/BMK1. Nucleic Acids Res. 1998; 26:4771-4777
    146. Tamir Y, Bengal E. Phosphoinositide 3-kinase induces the transcriptional activity of MEF2 proteins during muscle differentiation. J Biol Chem. 2000; 275:34424-34432.
    147. Frey N, McKinsey TA, Olson EN. Decoding calcium signals involved in cardiac growth and function. Nat Med. 2000; 6:1221-1227
    148.Passier R, Zeng H, Frey N, et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest. 2000; 105: 1395-1406
    
    149.Chen CY, Schwartz RJ. Identification of novel DNA binding targets and regulatory domains of a murine tinman homeodomain factor, nkx-2.5. J Biol Chem. 1995;270:15628-15633
    
    150.Tanaka M, Chen Z, Bartunkova S, et al. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development. 1999;126:1269-1280
    
    151.Thompson JT, Rackley MS, O'Brien TX. Upregulation of the cardiac homeobox gene Nkx2-5 (CSX) in feline right ventricular pressure overload. Am J Physiol. 1998; 274: H1569-1573
    
    152. Saadane N, Alpert L, Chalifour LE. Expression of immediate early genes, GATA-4, and Nkx-2.5 in adrenergic-induced cardiac hypertrophy and during regression in adult mice. Br J Pharmacol. 1999; 127: 1165-1176.
    
    153. Akazawa H, Komuro I. Roles of Cardiac Transcription Factors in Cardiac Hypertrophy. Cir Res. 2003; 92: 1079-1088
    
    154.Srivastava D. HAND proteins: molecular mediators of cardiac development and congenital heart disease. Trends Cardiovasc Med. 1999; 9: 11-18
    
    155.Srivastava D, Thomas T, Lin Q, et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet. 1997; 16: 154-160
    
    156.Thattaliyath BD, Livi CB, Steinhelper ME, et al. HAND1 and HAND2 are expressed in the adult-rodent heart and are modulated during cardiac hypertrophy. Biochem Biophys Res Commun. 2002; 297: 870-875
    157.Dai YS, Cserjesi P, Markham BE, et al. The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism. J Biol Chem. 2002; 77: 4390-4398

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700