ATF3和SRD5A2与单纯性尿道下裂的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尿道下裂主要表现为异位的尿道外口,在男性新生儿中其发病率约为1/250~300,它是男性泌尿生殖系统最常见先天性畸形之一。近30年来尿道下裂的发病率呈逐年升高趋势,大部分是散发的、无遗传和家族史。既往研究显示尿道下裂存在家族性单基因遗传现象,或伴发于其它的遗传疾病综合症,同时也有研究发现环境因素与尿道下裂有关,目前认为尿道下裂是遗传和环境因素综合作用的结果。
     胎儿尿道发育有赖于足量的雄性激素,它包括睾酮和双氢睾酮,睾酮在由SRD5A2基因编码的Ⅱ型5α-还原酶的作用下转化成活性更高的双氢睾酮。研究证明Ⅱ型5α-还原酶的功能异常、SRD5A2基因突变和尿道下裂的发生有密切关系,至今已发现约40种突变类型,大部分表现为误义突变和无义突变。以往对该基因的研究主要集中在家族性和伴发于其它遗传疾病综合症的尿道下裂,对散发的单纯性尿道下裂研究较少。
     ATF3是碱性亮氨酸拉链区(bZIP)家族中ATF/CREB转录因子亚家族的成员之一。研究发现ATF3通过复杂的机制调节其靶基因的表达,它与内环境稳定、伤口愈合、细胞粘附、肿瘤细胞浸润和信号转导通路有关。2003年,Wang等采用微阵列技术发现ATF3是尿道下裂相关基因之一,提示ATF3基因除了对应激产生保护性反应外,可能与尿道下裂发生过程中的应激应答有关。进一步研究ATF3和散发的单纯性尿道下裂的关系,有可能揭示ATF3在其发病中的作用机制。
     家族性尿道下裂约占7%,其余的大部分为散发的单纯性尿道下裂。
Hypospadias is a malformation characterized by the urethra opening on the underside of the penis. The reported incidence of hypospadias is approximately l/250~l/300 live male births, making hypospadias one of the most common congenital malformations in children. Some research has documented that the incidence of this anomaly has been increasing during the last three decades, and most hypospadias are sporadic, without inheritance or family recurrence. Evidence for genetic factors in hypospadias come from the observation of families with monogenic inheritance and the feature of hypospadias in several genetic syndromes. Moreover, environmental factors may also contribute to the pathogenesis of hypospadias. Taken together hypospadias is a complex disorder caused by the combined influence of genetic and environmental factors.
    Normal male sex differentiation relies on the effect of androgen. The conversion of testosterone (T) to dihydrotestosterone (DHT), required for the full masculinization of the external genitalia and prostate in the male foetus, is catalysed by the 5a-reductase-2 enzyme, which is encoded by the SRD5A2 gene located on the short arm of chromosome 2. Extensive mutation screening in hypospadias have revealed disease associated sequence alterations predominantly in the steroid 5-alpha reductase (SRD5A2) gene and more than 40 different mutations have been reported so far in the SRD5A2 gene, most are missense or nonsense mutations. Previous works were focus on familial hypospadias or other genetic syndromes, and the association of SRD5A2 mutations with isolated hypospadias was rarely studied.
    Activating transcription factor 3 (ATF3) is a member of the ATF/CREB
引文
[1] Shukla AR, Patel RP, Canning DA. Hypospadias. Urologic Clinics of North America. 2004, 31(3) :445-460
    [2] 蓝果.出生缺陷监测.中国优生与遗传杂志.2004,12:124
    [3] Wang Z, Yucel S, Lin GT, et al. National conference and exhibition, New Orleans, 2003,148
    [4] Hashimoto Y, Zhang C, Kawauchi J, et al. An alternatively spliced isoform of transcriptional repressor ATF3 and its induction by stress stimuli. Nucleic Acids Res. 2002, 30:2398-2406
    [5] Liu B, Wang Z, Lin G, et al. Activating transcription factor 3 is up-regulated in patients with hypospadias. Pediatr Res. 2005, 58(6): 1280-1283
    [6] Wolfgang CD, Chen BP, Martindale JL, et al. gadd153/Chop10, a potential target gene of the transcriptional repressor ATF3. Mol Cell Biol. 1997,17(11):6700-6707
    [7] Nawa T, Cai Y, Zhang C, et al. Repression of rNF-(?)-induced E-selectin expression by PPAR activators: involvement of transcriptional repressor LRF-1/ATF3. Biochem Biophys Res Commun. 2000,275:406-411
    [8] Yah CH, Lu D, Hal TW, et al. Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO JOURNAL. 2005,24(13): 2425-2435
    [9] Huo JS, McEachin RC, Cui TX, et al. Profiles of Growth Hormone (GH)-regulated Genes Reveal Time-dependent Responses and Identify a Mechanism for Regulation of Activating Transcription Factor 3 By GH. J Biol Chem. 2006,281(7):4132-4141
    [10] Kool J, Hamdi M, Cornelissen-Steijger P, et al. Induction of ATF3 by ionizing radiation is mediated via a signaling pathway that includes ATM, Nibrinl, stress-induced MAPkinases and ATF-2. Oncogene. 2003,22(27): 4235-4242
    [11] Zhang C, gao C, Kawauchi J, et al. Transcriptional activation of the human stress-inducible transcript ional repressor ATF3 gene promoter by p53. Biochem Biophys Res Commun. 2002, 297(5):1302-1310
    
    [12] Bakin AV, Stourman NV, Sekhar KR, et al.Smad3-ATF3 signaling mediates TGF-beta suppression of genes encoding Phase II detoxifying proteins. Free Radic Biol Med. 2005, 38(3):375-387
    
    [13] Fan F, Jin S, Amundson SA, et al. ATF3 induction following DNA damage is regulated by distinct signaling pathways and over-expression of ATF3 protein suppresses cells growth. Oncogene. 2002,21:7488-7496
    
    [14] Janz M, Hummel M, Truss M, et al. Classical Hodgkin lymphoma is characterized by high constitutive expression of activating transcription actor 3 (ATF3), which promotes viability of Hodgkin/Reed-Sternberg cells. Blood. 2006, 107(6):2536-2539
    
    [15] Allen-Jennings AE, Hartman MG, Kociba GJ, et al. The roles of ATF3 in glucose homeostasis: a transgenic mouse model with liver dysfunction and defects in endocrine pancreas. J Biol Chem. 2001,276:29507-29514
    
    [16] Wang Y, Li Q, Xu J, et al. Mutation analysis of five candidate genes in Chinese patients with hypospadias.Eur J Hum Genet. 2004 , 12(9):706-712
    
    [17] Paris F, Jeandel C, Servant N, et al. Increased serum estrogenic bioactivity in three male newborns with ambiguous genitalia: a potential consequence of prenatal exposure to environmental endocrine disruptors. Environ Res. 2006, 100(1):39-43
    
    [18] Inoue A, Yoshida N, Omoto Y, et al. Development of cDNA microarray for expression profiling of estrogen-responsive genes. J Mol Endocrinol. 2002,29:175-192
    
    [19] Pelzer AE, Bektic J, Haag P, et al. The expression of transcription factor activating transcription factor 3 in the human prostate and its regulation by androgen in prostate cancer. J Urol. 2006 ,175(4):1517-1522
    
    [20] Kim KS, Liu W, Cunha GR, et al. Expression of the androgen receptor and 5 alpha-reductase type 2 in the developing human fetal penis and urethra. Cell Tissue Res. 2002 , 307(2):145-153
    
    [21] Domenice S, Yumie M, Billerbeck AE, et al. A novel missense mutation (S18N) in the 5' non HMG box region of the SRY gene in a patient with partial gonadal dysgenesisa and his normal male relatives. Hum Genet. 1998 ,102:213-215
    
    [22] Diller L, Ghahremani M, Morgan J, et al. Constitutional WT1 mutations in Wilms' tumor patients. J Clin Oncol. 1998, 16(11):3634-3640
    
    [23] Muroya K, Sasagawa I. Suzuki Y. et al. Hypospadas and androgen receptor gene :mutation screening and CAG repeat length analysis. Mol H um Reprod. 2001,7:409-413
    
    [24] Codner E, Okuma C, Iniguez G, et al. Molecular study of the 3 betahydroxysteroid dehydrogenase gene type II in patients with hypospadias. J Clin Endocrinol Metab. 2004, 89(2):957-964
    
    [25] Turton JP, Reynaud R, Mehta A, et al. Novel mutations within the P0U1F1 gene associated with variable combined pituitary hormone deficiency. J Clin Endocrinol Metab. 2005,90(8):4762-4770
    
    [26] Liang G, Wolfgang CD, Chen BP, et al. ATF3 gene. Genomic organization, promoter, and regulation. J Biol Chem. 1996, 271(3):1695-1701
    
    [27] Chen, BP, Liang G, Whelan J, et al. ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoform. J Biol Chem. 1994,269:15819-15826
    
    [28] Cai Y, Zhang C, Nawa T, et al. Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH(2)-terminal kinase and promoter response element. Blood. 2000, 96(6): 2140-2148
    
    [29] Hu G, Jain K, Hurle M. Revealing transforming growth factor-beta signaling transduction in human kidney by gene expression data mining. OMICS. 2005, 9(3):266-80
    
    [30] Hartman MG, Lu D, Kim ML, et al. Role for activating transcription factor 3 in stress-induced beta-cell apoptosis. Mol Cell Biol. 2004, 24(13) : 5721-5732
    
    [31] Hiort O, Willenbring H, Albers N, et al. Molecular genetic analysis and human chorionic gonadotropin stimulation tests in the diagnosis of prepubertal patients with partial 5 alpha-reductase deficiency. Eur J Pediatr. 1996, 155(6):445-451
    [32] Bahceci M, Ersay AR, Tuzcu A, et el. A novel missense mutation of 5-alpha reductase type 2 gene (SRD5A2) leads to severe male pseudohermaphroditism in a Turkish family. Urology. 2005,66(2):407-410
    [33] 周李,梅骅,刘唐彬,等.先天性尿道下裂与SRD5A2及SRY基因突变关系研究.中华遗传学杂志.1999,16:311-316
    [34] Thai HT, Kalbasi M, Lagerstedt K, et el. The valine allele of the V89L polymorphism in the 5-alpha-reductase gene confers a reduced risk for hypospadias. J Clin Endocrinol Metab. 2005,90(12):6695-6698
    [35] Makridakis N, Akalu A, Reichardt JK, et el. Identification and characterization of somatic steroid 5[alpha]-reductase (SRD5A2) mutations in human prostate. oncogene. 2004, 23(44): 7399-7405
    [36] Wigley WC, Prihoda JS, Mowszowicz I, et el. Natural mutagenesis study of the human steroid 5 α-reductase 2 isozyme. Biochemistry. 1994, 33:1265-1270
    [37] Silver RI, Russell DW. 5alpha-reductase type 2 mutations are present in some boys with isolated hypospadias. J Urol. 1999,162(3 Pt 2):1142-1145
    [38] Nicoletti A, Baldazzi L, Balsamo A, et el. SRD5A2 gene analysis in an Italian population of under-masculinized 46, XY subjects. Clin Endocrinol (Oxf). 2005,63(4):375-380
    [39] Nordenskjold A, Friedman E, Tapper-Persson M, et el. Screening for mutations in candidate genes for hypospadias. Urol Res. 1999,27(1):49-55
    [40] Lee KA, Hal TY, SivaRaman L, et el. A cellular protein, activating transcription factor, activates transcription of multiple ElA-inducible adenovirus early promoters. Proc Natl Acad Sci U S A. 1987,84(23):8355-8359
    [41] Hal T, Wolfgang CD, Marsee DK, et el. ATF3 and stress responses. Gene Expr. 1999,7(4-6):321-335
    [42] Newman JR, Keating AE. Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science. 2003,300(5628):2097-2101
    [43] Hal T, Liu F, Coukos WJ. et el. Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev. 1989,3:2083-2090
    [44] Hsu JC, Bravo R, Taub R. Interactions among LRF-I, JunB, c-Jun and c-Fos define a regulatory program in the G1 phase of liver regeneration. Mol Cell Biol. 1992,12:4654-4665
    
    [45] Pan Y, Chen H, Siu F, et al. Amino acid deprivation and endoplasmic reticulum stress induce expression of multiple activating transcription factor-3 mRNA species that, when overexpressed in HepG2 cells, modulate transcription by the human asparagine synthetase promoter. J Biol Chem. 2003 ,278(40):38402-38412
    
    [46] Wang J, Cao Y, Steiner DF. Regulation of proglucagon transcription by activated transcription factor (ATF) 3 and a novel isoform, ATF3b, through the cAMP-response element/ATF site of the proglucagon gene promoter. J Biol Chem. 2003, 278(35):32899-32904
    
    [47] Meyer TE, Habener JF. Cyclic adenosine 3', 5' -monophosphate response element binding protein (CREB) and related transcription-activating deoxyribonucleic acid-binding proteins.Endocr Rev. 1993,14(3):269-290
    
    [48] Kang Y, Chen CR, Massague J. A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell. 2003, 11(4):915-926
    
    [49] Zimmermann J, Erdmann D, Lalande I, et al. Proteasome inhibitor induced gene expression profiles reveal overexpression of transcriptional regulators ATF3, GADD153 and MAD1. Oncogene. 2000, 19(25):2913-2920
    
    [50] Chen BP, Wolf gang CD, Hai T. Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Mol Cell Biol. 1996, 16(3):1157-1168
    
    [51] Abe T, Oue N, Yasui W, et al. Rapid and preferential induction of ATF3 transcription in response to low doses of UVA light. Biochem Biophys Res Commun. 2003,310(4):1168-1174
    
    [52] Kawauchi J, Zhang C, Nobori K, et al. Transcriptional repressor activating transcription factor 3 protects human umbilical vein endothelial cells from tumor necrosis factor-alpha-induced apoptosis through down-regulation of p53 transcription. J Biol Chem. 2002, 277(41): 39025-39034
    
    [53] Nakagomi S, Suzuki Y, Namikawa K, et al. Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci. 2003 , 23(12):5187-5196
    
    [54] Hagmeyer BM, Duyndam MC, Angel P, et al. Altered AP-1/ATF complexes in adenovirus-El-transformed cells due to ElA-dependent induction of ATF3.Oncogene.1996,12:1025 - 1032
    
    [55] Perez S, Vial E, van Dam H, et al. Transcription factor ATF3 partially transforms chick embryo fibroblasts by promoting growth factor -independent proliferation. Oncogene. 2001, 20(9):1135-1141
    
    [56] Yamaguchi K, Lee SH, Kim JS, et al. Activating transcription factor 3 and early growth response 1 are the novel targets of LY294002 in a phosphatidylinositol 3-kinase-independent pathway. CANCER RESEARCH. 2006, 66 (4): 2376-2384
    
    [57] Bottone FG, Moon Y, Kim JS, et al. The anti-invasive activity of cyclooxygenase inhibitors is regulated by the transcription factor ATF3 (activating transcription factor 3). Mol Cancer Ther. 2005, 4(5):693-703
    
    [58] Ishiguro T, Nagawa H, Naito M, et al.Inhibitory effect of ATF3 antisense oligonucleotide on ectopic growth of HT29 human colon cancer cells. Jpn J Cancer Res. 2000,91 (8):833-836
    
    [59] Ishiguro T, Nakajima M, Naito M, et al. Identification of genes differentially expressed in B16 murine melanoma sublines with different metastatic potentials. Cancer Res. 1996, 56(4):875-879
    
    [60] Allan AL, Albanese C, Pestell RG, et al. Activating transcription factor 3 induces DNA synthesis and expression of cyclin D1 in hepatocytes.J Biol Chem. 2001, 276(29):27272-27280
    
    [61] Tamura K, Hua BY, Adachi S, et al. Stress response gene ATF3 is a target of c-myc in serum-induced cell proliferation. EMBO JOURNAL. 2005, 24 (14): 2590-2601
    
    [62] Wang A , Gu J, Judson-Kremer K, et al. Response of human mammary epithelial cells to DNA damage induced by BPDE: involvement of novel regulatory pathways. Carcinogenesis. 2003, 24(2):225-234
    
    [63] Barnabas S, Andrisani 0M. Different regions of hepatitis B virus X protein are required for enhancement of bZip-mediated transactivation versus transrepression. J Virol. 2000,74(1):83-90
    [64] Sinclair AH, Berta P, Palmer MS, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990,346(6281):240-244
    [65] Numabe H, Nagafuchi S, Nakahori Y, et al. DNA analyses of XX and XX-hypospadiac males. Hum Genet. 1992,90(3):211-214
    [66] 刘国庆,赵蕊,叶志纯,等.先天性尿道下裂与SRY基因关系的探讨.中华泌尿外科杂志.2001,22(4):47-48
    [67] 李强,李森恺,徐家杰,等.尿道下裂病人中SRY基因缺失的快速检测.中华整形外科杂志.2002,1:43-44
    [68] Scherer G, Held M, Erdel M, et al. Three novel SRY mutations in XY gonadal dysgenesis and the enigma of XY gonadal dysgenesis cases without SRY mutations. Cytogenet Cell Genet. 1998,80(1-4):188-192
    [69] Harley VR, Lovell-Badge R, Goodfellow PN, et al. The HMG box of SRY is a calmodulin binding domain. FEBS Lett. 1996,391(1-2):24-28
    [70] Olhey PN, Kean LS, Graham D, et al. Campomelic syndrome and deletion of SOX9. Am J Med Genet. 1999,84(1):20-24
    [71] Huang B, Wang S, Ning Y, et al. Autosomal XX sex reversal caused by duplication of SOX9. Am J Med Genet. 1999,87(4):349-353
    [72] De Santa Barbara P, Bonneaud N, Boizet B, et al. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Mullerian hormone gene. Mol Cell Biol. 1998,18(11):6653-6665
    [73] Lienhardt A, Mas JC, Kalifa G, et aI. IMAGe association: additional clinical features and evidence for recessive autosomal inheritance. Horm Res. 2002,57 Suppl 2:71-78
    [74] Bardoni B, Zanaria E, Guioli S, et al. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet. 1994,7(4):497-501
    [75] Scharnhorst V, Dekker P, van der Eb A J, et al. Internal translation initiation generates novel WT1 protein isoforms with distinct biological properties. J Biol Chem. 1999,274: 23456-23462
    [76] Rackley RR, Flenniken AM, Kuriyan NP, et al. Expression of the Wilms' tumor suppressor gene WT1 during mouse embryogenesis. Cell Growth Differ. 1993, 4(12):1023-1031
    
    [77] Parker KL, Schimmer BP. Genes essential for early events in gonadal development. Ann Med. 2002,34(3):171-178
    
    [78] Kohler B, Schumacher V, Schulte-Overberg U, et al.Bilateral Wilms tumor in a boy with severe hypospadias and cryptochidism due to a heterozygous mutation in the WT1 gene. Pediatr Res. 1999, 45(2):187-190
    
    [79] Kohler B, Schumacher V, Allemand D, et al. Germline Wilms tumor suppressor gene (WT1) mutation leading to isolated genital malformation without Wilms tumor or nephropathy. J Pediatr. 2001,138(3):421-424
    
    [80] Klamt B, Koziell A, Poulat F, et al. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/-KTS splice isoforms. Hum Mol Genet. 1998, 7(4):709-714
    
    [81] Patek CE, Little MH, Fleming S, et al.A zinc finger truncation of murine WT1 results in the characteristic urogenital abnormalities of Denys-Drash syndrome.Proc Natl Acad Sci U S A. 1999,96(6):2931-2936
    
    [82] Stavrou SS, Zhu YS, Cai LQ, et al. A novel mutation of the human luteinizing hormone receptor in 46XY and 46XX sisters. J Clin Endocrinol Metab. 1998,83(6):2091-2098
    
    [83] Misrahi M, Meduri G, Pissard S, et al. Comparison of immunocyto -chemical and molecular features with the phenotype in a case of incomplete male pseudohermaphroditism associated with a mutation of the luteinizing hormone receptor. J Clin Endocrinol Metab. 1997, 82(7):2159-2165
    
    [84] Morissette J, Durocher F, Leblanc JF, et al. Genetic linkage mapping of the human steroid 5 alpha-reductase type 2 gene (SRD5A2) close to D2S352 on chromosome region 2p23-->p22. Cytogenet Cell Genet. 1996, 73(4):304-307
    
    [85] Hackel C, Oliveira LE, Ferraz LF, et al. New mutations, hotspots, and founder effects in Brazilian patients with steroid 5alpha-reductase deficiency type 2. J Mol Med. 2005, 83(7):569-576
    
    [86] Nor denskjold A, Magnus O, Aagenaes O, et al. Homozygous mutation (A228T) in the 5 alpha reductase 2 gene in boy with 5alpha reductase deficiency: Genotype phentotype correlations. Am J Med Genet. 1998,80:269-272
    
    [87] Makridakis NM, di Salle E, Reichardt JK. Biochemical and pharmacogenetic dissection of human steroid 5 alpha-reductase type II. Pharmacogenetics. 2000, 10(5): 407-413
    
    [88] Davis DL, Russell DW. Unusual length polymorphism in human steroid 5 alpha-reductase type 2 gene (SRD5A2). Hum Mol Genet. 1993,2:820
    
    [89] Kakinuma H, Tsuchiya N, Habuchi T, et al. Serum sex steroid hormone levels and polymorphisms of CYP17 and SRD5A2: implication for prostate cancer risk.Prostate Cancer Prostatic Dis. 2004, 7(4):333-337
    
    [90] Schatzl G, Madersbacher S, Gsur A, et al. Association of polymorphisms within androgen receptor, 5alpha-reductase, and PSA genes with prostate volume, clinical parameters, and endocrine status in elderly men.Prostate. 2002, 52(2):130-138
    
    [91] Lubahn DB, Joseph DR, Sullivan PM, et al. Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science. 1988,240 (4850):327-330
    
    [92] Deeb A, Mason C, Lee YS, et al. Correlation between genotype, phenotype and sex of rearing in 111 patients with partial androgen insensitivity syndrome. Clin Endocrinol (Oxf). 2005,63(1):56-62
    
    [93] McPhaul MJ, Marcelli M, Zoppi S, et al. Genetic basis of endocrine disease. 4. The spectrum of mutations in the androgen receptor gene that causes androgen resistance. J Clin Endocrinol Metab. 1993, 76(1):17-23
    
    [94] Rodien P, Mebarki F, Mowszowicz I, et al. Different phenotypes in a family with androgen insensitivity caused by the same M780I point mutation in the androgen receptor gene. J Clin Endocrinol Metab. 1996 , 81 (8):2994-2998
    
    [95] Holterhus PM, Sinnedker GH, Hiort O. Phenetypic diversity and testosterone induced normalization of mutant L712F androgen receptor founction in a kind with androgen insensitibety . J Clin Endocriol Metab. 2000,85:3245-3250
    
    [96] Batch JA, EvansBAJ, HughesIA, et al. Mutations of the androgen receptor gene identified in perineal hypospadios. J Med Genet. 1993, 30(3):199-201
    [97] Evans BA, Hughes IA, Bevan CL, et al. Phenotypic diversity in siblings with partial androgen insensitivity syndrome. Arch Dis Child. 1997, 76(6):529-531
    [98] Allera A, Herbst MA, Griffin JR, et al. Mutations of the androgen receptor coding sequence are infrequent in patients with isolated hypospadias. J Clin Endocrinol Metab. 1995,80(9):2697-2699
    [99] Ouigley CA, De Bellis A, Marschke KB, et al. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev. 1995,16(3):271-321
    [100] McPhaul MJ, Griffin JE. Male pseudohermaphroditism caused by mutations of the human androgen receptor. J Clin Endocrinol Metab. 1999,84(10):3435-3441
    [101] Ong YC, Kolatkar PR, Yong EL, et al. Androgen receptor mutations causing human androgen insensitivity syndromes show a key role of residue M807 in Helix 8-Helix 10 interactions and in receptor ligand-binding domain stability. Mol Hum Reprod. 2002,8:101-108
    [102] Hiort O, Klauber G, Cendron M, et al. Molecular characterization of the androgen receptor gene in boys with hypospadias. Eur J Pediatr. 1994, 153:317-321
    [103] MacLean HE, Warne GL, Zajac JD. Defects of androgen receptor function: from sex reversal to motor neuron disease. Molec Cell Endocrinol. 1995,112:133-141
    [104] 徐哲,郑克立,乔慧,等.激素受体基因(CAG)n.重复多态性与先天性尿道下裂的关系.临床小儿外科杂志.2002,6:435—437
    [105] Irvine RA, Ma H, Yu MC, et al. Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length. Hum Mol Genet. 2000,9(2):267-274
    [106] Annemie LM, Boehmer, Rien JM, et al. etiological studies of severe or familial hypospadias. J Urol. 2001,165:1246-1254
    [107] Beleza-Meireles A, Omrani D, Kockum I, et al. Polymorphisms of estrogen receptor beta gene are associated with hypospadias. J Endocrinol Invest. 2006,29(1): 5-10
    [108] Sherbet DP, Tiosano D, Kwist KM, et al. CYP17 mutation E305G causes isolated 17, 20-lyase deficiency by selectively altering substrate binding. J Biol Chem. 2003, 278(49):48563-48569
    
    [109] Zhang L, Mason JI, Naiki Y, et al. Characterization of two novel homozygous missense mutations involving codon 6 and 259 of type II 3beta-hydroxysteroid dehydrogenase (3betaHSD) gene causing, respectively, nonsalt-wasting and salt-wasting 3betaHSD deficiency disorder. J Clin Endocrinol Metab. 2000,85 (4):1678-1685
    
    [110] Garavelli L, Cerruti-Mainardi P, Virdis R, et al. Genitourinary anomalies in Mowat-Wilson syndrome with deletion/mutation in the zinc finger homeo box 1B gene (ZFHX1B). Report of three Italian cases with hypospadias and review. Horm Res. 2005;63(4):187-192
    
    [111] Morgan EA, Nguyen SB, Scott V, et al. Loss of Bmp7 and Fgf8 signaling in Hoxal3-mutant mice causes hypospadia. Development. 2003,130(14): 3095-3109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700