水稻半不育突变体W207-2的育性分析及花粉半不育基因的精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
突变体是研究基因表达与功能分析的良好试验材料,也是当前功能基因组学研究的发展方向。雄性不育突变体在植物的育种、遗传学、生殖生物学和分子生物学的研究中提供了很好的材料。为了更好地理解花粉发育的分子机制,需要识别和分离涉及此过程各个阶段的所有基因,并对其特性进行分析。
     有关水稻半不育的报道多以籼粳杂种半不育为主,并提出了很多假说,但半不育的分子机制仍不清楚。究其原因,这种半不育是由籼粳间互作引起的,遗传基础较为复杂,不同的组合可能具有不同的不育位点,研究起来较为困难,若能用稳定的半不育材料进行研究,阐明半不育产生的分子机制,对克服生产中遇到的半不育问题具有重要的借鉴意义。为此,本研究对稳定的半不育突变体材料W207-2进行了半不育机制的研究和花粉半不育基因的精细定位,所得结果为从分子水平上揭示水稻及其它禾本科作物半不育性的生物学基础具有重要的指导意义。
     本论文主要研究结论如下:
     1.用突变体材料W207-2分别与粳稻品种Nipponbare和广亲和品种Dular(籼稻)进行正反交分析表明:W207-2的半不育性受隐性核基因控制,不受细胞质效应的影响。在双目解剖镜下观察到W207-2的花药瘦瘪且开裂性差,而Nipponbare的花药饱满且开裂性好。由于花药开裂性差,造成花粉散出量减少,在荧光显微镜下观察到散落在柱头上的花粉粒和萌发的花粉粒总数减少,继而导致小穗育性降低;花粉的半不育性可能是造成花药开裂性差的原因之一。
     2.通过对W207-2/Nipponbare的F_2群体分析表明,半不育性受生育期影响较小,花粉育性与小穗育性呈极显著正相关(r=0.9119);对W207-2/Nipponbare的F_2群体中291个单株和W207-2//W207-2/Nipponbare群体中137个单株的遗传分析表明,W207-2的半不育性受1对隐性核基因控制;分别用W207-2和Nipponbare的花粉给W207-2及不育系六盐189A、丙8979A和9522A进行辅助授粉,验证了W207-2的半不育性主要表现为花粉半不育,雌配子育性正常。
     3.通过石蜡切片对Nipponbare和W207-2的小孢子发育过程进行观察,发现W207-2的花药在造孢细胞和花粉母细胞时期,药室中有染色极深的“染色质黑块”,造成花粉母细胞减数分裂异常而导致小孢子部分败育;W207-2的绒毡层延迟解体是其小孢子部分败育的另一原因。此外,W207-2的药隔微管束发育不良及药室发育异常也可能是其半不育性的一个原因。用整体染色-透明法观察Nipponbare和W207-2的胚囊育性,发现其育性正常。W207-2的半不育性主要是由其雄配子发育不良造成。
     4.利用间接酶联免疫(ELISA)检测技术,测定了水稻半不育突变体W207-2及其野生型Nipponbare在幼穗发育过程中叶片、幼穗和花药中内源IAA,GA_4,iPA,ZR和ABA含量的动态变化。结果表明:在W207-2的叶片,小穗和花药中IAA,GA_4和iPA的含量均低于Nipponbare,且IAA+GA_4+iPA与ABA+ZR之比值也始终低于Nipponbare,而ZR和ABA的含量则高于Nipponbare,提示W207-2叶片,幼穗和花药中IAA,GA_4,iPA,ZR和ABA含量出现了异常,且IAA,GA_4和iPA亏缺以及ZR和ABA盈积可能与半不育发生有关。
     5.选择花粉育性作为育性指标,随机选择W207-2/Dular F_2分离群体中的20株半不育单株及20株可育单株,分别将各株的叶片等量混合后提取DNA,构成半不育混合基因组池和可育混合基因组池。对两混合基因组池进行全基因组SSR分析,分别在第5、7和8染色体上检测到有多态的标记。随后用W207-2/Dular F_2群体中的182个单株构建了第5、7、8染色体的分子连锁遗传图谱,并进行了QTLs检测,在第8染色体上标记RS41和RM6356之间检测到1个花粉半不育位点,命名为pss1,其LOD值为48.3,贡献率为70.5%。
     6.以W207-2与Nipponbare杂交F_2群体中291个单株对花粉半不育基因进行定位,确定了原始花粉半不育基因突变位点为位于第8染色体上的pss1,即由正常品种Nipponbare变为花粉半不育W207-2是pss1位点上基因突变的结果。进一步用9600株W207-2/Dular F_2分离群体中2100株纯合隐性半不育个体将该半不育基因pss1精细定位于CAPs标记L2和dCAPs标记L3之间,距两标记的距离均为0.02cM。两标记位于同一PAC克隆P0470F10上,物理距离约为28kb,对此片段进行分析,预测到5个完整的开放阅读框,分别为:putative ribonuclease PH,putative avr9 elicitor response protein,kinesin1-like RNA-binding protein,putative RNA-binding protein RNP-D precursor和putative 40S ribosomal protein S13。
Male-sterile mutations provide an ideal source material for a range of genetic andmolecular biological studies of reproductive biology. In order to well apprehend themolecular mechanism of pollen development, all genes involved in this coursedevelopmental stage must be identified and characteried.
     Many studies on the hybrid semi-sterility between indica and japonica have beenreported and many hypothesizes have been put forward, but the molecular mechanism ofsemi-sterility has been unknown. It is difficult to study this problem due to this hybridsemi-sterility causing by indica-japonica interaction. The hybrid genetic foundation iscomplex, so hybrid semi-sterility in different varietal combinations may be differentsterility loci. If we can use a stable genetic semi-sterile cultivar to study the semi-sterilemolecular mechanism, it would be a reference for overcoming the semi-sterility inpractices.
     W207-2 is a stable mutant, and mutants are favorable materials for studying geneexpression and function analysis, at the same time, analyzing mutants is also the develop-ment aspect for researching the functional genomes. The entire rice genome has beensequenced and publicly considered to be the genome of the model plant in grass, at thesame time, there is synteny between rice and other grass genome. Therefore, there is animportant use for reference to other grass plants through disclosing the biology basis inmolecular levels.
     The main results were as follows:
     1. On the basis of analysis with reciprocal F_1 hybrids between the mutant line W207-2and its original type Nipponbare(O. japonica) and a wide compatibility variety Dular(O.indica), the semi-sterility was found to be controlled by recessive nuclear genes with nocytoplasmic effect. The anther of W207-2 was thinner and almost indehiscent, while that ofNipponbare was plumper and dehiscent. The anther indehiscence of W207-2 was found toreduce the numbers of pollen grains dropped onto stigma per spikelet. Thus the germinated pollen grains were reduced and induced the spikelet semi-sterility of W207-2. The pollensemi-sterility may be one of the causes that make the anther indehiscent.
     2. Analysis of the F_2 population of W207-2/Nipponbare suggested that the correlationbetween spikelet fertility and pollen fertility was significant (γ=0.9119) and the semi-sterility was independent of growth duration. Genetic analysis of 291 plants in W207-2/Nipponbare F_2 population and 137 plants in W207-2/W207-2/Nipponbare populationindicated that this semi-sterility was controlled by a recessive nuclear gene. W207-2 andsterile line Liuyan189A, Bing8979A, 9522A was hand-pollinated with the pollen ofW207-2 and Nipponbare, respectively, and the semi-sterility of W207-2 was found to bemainly caused by the pollen semi-sterility while the female gamete fertility was normal.
     3. The developmental process of microsporogenesis in anthers of Nipponbare andW207-2 were examined with light microscope. Some special abortive types were detectedin the sporogenous cells or microspore mother cells, and their structure was destroyed, theydeveloped into abnormal black clumps. The main reasons of pollen abortion of W207-2 are:(1) The meiosis of pollen mother cell in W207-2 was abnormally. (2) Tapetum cell delayeddisintegration. And the aberrant vascular bundle of connective tissue and abnormal theca ofanther was another cause of semi-sterility for W207-2. Whole-stain clearing method wasused for evaluating embryo sac fertility of Nipponbare and W207-2. The embryo sacfertility was normal, and the male gamete developmental abnormality of W207-2 was themain cause for the semi-sterility of W207-2.
     4. Contents of IAA, GA_4, iPA, ZR and ABA were measured by enzyme-linkedimmunosorbent assay (ELISA) in leaves, panicles and anthers of W207-2 and its originaltype Nipponbare during panicle development. IAA, GA_4 and iPA contents and the ratios ofIAA+GA_4+iPA to ABA+ZR in leaves, panicles and anthers of W207-2 were shown to belower than those of Nipponbare, while ZR and ABA contents in W207-2 higher than thosein Nipponbare. It is proposed that the changes in contents of these endogenesis hormone inW207-2 are abnormal, and IAA, GA_4 and iPA deficiency and ABA as well as ZRaccumulation might be related to the generation of semi-sterility in rice.
     5. Twenty semi-sterility and twenty fertility plants were random selected from the F_2population of W207-2/Dular according to pollen fertility, then genomic DNA from themwas pooled to make up the fertile and semi-sterile DNA bulks, respectively. A total of 565SSR markers throughout the rice genome were surveyed for their polymorphisms betweenthe fertile and semi-sterile bulks and between the two parents. Five SSR markers including RM178 on chromosome 5, RM118 on chromosome 7, RMS06, RM152 and RM6863 onchromosome 8, showed polymorphisms between the two bulks and between the two parents.Based on the linkage map of chromosomes 5, 7 and 8, which were constructed using 182random individuals from W207-2/Dular F_2 population, only one major QTL (pss1)controlling the pollen semi-sterility was identified with a LOD score of 48.3 and a PVE(phenotypic variation explained) of 70.5% in the region between markers RS41 andRM6356 on chromosome 8.
     6. The pss1 locus that located in the region between markers RS41 and RM6356 onchromosome 8 was confirmed by using another 291 individuals in F_2 population ofW207-2/Nipponbare. To fine-map pss1, 2100 recessive homozygous semi-sterile plantswere selected from a large W207-2/Dular F_2 population to identify the recombinationbetween the pss1 locus and the tightly linked molecular markers. Finally, pss1was mappedon the region between one CAPs L2 and one dCAPs L3 marker with the genetic distancesof 0.02 cM, respectively. Both L2 and L3 markers were located on a same PAC cloneP0470F10 with physical size of about 28 kb. Five open reading frames were predicted by asequence analysis of this fragment. They were as follows: putative ribonuclease PH,putative avr9 elicitor response protein, kinesin1-like RNA-binding protein, putativeRNA-binding protein RNP-D precursor and putative 40S ribosomal protein S13.
引文
陈贤丰,梁承邺.水稻细胞质雄性不育性与组织抗氰呼吸关系的研究 中国水稻科学,1990,4:92-94
    杜尔滨,H B编,植物细胞质雄性不育的遗传学原理.北京:农业出版社,1980,17-18
    高东迎,刘蔼民,周亦红,等.水稻抗白叶枯病基因Xa-25的分子定位.遗传学报,2005,32:183-188
    高夕全,张子学,夏凯,等.雄性不育辣椒中几种内源激素的含量变化.植物生理学通讯,2001,37:31-32
    何光华,郑家奎,阴国大,等.水稻亚种间杂种配子育性的研究.中国水稻科学,1994,8:177-180
    李宝健,欧阳学智.籼粳杂种F_1小花败育的细胞学研究.两系法杂交水稻研究论文集.北京农业出版社,1992,286-289
    李任华,徐才国,李香花,等.有利基因和有利的基因互作能够提高籼粳杂种育性.遗传学报,1999,26:228-238
    李文彬,王贺,张福锁.高温胁迫条件下硅对水稻花药开裂及授粉量的影响.作物学报,2005,31:134-136
    李文涛,曾瑞珍,张泽民,等.水稻F_1花粉不育基因座S-b的精细定位.科学通报,2006,51:404-408
    李泽炳,胡锦国,盛孝邦.水稻雄性不育系不育性的一些遗传特点的研究.国际杂交水稻学术讨论会论文集.1986,326-332
    刘永胜,周开达,阴国大,等.水稻籼粳杂种雌性不育的细胞学初步观察.实验生物学报,1993,26:95-96
    刘永胜,朱立煌,孙敬三,等.水稻籼粳杂交胚囊败育的遗传分析和基因定位.中国科学(C辑),1997,27:421-425
    吕川根,高艳红,宗寿余,等.水稻籼粳杂种IR36/Kamairazu花粉育性的遗传.作物学报,2006,32:469-471
    吕川根,王才林,宗寿余,等.温度对水稻亚种间杂种育性及结实率的影响.作物学报.2002,28:499-504
    吕川根,邹江石,池桥宏.水稻亚种间杂种后代Pgi-1同工酶异常分离的研究.中国水稻科学,1997,11:205-210
    梅明华,陈亮,章志宏,等.农垦58S光敏不育基因突变位点的确定及pms3区间的进一步作图.中国科学(C辑),1999,29:310-315
    欧阳学智,李宝健.籼粳杂种F_1雌性败育的某些超微结构特征.两系法杂交水稻研究论文集.北京农业出版社,1992,290-293
    任光俊,周开达.籼粳亚种间杂种F_1的细胞学特点及其与发育关系表达的关系.见:袁隆平主编.两系法杂交水稻研究论文集.农业出版社,北京,1992,294-297
    王胜华,陈放,周开达.水稻花粉的离体萌发,作物学报,2000,26:609-612
    王台,童哲.光周期敏感核不育水稻农垦58S不育花药的显微结构变化.作物学报,1992,18:132-135
    王学德.细胞质雄性不育棉花线粒体蛋白质和DNA的分析.作物学报,2000,26:35-39
    王以秀,严菊强,薛庆中,等.水稻亚种间杂种一代部分雄性不育的细胞学研究.浙江农业大学学报,1991,17:417-422
    夏涛,刘纪麟.生长素和玉米素与玉米细胞质雄性不育性关系的研究.作物学报,1994,20:26-31
    解海岩,蒋培东,王晓玲,等.棉花细胞质雄性不育花药败育过程中内源激素的变化.作物学报,2006,32:1094-1096
    薛庆中.水稻亚种间杂种一代花药及花粉育性的细胞学观察.农业部科技司主编,水稻光(温)敏核不育及亚种间杂种优势利用研究论文选编.1990,140-144
    严长杰,梁国华,顾四梁,等.典型籼粳杂种不育性的分子标记分析及其遗传基础.遗传学报,2003,30:267-276
    严长杰,梁国华,朱立煌,等.秋稻品种Dular广亲和基因的RFLP分析.遗传学报,2000,27:409-417
    杨存义,陈忠正,庄楚雄,等.水稻籼粳杂种不育基因座Sc的遗传图和物理图精细定位.科学通报,2004,49:1273-1277
    杨弘远.水稻生殖生物学.浙江大学出版社,杭州,2005,54-55
    俞履沂,林权.中国栽培稻亲缘关系的研究,作物学报,1962,1:233-258
    袁隆平,武小金,颜应成,等.水稻广亲和系的选育策略.中国农业科学,1997,30:1-8
    张桂权,卢永根,刘桂富,等.栽培稻(Oryza sativa L.)杂种不育性的遗传研究.Ⅲ.不同类型品种F_1花粉不育性的等位基因分化.遗传学报,1993a,20:541-551
    张桂权,卢永根.栽培稻(Oryza sativa L.)杂种不育性的遗传研究Ⅱ.F_1花粉不育性的基因模式.遗传学报,1993b,20:222-228
    张泽民,张桂权.水稻S-c座位的PCR标记精细定位及分子标记辅助选择.作物学报,2001,27:704-709
    张志胜,卢永根,冯九焕,等.水稻台中65与其花粉不育近等基因系的杂种F_1的裂药性研究。热带亚热带植物学报,2004,122:521-527
    赵玉锦,童哲,陈华君,等.内源植物激素与光敏核不育水稻农垦58S育性的关系.植物学报,1996,38:936-941
    周燮,黄少白.高等植物性别分化的激素调控.见肖翊华编.光敏核不育水稻光周期与生理学.武汉:武汉大学出版社,1993,32-38
    周天理,沈锦华,叶复初.野败型杂交籼稻的育性基因分析.作物学报,1983,9:241-247
    朱速松.水稻杂种不育基因的分子定位及杂草稻起源初探.2005,南京农业大学博士论文.
    朱晓红,曹显祖,朱庆森.水稻籼粳亚种间杂种小穗不孕的细胞学研究.中国水稻科学,1996,10:71-78
    朱旭东,王建林,钱前,等.籼粳不育新位点的发现及其遗传分析.遗传学报,1998,25:245-251
    庄楚雄,张桂权,梅曼彤,等.栽培稻F_1花粉不育基因座S-a的分子定位.遗传学报,1999,26:213-218
    Blatt M R, Grabov A, Brearley J, et al. K~+ channels of Cf-9 transgenic tobacco guard cells as targets for Cladosporium fulvum Avr9 elicitor-dependent signal transduction. Plant Journal. 1999, 19: 453-462
    Buchanan B B, Gruissen W, Jones R L. Biochemistry and Molecular Biology of Plants. Beijing: Science Press, 2002, 850-895
    Burd C G, Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994, 265: 615-621
    Butler J S. The yin and yang of the exosome. Trends Cell Biology. 2002, 12: 90-96
    Causse M A, Fulton T M, Cho Y G, et al. Saturated molecular map of the rice genome based on an interspecffic backcross population. Genetics, 1994, 138: 1251-1274
    Chapman G P. The tapetum. International Review of Cytology-a Survey of Cell Biology, 1987, 107: 111-125
    Chen C B, Marcus A, Li W X, et al. The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development, 2002, 129: 2401-2409
    Dauphin-Guerin B G, Teller B, Durand. Different endogenous cytokinins between male and female Mercurialis annua L. Planta, 1980, 148: 124-129
    Davinder P, Singh, Angelica M, et al. Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell, 2002, 14: 3133-3147
    Dellapporta S L, Wood J, Hicks J B. A plant DNA mini preparation: Version Ⅱ. Plant Molecular Biology Reporter, 1983, 1: 19-21
    Doi K, Izawa T, Fuse T, et al. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independent of Hd1. Genes and Development, 2004, 18: 926-936
    Drews G N, Lee D, Christensen C A. Genetic analysis of female gametophyte development and function. Plant Cell, 1998, 10: 5-17
    Ekanayake I J, Steponkus P L, De datta S K. Sensitivity of pollination to water deficits at anthesis in upland rice. Crop Science, 1990, 30: 310-314
    Gaillard C, Moffatt B A, Blacker M, et al. Male sterility associated with APRT deficiency in Arabidopsis thaliana results from a mutation in the gene APT1. Molecular and General Genetics, 1998, 257: 348-353
    Georg J, Susan R N, Steven D R, et al. Arabidopsis map-based cloning in the post-genome era. Plant Physiology, 2002, 129: 440-450
    Greenboin-Wainberg Y, Maymon I, Borochov R, et al. Cross talk between gibbereUin and cytokinin: The Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. Plant Cell, 2005, 17: 92-103
    Harushima Y, Yano M, Shomura A, et al. High-density rice genetic linkage map with 2275 markers using a single F_2 Population. Genetics, 1998, 148: 479-494
    Heuer S, Miezan K M. Assessing hybrid sterility in Oryza glaberrima×O.sativa hybrid progenies by PCR marker analysis and crossing with wide compatibility varieties. Theoretical and Applied Genetics, 2003, 107: 902-909
    Hihara Y, Hara Y, Uchimiya H. Isolation and characterization of two cDNA clones for mRNAs that are abundantly expressed in immature anthers of rice (Oryza sativa L.). Plant Molecular Biology, 1996, 30: 1181-1193
    Horie T, Matsui T, Nakagawa H, et al. Effects of elevated CO_2 and global climate change on rice yield in Japan. In: Omasa K, Kai K, Taoda H, Uchijima Z, Yoshino M, eds. Climate change and plants in East Asia. Tokyo: Springer-Verlag, 1996, 39-56
    Ikehashi H, Arak H. Genetics of F_1 sterility in remote crosses of rice. In: Rice Genetics, IRRI, P.O. Box 933, Manila, Philippines, 1986, 119-130
    Ikehashi H, Arki H. Variety screening of compatibility types revealed in F_1 fertility of distant crosses in rice. Breeding Science, 1984, 34: 304-312
    Ikehashi H, Yamaguchi. Semi-sterile mutant in seed increase of rice. Nougyou oyobiengei, 2000, 75: 700-704
    International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 436: 793-800
    Ito T, Kim G T, Shinozaki K. Disruption of an Arabidopsis cytoplasmic ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant Journal 2000, 22: 257-264
    Jeon J S, Chung Y Y, Lee S, et al. Isolation and characterization of an anther-specific gene, RA8, from rice (Oryza sativa L.). Plant Molecular Biology, 1999, 39: 35-44.
    Ji Q, Lu J F, Chao Q, et al. Delimiting a doe wide-compatibility gene S_5~n to a 50 kb region. Theoretical and Applied Genetics, 2005, 111: 1495-1503
    Jiang G H, He Y Q, Xu C G, et al. The genetic basis of stay-green in doe analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theoretical and Applied Genetics, 2004, 108: 688-698
    Joppa H A, McNeal F H, Walsh J R. Pollen and anther development in cytoplasmic male sterile wheat(Triticum aestivum). Crop Science, 1966, 6: 296-297
    Kubo T, Yoshimura A. Epistasis underlying female sterility detected in hybrid breakdown in a Japonica-Indica cross of rice (Oryza sativa L.). Theoretical and Applied Genetics, 2005, 110: 346-355
    Kubo T, Yoshimura A. Linkage analysis of an F_1 sterility gene in japonica/indica cross of rice. Rice Genetics Newsletter, 2001, 18: 52-54
    Kurata N, Nagamura Y, Yamamoto K, et al. 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genetics, 1994, 8: 365-376
    Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits RFLP linkage maps. Genetics, 1989, 121: 185-199
    Laser K D, Lersten N R. Anatomy and cytology of microsporogensis in cytoplasmic male sterile angiosperms. The Botanical Review, 1972, 38: 425-454
    Li C. Bangerth F. Stimulatory effect of cytokinins and interaction with IAA on the release of lateral buds of pea plants from apical dominance. Journal of Plant Physiology, 2003, 160: 1059-1063
    Li D T, Zhu S S, Jiang L, Wan J M. Mapping for a new locus causing hybrid sterility in a China landraoe (Oryza sativa L.) Rice Genetics Newsletter, 2005, 22: 21-22
    Li H B, Wang J, Liu A M, et al. Genetic basis of low-temperature-sensitivesterility in indica-japonica hybrids of rice as determined by RFLP analysis. Theoretical and Applied Genetics, 1997, 95: 1092-1097
    Li H B, Zhang Q, Liu A M, et al. A genetic analysis of low-temperature-sensitive sterility in indica-japonica rice hybrids. Plant Breeding, 1996, 115: 305-309
    Li J, Thomson M, McCouch S R. Fine Mapping of a Grain Weight Quantitative Trait Locus in the Pericentromeric Region of Rice Chromosome 3.Genetics, 2004, 168: 2187-2195
    Li W C, Jiang L, Huang S D, et al. Fine mapping of a pollen semi-sterility gene in rice (Oryza sativa L.). Rice Genetics Newsletter, 2005, 22: 23-26
    Li W T, Zeng R Z, Z. hang Z M, et al. Mapping of S-b locus for F1 pollen sterility in cultivated rice using PCR based markers. Acta Botanica Sinica, 2002, 44: 463-467
    Li X, Qian O, Fu Z, et al. Control of tiollering in rice. Nature, 2003, 422: 618-621
    Li Z, Pinson R M, Paterson A H, et al. Genetics of hybrid sterility and hybrid breakdown in an intersub-specific rice (Oryza saliva L.) population. Genetics, 1997, 145: 1139-1148
    Lin S Y, Ikehashi H, Yanagihara S, et al. Segregation distortion via male gametes 1n hybrids between Indica and Japonica or wide-compatibility varieties of rice (Oryza saliva L). Theoretical and Applied Genetics, 1992, 84: 812-818
    Lin S Y, Ikehashi H. A gamete abortion locus detected by segregation distortion of isozyme locus Est-9 in wide crosses of rice (Oryza sativa L.). Euphytica, 1993, 67: 35-40
    Liu H Y, Xu C G, Zhang Q. Male and female gamete abortions, and reduced affinity between the uniting gametes as the causes for sterility in an indica/japonica hybrid in rice. Sexual Plant Reprod, 2004, 17: 55-62
    Liu K D, Wang J, Li H B, et al. A genome-wide analysis of wide compatibility in rice and the precise location of the S5 locus in the molecular map. Theoretical and Applied Genetics, 1997, 95: 809-814
    Liu K D, Zhou Z O, et al. An analysis of hybrid sterility in rice using a diallel cross of 21 parents involving indica, japonica and wide compatibility varieties. Euphytica, 1996, 2: 75-80.
    Liu Y S, Zhu L H, Sun J S, et al. Mapping OTLs for defective female gametophyte development in an intersubspecific cross in Oryza sativa L Theoretical and Applied Genetics, 2001, 102: 1243-1251
    Louis J P, Augur C, Teller G. Cytokinines an differentiation process in Mercurialis annua L. (2n=16). Genetic regulation, relations with auxin, indoleacetic acid oxidase and sexual expression patterns. Plant Physiology, 1990, 94: 15-35
    Lu C G, Takabatake K, Ikehashi H. Identification of segregation distortion-neutral alleles to improve pollen fertility of Indica-japonica hybrids in rice (Oryza sativa L.). Euphytica, 2000, 113: 101-107
    Lu Q, Li X H, Guo D, et al. Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment. Molecular Genetics and Genomics, 2005, 273: 507-511
    Macknight R, Bancroft l, Page T, et al. A gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell, 1997, 89: 737-745
    Maekawa M, Inukai T, Shinbashi N. Genic analysis of hybrid sterility caused by anther indehiscence between distantly related rice varieties. Euphytica, 1997, 94: 311-318
    Maekawa M, Inukai T, Shinbashi N. Spikelet sterility in F_1 hybrids between rice varieties Silewah and Hayakogane. Breeding Science, 1991, 41: 359-363
    Matsubara K, Thidar K, Sano Y. A gene block causing cross-incompatibility hidden in wild and cultivated rice. Genetics, 2003, 165: 343-352
    Matsui T, Omasa K, Horie T. High temperature-induced spikelet sterility of japonica rice at flowering in relation to air temperature, humidity and wind velocity condition. Crop Science, 1997, 66: 449-455
    Matsui T, Omasa K; Horie T. Mechanism of Anther Dehiscence in Rice (Oryza sativa L.) Annals of Botany, 1999a, 84: 501-506
    Matsui T, Omasa K, Horie T. Rapid swelling of pollen grains in response to floret opening opens locule in rice. Plant Production Science, 1999b, 2: 196-199
    Matsui T, Omasa K, Horie T. The difference in sterility due to high temperature during the flowering period among japonica rice varieties. Plant Production Science, 2001, 4: 90-93
    McCormick S. Control of male gametophyte development. Plant Cell, 2004, 16: 142-153
    McCouch S R, Teytelman L, Xu Y, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DATA Research, 2002, 9: 199-207
    Mei M H, Dai X K, Xu C G, et al. Mapping and genetic analysis of the genes for photoperiod-sensitive genic male sterility in rice using the original mutant Nongken 58S. Crop Science, 1999, 39: 1711-1715
    Miyoshi K, Ahn B O, Kawakatsu T, et al. PLASTOCHRON1, a time keeper of leaf initiation in rice, encodes cytochrome P450. Proceeding of the National Academy of Sciences of the United States of America, 2004, 101: 875-880
    Monna L, Kitazawa N, Yoshino R, et al. Positional cloning of rice semi-dwarfing gene, sd-l: rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Research, 2002, 9: 11-17
    Muller H J, Pontecorvo G. Recombinants between Drosophila species, the F_1 hybrids of which are sterile. Nature, 1940, 146: 199
    Nakajima M, Yamaguchi I, Kizawa S. Semi-quantification of GA1 and GA4 in male sterile anthers of rice by radioimmunoassay. Plant and cell Physiology, 1991, 32: 522-513
    Nakazaki T, Okumoto Y, Horibata A, et al. Mobilization of a transposon in the rice genome. Nature, 2003, 421: 170-172
    Neff M M, Neff J D, Chory J, et al. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant Journal, 1998, 14: 387-392
    Neff M M, Turk E, Kalishman M. Web-based primer design for single nucleotide polymorphism analysis. Trends Genetics, 2002, 18: 613-615
    Nonomura K I, Miyoshi K, Eiguchi M, et al. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell, 2003, 15: 1728-1739
    O'Toole J C, Namuco O S. Role of panicle exsertion in water stress induced sterility. Crop Science, 1983, 23: 1093-1097
    Oka H I. Analysis of genes controlling F_1 sterility in rice by the use of isogenic lines. Genetics, 1974, 77: 521-534
    Oka H I. Consideration on the genetic basis of intervarietal sterility in Oryza sativa L.(A). Rice Genetics and Cytogenetics (C), IRRI, Elsevier. Amsterdam. 1964, 158-174
    Oka H I. Origin of cultivated rice. Japan Scientific Societies Press, Elsevier, 1988, 181-209
    Panaud U, Chen X, McCouch S R. Development of microsatellite markers and characterizat-ion of simple sequence length polymorphism (SSLP) in rice (Oryza saliva L). Molecular Genetics and Genomics, 1996, 252: 597-607
    Phatak S C, et al. Gibberelin induced anther and pollen development in a stamenless tomato mutant. Nature, Lond. 1966, 209: 635-636
    Qiu S Q, Liu K D, Jiang J X, et al. Delimitation of the rice wide compatibility gene S_5~n to a 40-kb DNA fragment. Theoretical and Applied Genetics, 2005, 111: 1080-1086
    Raghavan V. Molecular Embryology of Flowering Plants. Cambridge: Cambridge University Press., 1997
    Roni A. The induction of vascular tissue by auxin. In: Davies P J ed., Plant Hormones and Their Role in Plant Growth and Development Dordrecht: Martinus Nijhoff Publishers, 1987, 363-374
    Ross J J, Damian P, O'Neill, et al. Evidence that auxin promotes gibberellin A_1 biosynthesis in pea. Plant Journal, 2000, 21: 547-552
    Ross J, O'Neill D. New interactions between classical plant hormones. Trends Plant Science, 2001, 6: 2-4
    Sanguinetti C J, Dias N E, Simpson J G. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques, 1994, 17: 915-919
    Saruyama H, Shinbashi N. Identification of specific proteins from seed embryo by two- dimensional gel electrophoresis for the discrimination between indica and japonica rice. Theoretical and Applied Genetics, 1992, 84: 947-951
    Sasaki T. The rice project in Japan. Proceeding of the National Academy of Sciences of the United States of America, 1998, 95: 2027-2028
    Sawhney V K, Shukla A. Male sterility in flowering plants: are plant growth substances involved? American Journal of Botany, 1994, 81: 1640-1647
    Schomburg F M, Patton D A, Meinke D W, et al. FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell, 2001, 13: 1427-1436
    Scott R J, Spielman M, Dickinson H G. Stamen structure and function. Plant Cell, 2004, 16: 546-560
    Shukla A, Sawhney V K. Metabolism of dihydrozeatin in floral buds of wild-type and a genic male sterile line of rapeseed (Brassica napus L.). Journal of Experiment Botany, 1993, 44: 1497-1505
    Shukla A, Sawhney V K. Abscisic acid: one of the factors affecting male sterility in Brassica Napus. Physiologia Plantarum, 1994, 91: 522-528
    Singh R J, Ikehashi H. Monogenic male sterility in rice: Induction and identification. Crop Science, 1981, 21: 286-289
    Singh S, Sawhney V K, Pearce D W. Temperature effects on endogenous indole-3-acetic acid levels in leaves and stamens of the normal and male sterile "stamenless-2" mutant of tomato (Lycopersicon esculentum Mill1). Plant Cell and Environment, 1992a, 15: 373-377
    Singh S, Sawhney V K. Cytokinins in a normal and the ogura(ogu) cytoplasmic male-sterile line of rapeseed (Brassica napus L.). Plant Science, 1992b, 86: 147-154
    Skorupska H T, Desamero N V, Palmer R G. Developmental hormonal expression of apetalous male-sterile mutations in soybean (Glycine max L. Merr). Annals of Biology, 1994, 10: 152-164
    Sobrizal, Matsuzaki Y, Yoshimura A. Mapping of a gene for pollen semi-sterility on rice chromosome 8 of rice. Rice Genetics Newsletter, 2001, 18: 59-61
    Song W Y, Wang G L, Chen L L et al. A receptor binase-Jibe protein encoded by the rice disease resistance gene, Xa21. Science. 1995, 270: 1084-1086
    Song X, Qiu S Q, Xu C G, et al. Genetic dissection of embryo sac fertility, and pollen fertility, and their contributions to spikelet fertility of intersubspecific hybrids in rice. Theoretical and Applied Genetics, 2005, 110: 205-211
    Spielman M, Preuss D, Li FL, et al. TETRASPORE is required for male meiotic cytokinesis in Arabidopsis thaliana. Development. 1997, 124: 2645-2657
    Takeda T, Toyofuku K, Matsukura C, et al. Sugar transporters involved in flowering and grain development of rice. Plant Physiology, 2001, 158: 465-470
    Temnykh S, Declerck G, Luashova A, et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Research, 2001, 11: 1441-1452
    Temnykh S, Park W D, Ayres N, et al. Mapping and genome organization of microsatellite sequence in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2000, 100: 697-712
    Thiel T, Kota R, Grosse I, et al. SNP-CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Research. 2004, 32: 1-5
    Tolnay M, Vereshchagina LA, Tsokos G C. NF-κB regulates the expression of the human complement receptor 2 gene. The Journal of Immunology. 2002, 6236-6243
    Tsuchiya T, Toriyama K, Nasrallah M E, et al. Isolation of genes abundantly expressed in rice anthers at the microspore stage. Plant Molecular Biology, 1992, 20: 1189-1193
    Turner A. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science, 2005, 310: 1031-1034
    Twell D. The developmental biology of pollen. In: O'Neill D and Roberts JA (eds) Plant Reproduction. Sheffied Academic Press, 2002, 86-153
    Umehara Y, Inagaki A, Tanoue H, et al. Construction and characterization of rice YAC library for physical mapping. Molecular Breeding, 1995, 1: 79-89
    Vale R D, Rlilligan R A. The Way Things More: looking under the Hood of Molecular Motor Proteins. Science, 2000, 288, 88-95
    Vogl C, Xu S. Multipoint mapping of viability and segregation distorting loci using molecular markers. Genetics, 2000, 155: 1439-1447
    Wan J, Ikehashi H. Identification of a new locus S-16 causing hybrid sterility in native rice varieties (Oryza sativa L.) from Tai-hu lake region and Yurman province, China. Breeding Science, 1995, 45: 461-470
    Wan J, Ikehashi H. List of hybrid sterility gene loci (HSGLi) incultivated rice (Oryza sativa L.). Rice Genetics Newslett, 1996a, 13: 110-113
    Wan J, Yamaguchi Y, Kato H, et al. Two new loci for hybrid sterility in rice (Oryza sativa L.). Theoretical ancl Applied Genetics, 1996b, 92: 188-190
    Wan J, Yanagihara S, Kato H, et al. Multiple alleles at a new locus causing hybrid sterility between a Korean indica variety and a japonica variety in rice. Breeding Science, 1993, 43: 507-516
    Wan J. Analysis of hybrid sterility gene loci for hybrid rice breeding and understanding of varietal differentiation [Doctoral thesis]. Kyoto: Kyoto University, 1995
    Wan X Y, Wan J M, Jiang L, et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theoretical and Applied Genetics, 2006. In press.
    Wang C W, He Y Q, Xu C G, et al. Fine mapping of f5-Du, a gene conferring wide-compatibility for pollen fertility in inter-subspecffic hybrids of rice (Oryza sativa L.). Theoretical and Applied Genetics, 2006, 112: 382-387
    Wang D L, Zhu J, Li Z K, et al. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theoretical and Applied Genetics, 1999, 99: 1255-1264
    Wang J, Liu K D, Xu C G, et al. The high level of wide-compatibility of variety Dular has a complex genetic basis. Theoretical and Applied Genetics, 1998, 97: 407-412
    Wang J, Letham D S, Comish E, et al. Studies of cytokinin action and metabolism using tobacco plants expressing either the ipt or the GUS gene controlled by a chalcone synthase promoter Ⅰ Developmental features of the transgenic plants. Australian Journal of Plant Physiology, 1997a, 24: 661-672
    Wang J, Letham D S, Comish E, et al. Studies of cytokinin action and metabolism using tobacco plants expressing either the ipt or the GUS gene controlled by a chalcone synthase promoter Ⅱ ipt and GUS gene expression cytokinin levels and metabolism. Australian Journal of Plant Physiology, 1997b, 24: 663-683
    Wang Z X, Yano M, Yamanouchi U, et al. The pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant Journal, 1999, 19: 55-64
    Wu H K, Kwan S C, Li H W. A preliminary note on the pachytene analysis of japonica×indica hybrids. In: IRRI (ed.,) Rice Genetics and Cytogenetics, Elsevier, Amsterdam, 1964, 187-188
    Wu J, Mawhara T, Shimokawa T, et al. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell, 2002, 14: 525-535
    Wu P, Zhang G, Huang N, et al. Non-allelic interaction conditioning spikelet sterility in an F_2 population of indica/japonica cross in rice. Theoretical and Applied Genetics, 1995, 91: 825-829
    Xiao J, Li J, et al. A wild species contains genes that may significantly increase the yield of rice. Nature, 1996, 384: 223-224
    Yabuno, T. Genetic studies on the interspecific cytoplasm substitution lines of Japonica varieties of Oryza sativa L. and O. glaberrima Steud. Euphytica, 1977, 26: 451-463
    Yanagihara S, Kato H, Ikehashi H. A new locus for multiple alleles causing hybrid sterility between an aus variety and javanica varieties in rice (Oryza sativa L.). Breeding Science, 1992, 42: 793-801
    Yanagihara S, McCouch S R, Ishikawa K, et al. Molecular analysis of the inheritance of the S-5 locus, conferring wide compatibility in Indica/Japonica hybrids of rice (Oryza sativa L.). Theoretical and Applied Genetics, 1995, 90: 182-188
    Yang C Y, Spielman M, Coles J P, et al. TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. Plant Journal, 2003, 34: 229-240
    Yokoo M. Female sterility in an indica-japonica cross of rice. Breeding Science, 1984, 34: 219-227
    Yu W W, Wang Ch M, Ikehashi H, Wan JM. Mapping of a novel gene for semi-sterility in rice (Oryza sativa L.). Breeding Science, 2005, 55: 15-20
    Yu S B, Li J X, Xu C G, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proceeding of the National Academy of Sciences of the United States of America, 1997, 94: 226-9231
    Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    Zhang Q, Liu K D, Yang Q P, et al. Molecular marker diversity and hybrid sterility in indica-japonica rice crosses. Theoretical andApplied Genetics, 1997, 95: 112-118
    Zhang Q, Shen B Z, Dai X K, et al. Using bulked extremes and recessive class to map genes for photoperiod sensitive genic male sterility in rice. Proceeding of the National Academy of Sciences of the United States of America, 1994, 91: 8675-8679
    Zhu S S, Wang C M, Zheng T Q, et al. A new gene causing hybrid sterility located on chromosome 2 in a remote cross of rice. Plant Breeding, 2005a, 124: 1-6
    Zhu S S, Jisng L, Wang C M, et al. The origin of a weedy rice ludao in China deduced by analysis of its hybrid sterility genes. Breeding Science. 2005b, 55: 409-414
    Zhu X H, Cao X Z, Zhu Q S. Investigation on gametophytic sterility and its contribution to spikelet sterility of F_1 plants of indica-japonica in rice. Acta Agronomica Sinica, 1998, 24: 421-430
    Zhuang C, Fu Y, Zhang G, et al. Molecular mapping of S-c, an F_1 pollen sterility gene in cultivated rice. Euphytica, 2002, 127: 133-138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700