水稻卷叶突变体的筛选和卷叶基因rl_(t)的精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻适度卷叶是超高产株型育种的重要形态指标之一,其作用已在高产和超高产育种中得到充分的体现。卷叶性状对叶片光合生理、群体生态效应及经济性状的影响的研究表明,适度卷叶对塑造个体良好的株型、改善生育后期群体质量、提高产量具有重要的作用。现已发现的水稻卷叶材料在叶片的卷曲程度上存在较大差异,多数在生产上的利用价值并不高。因此,筛选和鉴定具有育种利用价值的卷叶基因是水稻育种中的一项重要研究课题。另外,水稻已成为单子叶模式作物,水稻卷叶基因的功能研究对阐明植物叶片发育规律具有重要意义。
     本研究发现了一批卷叶突变体材料,并确定了一份与插入的T-DNA片段表现为共分离的材料;同时,对另一卷叶材料携带的高利用价值卷叶基因rl(t)进行了精细定位,并对候选基因的功能做了推测和初步的验证,主要研究结果如下:
     1.T-DNA标签是一种高通量的分离和克隆植物功能基因的方法,利用T-DNA标签获得插入位点的旁邻序列,根据旁邻序列所在基因组的位置,再结合突变体的表型能快速克隆水稻功能基因。通过对4416份T1代水稻T-DNA标签系的表型筛选,获得了12份卷叶突变体材料。用可扩增T-DNA特定序列的引物对卷叶材料所在的分离小区进行PCR扩增,从中挑选出突变体都能扩增出目标产物而部分表型正常株不能扩增出产物的小区。有3个小区(小区号为267、1199、1345)符合这样的要求。种植这3个小区的突变株和表型正常株后代,进行T2代共分离验证。共分离小区的标准:突变体小区表现纯合突变表型,且PCR检测都为阳性;表型分离小区正常表型与突变表型呈3:1分离,且突变体PCR检测为阳性。筛选出1个共分离小区(小区号为1345)。初步分析:1345小区的T0代为双拷贝T-DNA插入,这2个拷贝的T-DNA插入在T1代发生了分离,并在T2代鉴定出引起卷叶突变的单拷贝T-DNA插入突变体。用TAIL-PCR的方法对单拷贝突变进行侧翼序列的分离,但得到了假阳性的测序结果(详见第四章)。将用质粒拯救的方法再次分离侧翼序列。对T-DNA侧翼序列的分离方法和共分离验证进行了讨论。
     2.在对水稻卷叶基因rl(t)的精细定位过程中总结了一套简单实用的分子标记设计方法。水稻图位克隆中的亲本一般都具有籼粳差异,因此可根据粳稻日本晴和籼稻93-11的基因组序列差异设计分子标记。从IRGSP下载定位区间的日本晴BAC,在NCBI网站与93-11的基因组序列进行BLAST比对,搜寻存在于这两个基因组之间的插入-缺失多态性(InDel)和单核苷酸多态性(SNP),根据定位区间大小对标记间隔的要求(区间大于100 kb时间隔15 kb左右,区间在100 kb以内时间隔5-10kb),筛选InDel和SNP来设计分子标记,优先设计InDel标记。SNP可转化为CAPS、dCAPS和AS-PCR标记(具体设计方法见第五章)。本研究共设计47个标记,其中24个InDel标记和14个SNP标记在亲本中表现多态性,设计成功率为80.9%。对如何提高标记设计成功率进行了分析和讨论。
     3.对卷叶基因的研究和利用是水稻株型育种的重要组成部分。本论文研究的卷叶基因rl(t)具有较高的育种价值,本实验小组已对其进行了初步定位。在此基础上,发展了2个大分离群体对卷叶基因rl(t)进行了精细定位。定位策略:选择初步定位区间两侧的标记组成双引物PCR检测群体的标记基因型,对交换株再用区间内的标记进行检测,分析各交换株发生染色体重组的最小范围,结合表型确定最小定位区间。检测到2个交换株(101-8、418-1),其染色体重组位置位于卷叶基因rl(t)的两侧且距离最近,将卷叶基因rl(t)定位于标记P95053和P113.6之间11kb的范围内,此区间只有一个候选基因。这为克隆卷叶基因和研究其调控机理奠定了基础。对提高精细定位的效率进行了讨论。
     4.在水稻自动释义数据库(RAD)和水稻释义计划数据库(RAP-DB)中查询到rl(t)的11 kb的定位区间内只有1个预测基因,属于HD-GL2类转录因子,经与已克隆的HD-GL2类基因进行氨基酸序列比对,发现与ZmOCL1和ANL2的相似性分别达到了85%和60%。HD-GL2类基因在分生组织的L1层、叶原基、叶片、花等侧生器官的表层表达。根据日本晴BAC AP005885设计13对测序引物,对亲本QMX和其卷叶近等基因系NIL-rl(t)进行PCR扩增和测序,结果表明:在候选基因的3' UTR存在1个单碱基替换。推测可能是由于3' UTR的点突变引起候选基因mRNA的稳定性或翻译的变化而导致卷叶性状的出现。
     5.用RNAi的手段使目标基因在转录后沉默是验证基因功能的一种快速有效的方法。本研究在候选基因的不同部位设计了3个干涉片段,用BP反应构建入RNAi载体,将载体分别转化中花11,使目标基因沉默来验证其功能。
Semi-rolled leaf is one of the most important morphological characters in plant breeding. Some high yield varieties or their hybrids were semi-rolled leaf cultivars. Studies on effects of leaf rolling on photosynthetic physiology, population ecology and economical traits showed that semi-rolled leaf had some upstanding effects, for instance making leaf erect, optimizing canopy light transmission, increasing effective leaf area per unit land and improving the quality of population in late growth stage. However, most of rolled leaf materials found in past research have different leaf rolling degrees and most of them could not be applied in rice breeding. Therefore, identifying more useful rolled-leaf genes is still an important goal for practical rice breeding. On the other hand, rice has become a model plant of monocots, so the function research for it on rolled leaf genes will provide good chances for elucidating leaf development mechanism in rice.
     Some rolled leaf mutants were obtained via screening the T-DNA inserted mutant pool and one of them was confirmed to be co-segregated with T-DNA. A rolled gene, rl(t), with high value for breeding, was fine mapped and its putative function was preliminarily analysed and identified.
     1. T-DNA tagging is a high throughput method for identifying and cloning novel genes. The sequence flanking the T-DNA insertion site could be obtained according to T-DNA tagging, then the gene tagged by T-DNA could be discovered based on the flanking sequence position in the rice genome. Twelve rolled leaf mutants were obtained via screening 4416 rice T1 tagged lines. These lines were tested by PCR using primers amplifying special T-DNA segment and 3 co-segregated lines were selected. Mutants were PCR positive and several plants with natural phenotype were PCR negative in the co-segregated lines. Seeds from natural plants and mutants grew out T2 generation. The co-segregation criterion of T2 generation was as follows, in the progeny blocks of mutants all plants had mutant phenotype and were PCR positive, moreover, in the progeny blocks of some narural plants, the ratio of narural plants to mutants fit 3:1 and all mutants of them were PCR positive. Line 1345 was co-segregaed according to this criterion. The results indicated line 1345 in T1 generation had two copy T-DNA insertion and one resulted in mutant phenotype. The mutant lines with single copy T-DNA were obtained. The flanking sequence from the line with targeted copy was amplied by TAIL-PCR, but its sequencing result was false positive (detail in chapter 4). We would separate the flanking sequence by plasmid rescue. The measure of separating flanking sequence and the co-segregation test were discussed.
     2. A applied method of designing molecular markers was brought forward in the process of fine mapping the rolled leaf rl(t) in rice. The parents of map-based cloning have japonica-indica diversity, so markers could be designed based on the sequence diversity between the genome of Nipponbare and that of 93-11. Nipponbare BAC in the mapping region were downloaded from IRGSP, and then these BAC were aligned with the 93-11 genome in NCBI. InDel and SNP could be discovered according to the alignment result. Some InDel and SNP were screened out to design markers (about 15 kb interval when region was longer than 100 kb, and 5 to 10 kb when shorter than 100 kb). SNP could be transferred into CAPS, dCAPS and AS-PCR markers (detail in chapter 5). Forty seven markers were designed in this research. Twenty four InDel markers and 14 SNP markers have polymorphism. How to improve the efficiency of marker design was discussed.
     3. Research and application for rolled leaf genes were important for plant type breeding in rice. The rolled gene rl(t) was valuable in rice breeding and primarily mapped in our past research. Two great segregated population were developed to fine map rl(t). The strategy of fine mapping was as follows. First, marker genotypes of population were tested by double primers PCR method. Two primers of this method should be flanked to the region covering rl(t). Then, recombinants were chosen out and analyzed by markers in the region. Finally, the co-segregation relationship between marker genotype and plant phenotype was analyzed in all recombinants, and the precise region was confirmed. Two recombinants were found, whose recombined sites were flanked to rl(t) and very close to each other. The result indicated that the rolled gene rl(t) was located between marker P95053 and P113.6. The physical distance from marker P95053 to P113.6 was 11 kb, and only one candidate gene lay in this region. All conclusion laid a foundation to clone rl(t) and research the regulation mechanism of rl(t). How to improve efficiency of fine mapping was discussed.
     4. Only one predicted gene in the 11 kb region was discovered from rice automated annotation database (RAD) and rice annotation project database (RAP-DB). The putative gene belonged to HD-GL2 type transcription factor. Alignment between the putative gene and HD-GL2 type genes indicated that the amino acid sequence of rl(t) showed high similarity to that of ZmOCL1 (85%) and ANL2 (60%). The HD-GL2 type genes showed L1-layer or protoderm-specifc expression in the SAM during the shoot and flower development. Thirteen pairs sequencing primers were designed according to Nipponbare BAC(AP005885) to amplify the DNA of QMX and NIL-rl(t). The PCR product were sequenced and the result indicated that a nucleotide substitution lay in the 3' UTR of rl(t). It was suggested that the point mutant in 3' UTR of rl(t) could result in change of mRNA stability or translation and induce rolled leaf.
     5. Post-transcriptional silencing of plant genes could identify the gene function effectively. The RNAi technique could efficiently silence genes in this way. Three interference segments were designed from different position of the candidate gene. Subsequently, they were constructed into RNAi vector by BP reaction. Finally, the constructed vectors were transformed into Zhonghua 11. The targeted gene would be silenced to identify function.
引文
[1] Vergara BS. Raising the yield potential of rice. Philip Tech J, 1988, 13:3-9.
    [2] Manorial M P. A basic plant ideotype for rice. Intl Rice Res News, 1989, 14(3): 12-13.
    [3] Dingkuhn M, Penning de Vries F W T, De Datta S K, et al. Concepts for a new plant type for direct seeded flooded tropical rice. In: Dingkuhn M. Direct seeded flooded rice in the tropics. Los Banos, Philippines: IRRI, Intl Rice Res,1991.17-38.
    [4] Khush G S. Varietal needs for different environments and breeding strategies. In: Muralidharan K S, Siddiq E A, Eds. New frontiers in rice research. India: Directorate of rice research, Hyderabad, 1990.68-75.
    [5] Peng S, Cassman K G, Virmani S S, et al. Yield Potential Trends of Tropical Rice since the Release of IR8 and the Challenge of Increasing Rice Yield Potential. Crop Science, 1999, 39:1552-1559.
    [6] 杨守仁. 水稻理想株型育种的理论和方法初论. 中国农业科学, 1984(1):6-13.
    [7] 杨守仁, 张龙步, 徐正进, 等. 水稻理想株型育种的基础研究及其与国内外同类研究的比较. 中国水稻科学, 1993, 7(3):187-192.
    [8] 杨守仁. 水稻超高产育种的理论和方法. 中国水稻科学, 1996, 10(2):115-120.
    [9] 周开达, 马玉清, 刘太清, 等. 杂交水稻亚种间重穗型组合选育-杂交水稻超高产育种的理论与实践. 四川农业大学学报, 1995, 13(4): 403-407.
    [10] 周开达, 汪旭东, 李仕贵, 等. 亚种间重穗型杂交稻研究. 中国农业科学, 1997, 30(5):91-93.
    [11] 袁隆平. 杂交水稻超高产育种. 杂交水稻, 1997, 12(6): 1-6.
    [12] 黄育民, 陈启锋, 李义珍. 我国水稻品种改良过程库源特征的变化. 福建农业大学学报, 1998, 27(3): 271-278.
    [13] 朱德峰, 严学强. 提高水稻品种产量潜力的农艺学和生理学观点. 西南农业学报, 1998, 11(水稻栽培专辑): 141-147.
    [14] 凌启鸿, 张洪程, 苏祖芳. 稻作新理论-水稻叶龄模式. 北京: 科学出版社, 1994.
    [15] 杨惠杰, 李义珍, 黄育民, 等. 超高产水稻的产量构成和库源结构. 福建农业学报, 1999, 14(1): 1-5.
    [16] Richards R A. Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany, 2000(51): 447-458.
    [17] Peng S, Cassman K G, Virmani S S, et al. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552-1559.
    [18] 沈福成. 关于水稻卷叶性状在育种中利用的几点看法. 贵州农业科学, 1983 (5) : 6 - 8.
    [19] 朱德峰, 林贤青, 曹卫星. 不同叶片卷曲度杂交水稻的光合特性比较. 作物学报, 2001, 27 (3) :329 - 333.
    [20] 张 旭. 作物生态育种. 北京:农业出版社, 1998 :49 - 56.
    [21] 沈福成. 水稻卷叶性状遗传初探. 贵州农业科学, 1983, (3): 9-12.
    [22] 陈宗祥, 陈刚, 胡俊, 等. Rl(t)卷叶基因在杂交稻中的遗传表达及效应研究. 作物学报, 2002, 28(6): 847-51.
    [23] 陈宗祥, 胡俊, 陈刚, 等. Rl(t)卷叶基因对杂交稻经济性状的影响. 作物学报, 2004, 30(5): 465-469.
    [24] 郎有忠, 张祖建, 顾兴友, 等. 水稻卷叶性状生理生态效应的研究Ⅰ.叶片姿态、群体构成及光分布特征. 作物学报, 2004, 30(8): 806-810.
    [25] 郎有忠, 张祖建, 顾兴友, 等. 水稻卷叶性状生理生态效应的研究Ⅱ.光合特性、物质生产与产量形成. 作物学报, 2004, 30(9): 883-887.
    [26] O’ Toole, Cruz R T, Singh T N. Leaf rolling and transpiration. Plant Sci Lett, 1979,16 :111 - 114.
    [27] Moulia. Biomimetics Biomechanics of leaf rolling. [ s. n. ] ,1994 :267 - 281.
    [28] Price A H, Young E M, Tomos A D. Quantitative trait loci associated with stomatal conductance leaf rolling and heading date mapped in upland rice ( Oryz a sativa L. ). New Phytologist, 1997, 137 :83 - 91.
    [29] Hsiao T C, O’Toole J C, Yambao E B, et al. Influence of osmotic adjustment on leaf rolling andtissue death in rice. Plant Physiol ,1984, 75 :328.
    [30] Loresto G C, Chang T T, Tagumpay O. Field evaluation and breeding for drought resistance. Phil Jour Sci, 1976, 1: 36- 39.
    [31] Loresto G C, Chang T T. Decimal scoring systems for drought reaction and recovery ability in rice screening nurseries. IRRN , 1981, 6(2) :9 - 10.
    [32] Chang T T, Loresto G C. In Approaches for incorporating drought and salinity resistance in crop plants Screening techniques for drought resistance in rice . New Delhi, Ed Chopra V L , Paroda R S , Oxford IBH ,1986 :108 - 129.
    [33] O’Toole, Cruz R T. Response of leaf water potential , stomatal resistance , and leaf rolling to water stress. Plant physiol ,1979 , 64 :628.
    [34] 郭龙花, 钱前. 栽培稻抗旱性的田间评价方法. 中国稻米, 2003(2): 26-27.
    [35] Courtois B, McLaren G, Sinha P K, et al. Mapping QTLs associated with drought avoidance in upland rice. Molecular Breeding, 2000, 6: 55-66.
    [36] 张正斌, 山仑. 小麦抗旱生理指标与叶片卷曲度和蜡质关系研究. 作物学报, 1998, 24(5): 608-612.
    [37] 张凤路, 杨志良, Kirubid. 耐旱性玉米筛选的形态指标研究. 河北农业大学学报, 2003, 26(3): 608-612.
    [38] Turner N C. Further progress in crop water relation.. Advances in agronomy, 1997, 58(1): 293-339.
    [39] 余守武, 谢建坤, 万勇, 等. 水稻抗旱性相关性状的 QTLs 定位研究进展. 分子植物育种, 2004, 2(3):391-400.
    [40] Courtois B, McLaren G, Sinha P K, et al. Mapping QTLs associated with drought avoidance in upland rice. Molecular Breeding, 2000, 6: 55-66.
    [41] Price A H, Townend J, Jones M P, et al. Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa Plant. Molecular Biology, 2002, 48: 683-695.
    [42] Guo L B, Qian Q, Zeng D L, et al. Genetic dissection for leaf correlative traits of rice (OryzaSativa L.). Acta Genetica Sinica, 2004, 31(3): 275-280.
    [43] Ideta O, Yoshimura A, Ashikari M, et al. Integration of conventional and RFLP linkage maps in rice Chromosomes 5, 7, 8 and 12. RGN, 1994, 11: 116-117.
    [44] Yoshimura A, Ideta O, Matsumoto T, et al. Integration of conventional and RFLP linkage maps in rice on chromosomes 1, 2, 3 and 4. Japan J Breed, 1992a, 42(Suppl. 1): 168-169.
    [45] Yoshimura A, Ideta O, Iwata N. Linkage map of phenotype and RFLP markers in rice. Plant molecular biology. 1997, 35: 49-60.
    [46] Iwata N, Satoh H, Omura T. Linkage studies in rice. New genes belonging to the 11th linkage group. Japan J Breed, 1979, 29(Suppl. 2):182-183.
    [47] Thakur R. Linkage relationship of long palea in rice. RGN, 1984, 1: 110.
    [48] 顾兴友, 顾铭洪. 一种水稻卷叶性状的遗传分析. 遗传, 1995, 17(5): 20-23.
    [49] 沈革志, 王新其, 殷丽青, 等. T-DNA 插入水稻群体中卷叶突变体 Rl-A2 的遗传分析. 实验生物学报, 36(6): 459-464.
    [50] 严长杰, 严 松, 张正球, 等. 一个新的水稻卷叶突变体 rl9(t)的遗传分析和基因定位. 科学通报, 2005, 50:2757-2762.
    [51] 陈兆贵, 王 江, 张泽民, 等. T-DNA (Ds) 插入产生的水稻卷叶突变的遗传分析. 华南农业大学学报, 2006, 27:1-4.
    [52] Kishimmoto N, Shimosaka E, Matsuura S, et al. A current RFLP linkage map of rice: Alignment of the molecular map with the classical map. RGN, 1992, 9:118-124.
    [53] 邵元健, 陈宗祥, 张亚芳, 等. 一个水稻卷叶主效 Q TL 的定位及其物理图谱的构建.遗传学报, 2005, 32(5):501-506.
    [54] 李仕贵, 马玉清, 何平, 等. 一种未知的卷叶基因的识别和定位. 四川农业大学学报, 1998, 16(4): 391-393.
    [55] XU J L, ZHONG D B, YU S B, et al. QTLs affecting leaf rolling and folding in rice. RGN, 1999, 16 :51 - 53.
    [56] 瞿礼嘉, 邓兴旺译. 植物发育的机制. 北京:高等教育出版社. 2006:75-87.
    [57] Waites R, Hudson A. phantastica: a gene required for dorsoventrality of leaves inAntirrhinum majus. Development, 1995,121: 2143-2154.
    [58] Lynn K, Fernandez A, Aida M, et al. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development, 1999, 126:1-13.
    [59] Moussian B, Schoof H, Haecker A, et al. Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J 1998, 17:1799-1809.
    [60] McConnell J R, Barton M K. Effect of mutations in the PINHEAD gene of Arabidopsis on the formation of shoot apical meristems. Dev Genet, 1995, 16:358-366.
    [61] Bohmert K, Camus I, Bellini C, et al. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J, 1998, 17:170-180.
    [62] McConnell J R, Barton M K. Leaf polarity and meristem formation in Arabidopsis. Development, 1998, 125:2935-2942.
    [63] Sawa S, Watanabe K, Goto K, et al. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG related domains. Genes Dev, 1999, 13:1079-1088.
    [64] Siegfried K R, Eshed Y, Baum S F, et al. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development, 1999, 126:4117-4128.
    [65] Bowman J L. The YABBY gene family and abaxial cell fate. Current Opinion in Plant Biology, 2000, 3:17–22.
    [66] McHale N A. LAM-1 and FAT genes control development of the leaf blade in Nicotiana sylvestris. Plant Cell,1993, 5: 1029-1038.
    [67] McHale N A, Marcotrigiano M. LAM1 is required for dorsoventrality and lateral growth of the leaf blade in Nicotiana. Development. 1998, 125:4235-4243.
    [68] Timmermans M C, Schultes N P, Jankovsky J P. Leafbladeless1 is required for dorsoventrality of lateral organs in maize. Development, 1998,125: 2813-2823.
    [69] Mallory A C, Reinhart B J, Jones-Rhoades M W, et al. MicroRNA conrol of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. EMBO, 2004, 23:3356-3364.
    [70] Kidner C A, Martienssen R A. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature, 2004, 428:81-84.
    [71] Carrington J C, Ambros V. Role of microRNAs in plant and animal development. Science, 2003, 301(18): 336-338.
    [72] Juarez M T, Kui J S, Thomas J, et al. MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature, 2004, 428: 84-88.
    [73] Kidner C A, Martienssen R A. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature, 2004, 428:81-84.
    [74] Vaucheret H V F, Crete V P, Bartel D P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev, 2004, 18: 1187-1197.
    [75] Song J J, Liu J, Tolia N H, et al. The crystal structure of the argonaute PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nature Struct Biol, 2003, 10, 1026-1032.
    [76] Xie Z, Kasschau K D, Carrington J C. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA. Curr Biol, 2003, 13: 784-789.
    [77] Engstrom E M, Izhaki A, Bowman J L. Promoter bashing, microRNAs, and knox genes. new insights, regulators, and targets-of-regulation in the establishment of lateral organ polarity in Arabidopsis. Plant Physiol, 2004, 135: 685-694.
    [78] McConnell J R, Emery J, Eshed Y, et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 2001, 411: 709-713.
    [79] Talbert P B, Adler H T, Parks D W, et al. The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development, 1995, 121: 2723-2735.
    [80] Ratcliffe O J, Riechmann J L, Zhang J Z, et al. INTERFASCICULAR FIBERLESS1 is the same gene as REVOLUTA. Plant Cell, 2000, 12: 315-317.
    [81] Nelson J M, Lane B, Freeling M, et al. Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the leaf’s dorsoventral axis. Development, 2002, 129: 4581-4589.
    [82] Freeling M. A conceptual framework for maize leaf development. Dev Bio, 1992,153: 44-58.
    [83] Jackson D, Veit B, Hake S, et al. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development, 1994,120: 405-413.
    [84] Smith L G, Greene B, Veit B, et al. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development, 1992,116: 21-30.
    [85] Postma-Haarsma A D, Rueb S, Scarpella E, et al. Developmental regulation and downstream effects of the knox class homeobox genes Oskn2 and Oskn3 from rice. Plant Molecular Biology, 2002, 48: 423-41.
    [86] Sentoku N, Sato Y, Matsuoka M. Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants. Dev Biol, 2000, 220: 358-364.
    [87] Schneeberger R, Tsiantis M, Freeling M, et al. The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development, 1998, 125: 2857-2865.
    [88] Juarez M T, Twigg R W, Timmermans M C P. Specification of adaxial cell fate during maize leaf development. Development, 2004, 131: 4533-4544.
    [89] Lenhard M, Jurgens G, Laux T. The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development, 2002, 129, 3195-3206.
    [90] Krysan P J, Young J C, Sussman M R. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell, 1999, 11: 2283-2290.
    [91] Krysan P J, Young J C, Tax F, et al. Identification of transferred DNA insertions withinArabidopsis gene involved in signal transduction and ion transport. Proc Natl Acad Sci, 1996, 93: 8145-8150.
    [92] Ross-Macdonald P. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature, 1999, 402: 413-418.
    [93] Springer P S. Gene trap: Tools for plant development and genomics. Plant Cell, 2000, 12: 1007-1020.
    [94] Bellen H J. Ten years of enhancer detection: Lessons from the fly. Plant Cell, 1999, 11:2271-2281.
    [95] O’Kane C , Gehring W J. Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci, 1987, 84: 9123-9127.
    [96] Klimyuk V I, Nussaume L, Harrison K, et al. Novel GUS expression patterns following transposition of an enhancer trap Ds element in Arobidopsis. Mol Gen Genet, 1995,249:357-365.
    [97] Sundaresan V, Springer P, Volpe T, et al. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev, 1995, 9: 1797-1810.
    [98] Carey M, Kakidani H, Leaatherwood J, et al. An amino-terminal fragment of GAL4 binds DNA as a dimmer. J Mol Biol, 1989, 209:423-432.
    [99] Giniger E, Varnum S M, Ptashne M. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell, 1985,40:767-774.
    [100] Brand A H, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 1993, 118:401-415.
    [101] Gustafson K, Boulianne G L. Distinct expression patterns detected within individual tissues by the GAL4 enhancer trap technique. Genome, 1996, 39:174-182.
    [102] Ferveur J F, Stortkuhl K F, Stocker R F, et al. Genetic feminization of brain structures and changed sexual orientation in male Drosophila. Science, 1995, 267: 902-905.
    [103] Bradley D, Carpenter R, Sommer H, et al. Complementary floral homeotic phenotypesresult from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell, 1993, 72: 85-95.
    [104] Phelps C B, Brand A H. Ectopic gene expression in Drosophila using GAL4 system. Methods Enzymol, 1998, 14: 367-379.
    [105] Triezenberg S J, Kingsbury R C, Mcknight S L. Functional dissection of VP16 the trans-activator of herps simplex virus immediate early gene expression. Gene Dev, 1988, 2: 718-729.
    [106] Schwechheimer C, Smith C, Bevan M W. The activities of acidic and glutamine-rich transcriptional activation domains in plant cells: design of modular transcription factor for high-level expression. Plant Mol Biol, 1998,36: 195-204.
    [107] Kiegle E, Moore C A, Haseloff J, et al. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J, 2000, 23:267-278.
    [108] Kiessling U, Platzer M. Plasmid resuce, a tool for reproducible recovery of genes from transfected mammalian cell. Mol Genet Genom, 1984, 193:513-519.
    [109] Winkler R G, Frank M R, Galbraith D W, et al. Systematic reverse genetics of transfer-DNA-tagged lines of Arabidopsis. Plant Physiol, 1998, 118: 743-750.
    [110] Liu Y G, Mitsukawa N, Oosumi Y, et al. Efficient isolation and mapping of Arobidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J, 1995, 8: 457-463.
    [111] Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert and fragments from P1 and YAC clones for chromosome walking. Genomics, 1995,25: 674-681.
    [112] Sessions A, Burke E, Presting G, et al. A high-throughput Arabidopsis reverse genetics system. Plant Cell, 2002, 14: 2985-294.
    [113] Jeon J S, Lee S, Jun K H, et al. T-DNA insertional mutagenesis in rice. Plant J, 2000, 22:561-570.
    [114] Wu C Y, Li X J, Yuan W Y, et al. Development of enhancer trap lines for functionalanalysis of the rice genome. Plant J, 2003, 10: 365-375.
    [115] Temnykh S, DeClerck G, Lukashova A, et al. Computational and experimental analysis of microsatellites in rice(Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 2001,11: 1441-1452.
    [116] McCouch S, Teytelman L, Xu Y B, et al. Development and mapping of 2240 new SSR markers for rice(Oryza sativa L.). DNA Res, ,2002, 9: 199–207.
    [117] International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 436: 793-800.
    [118] Shen Y J, Jiang H, Jin J P, et al. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol, 2004, 135: 1198-1205.
    [119] Feltus F A, Wan J, Schulze S R, et al. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res, 2004, 14: 1812-1819.
    [120] Goff S A, Ricke D, Lan T H, et al. A draft seqeunce of the rice genomes (Oryza sativa L. ssp. japonica). Science, 2002, 296: 92-100.
    [121] Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296: 79-92.
    [122] Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol, 1990, 215: 403-410.
    [123] Tenaillon M I, Sawkins M C, Anderson L K, et al. Patterns of diversity and recombination along Chromosome 1 of maize (Zea mays ssp. Mays L.). Genetics, 2002, 162: 1401-1413.
    [124] Singh V K, Mangalam A K, Dwivedi S, et al. Primer premier: program for design of degenerate primers from a protein sequence. Biotechniques, 1998, 24(2): 318-319.
    [125] Konieczny A, Ausubel F M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J, 1993, 4(2): 403-410.
    [126] Michaels S, Amasino R. A robust method for detecting single-nucleotide changes aspolymorphic markers by PCR. Plant J,1998, 14(3): 381-385.
    [127] Neff M, Neff J, Chory J, et al. dCAPS,a simple technique for the genetic analysis of single nucleotide polymorphisms:Experimental applications in Arabidopsis thaliana genetics. Plant J, 1998, 14(3): 387-392.
    [128] Thiel T, Kota R, Grosse I, et al. SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucl Acids Res, 2004, 32: e5.
    [129] Neff M, Turk E, Kalishman M. Web-based primer design for single nucleotide polymorphism analysis. Trends in Genetics, 2002, 18(12): 613-615.
    [130] Monna L, Kitazawa N, Yoshinl R, et al. Positional cloning of rice semidwarfing gene,sd-1:rice”Green Revolution Gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res,2002, 9: 11-17.
    [131] Komori T, Ohta S, Murai N ,et al. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J, 2004, 37(3): 315-325.
    [132] Chen X W, Shang J J, Chen D X, et al. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J,2006, 46(5): 794-804.
    [133] Ugozzoli L, Wallace R B. Allele-specific polymerase chain reaction. Methods Enzymol,1991, 2: 42–48.
    [134] 郑艳萍, Chander Subhash, 杨小红,等. 一种基于聚合酶链式反应检测 SNP 的方法. 中国农业大学学报, 2006, 11(3): 51-55.
    [135] Drenkard E, Richter B G, Rozen S, et al. A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol, 2000, 124: 1483–1492.
    [136] Hayashi K, Yoshida H, Ashikawa I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theo Appl Genet, 2006,113:251-260.
    [137] 高秀丽, 景奉香, 杨剑波, 等. 单核苷酸多态性检测分析技术. 遗传, 2005, 27(1): 110-122.
    [138] Britten R J, Rowen L, Willians J, et al. Majority of divergence between closely relatedDNA samples is due to indels. PNAS, 2003, 100(8): 4661-4665.
    [139] Han B, Xue Y B. Genome-wide intraspecific DNA-sequence variations in rice. Curr Opin Plant Biol, 2003, 16: 134-138.
    [140] Nasu S, Suzuki J, Ohta R, et al. Search for and Analysis of Single Nucleotide Polymorphisms (SNPs) in Rice (Oryza sativa, Oryza rufipogon) and Establishment of SNP Markers. DNA Res, 2002, 9: 163-171.
    [141] 杨仑, 沈文飚, 陈虹, 等. 基于生物信息学的水稻候选 SNP 发掘. 中国水稻科学, 2004, 18(3): 185-191.
    [142] Feng Q, Zhang Y, Hao P, et al. Sequence and analysis of rice chromosome 4. Nature, 2002, 420: 316-320.
    [143] 邵元健, 潘存红, 陈宗祥, 等. 水稻不完全隐性卷叶主基因 rl(t)的精细定位. 科学通报, 2005, 50(19):2107-2113.
    [144] Wu K S, Tanksley S D. Abundance, polymorphism and genetic mapping of microsatellite in rice. Mol Gen Genet, 1993, 241: 225-235.
    [145] Sakata K, Nagamura Y, Numa H, et al. RiceGAAS: an automated annotation system and database for rice genome sequence. Nucleic Acids Research, 2002, 30: 98-102.
    [146] Kikuchi S, Satoh K, Nagata T, et al. Collection, Mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science, 2003,301:376-379.
    [147] Jander G, Norris S R., Rounsley S D, et al. Arabidopsis map-based cloning in the post-genome era. Plant physiol, 2002, 129:440-450.
    [148] 莫惠栋. 质量-数量性状的遗传分析Ⅰ. 作物学报, 1993, 19(1):1-6.
    [149] Li Y H, Qian Q, Zhou Y H, et al. Brittle culm1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell, 2003, 15: 2020–2031.
    [150] Hong Z, Ueguchi-Tanaka M, Umemura K, et al. A rice brassinosteroid-deficient mutant, ebisudwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15(12): 2900-2910.
    [151] Ohyanagi H, Tanaka T, Sakai H, et al. The rice annotation project database (RAP-DB): hubfor oryza sativa ssp. Japonica genome information. Nucleic Acids Research, 2006, 34: D741-D744.
    [152] Nakamura M, Katsumata H, Abe M, et al. Characterization of the class IV homeodomain-leucine zipper gene family in Arabidopsis. Plant Physiol, 2006, 141:1363–1375.
    [153] Abe M, Katsumata H, Komeda Y, et al. Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development, 2003, 130:635-643.
    [154] Schrick K, Nguyen D, Karlowski W M, et al. START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors. Genome Biology, 2004, 5:R41.
    [155] Rerie W G, Feldmann K A, Marks M D. The GLABRA2 gene encodes a homeodomain protein required for normal trichome development in Arabidopsis. Genes Dev, 1994, 8: 1388–1399.
    [156] Cristina M D, Sessa G, Dolan L, et al. The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant J, 1996,10: 393–402.
    [157] Masucci J D, Rerie W G, Foreman D R, et al. The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development, 1996,122: 1253–1260.
    [158] Lu P, Porat R, Nadeau J A, et al. Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes. Plant Cell, 1996, 8: 2155–2168.
    [159] Kubo H, Peeters A J, Aarts M G, et al. ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis. Plant Cell, 1999, 11: 1217–1226.
    [160] Ingram G C, Magnard J L, Vergne P, et al. ZmOCL1, an HDGL2 family homeobox gene, is expressed in the outer cell layer throughout maize development. Plant Mol Biol, 1999, 40:343-354.
    [161] Ingram G C, Boisnard-Lorig C, Dumas C, et al. Expression patterns of genes encoding HD-ZipIV homeodomain proteins domains in maize embryos and meristems. Plant J. 2000, 22: 401-414.
    [162] Nadeau J A, Zhang X S, Li J, et al. Ovule development: Identification of stage-speci fic and tissue-specific cDNAs. Plant Cell, 1996, 8: 213-239.
    [163] 江元清 凌毅 赵武玲. 真核 mRNA 的 3′非翻译区转录后水平调控作用研究进展. 植物学通报, 2001, 18(1):3-10.
    [164] Birnstiel M L, Busslinger M, Strub K. Transcription termination and 3′processing : the end is in site. Cell, 1985, 41 : 349~359.
    [165] Wahle E, Keller W. The biochemistry of 3′-end cleavage and polyadenylation of messenger RNA procursors. Annu Rev Biochem, 1992, 61: 419-440.
    [166] Chen C Y , Shyu A B. AU- rich elements : characterization and importance in mRNA degradation. TIBS, 1995,20 (11) : 465-470.
    [167] Chen F Y, Amara F M, Wright J A. Mammalian ribonucleotide reductase R1 mRNA stability under normal and phorbol ester stimulating conditions : involvement of a cis- trans inter-action at the 3′untranslated region. EMBO J , 1993, 12: 3977-3986.
    [168] Wilson G M, Vasa M Z, Deeley R G. Stabilization and cytoskeletal-association of LDL receptor mRNA are mediated by distinct domains in its 3′untranslated region. J Lipid Res , 1998, 39: 1025-1032.
    [169] Paulding W R, Czyzyk- Krzeska M F. Regulation of tyrosine hydroxylase mRNA stability by protein-binding , pyrimidine- rich sequence in the 3′-untranslated region. J Biol Chem , 1999,274: 2532-2538.
    [170] Dibbens J A, Miller D L, Damert A. Hypoxic regulation of vascular endothelial growth factor mRNA stability requires the cooperation of multiple RNA elements. Mol Biol Cell, 1999, 10: 907-919.
    [171] Coughlin B C, Teixeira S M R, Kirchhoff L V, et al. Amastin mRNA abundance inTrypanosoma cruzi is controlled by a 3′-untranslated region position-dependent ciselement and an untranslated region-binding protein. J Biol Chem, 2000, 275: 12051-12060.
    [172] Tebo J M, Datta S, Kishore R, et al. Interleukin-1-mediated stabilization of mouse KC mRNA depends on sequences in both 5′-and 3′-untranslated regions. J Biol Chem, 2000, 275 : 12987-12993.
    [173] Garcia-Gras E A, Chi P, Thompson E A. Glucocorticoid-mediated destabilization of cyclin D3 mRNA involves RNA-protein interactions in the 3′-untranslated region of the mRNA. J Biol Chem, 2000, 275: 22001-22008.
    [174] Touriol C, Morillon A, Gensac M C, et al. Expression of human fibroblast growth factor mRNA is post-transcriptionally controlled by a unique destabilizing element present in the 3′-untranslated region between alternative polyadenylation sites. J Biol Chem, 1999, 274: 21402-21408.
    [175] Gil P, Green P J. Multiple regions of the Arabidopsis SAUR-AC1 gene control transcript abundance : the 3′untranslated region as an mRNA instability determinant. EMBO J, 1996, 15: 1678-1686.
    [176] Eibl C, Zou Z R, Beck A, et al. In vivo analysis of plastid psbA , rbcL and rpi3’ UTR element by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J, 1999, 19 (3) : 333-345.
    [177] Rott R, Liveanu V, Drager R G, et al. The sequence and structure of the 3′-untranslated region of chloroplast transcripts are important determinants of mRNA accumulation and stability. Plant Mol Biol, 1998,36: 307-314.
    [178] Lee H, Bingham S E, Webber A N. Function of 3′non-coding sequences and stop codon usuage in expression of the chloroplast psaB gene in Chlamydomonas reinhardtii. Plant Mol Biol, 1996, 31: 337-354.
    [179] 钟珍萍, 吴乃虎. 应用体外系统分析水稻高粱 psbA 3′UTR 调控效应. 中国科学(C 辑), 1997, 27 (3) :247-252.
    [180] Dalby B, Glover D M. Discrete sequence elements control posterior pole accumulationand translational repression of maternal cyclin B RNA in Drosophila. EMBO J, 1993, 12: 1219- 1227.
    [181] Chen R, Silver D L, Bruijin F J. Nodule parenchyma specific expression of the Sesbania rostrata early nodulin gene SrEnod2 is mediated by its 3′untranslated region. Plant Cell, 1998, 10: 1585-1602.
    [182] Standart C J, Jackson R J. Regulation of translation by specific protein/ mRNA interactions. Biochemistry, 1994, 76: 867-879.
    [183] McCarthy J E G, Kollmus H. Cytoplasmic mRNA-protein interactions in eukaryotic gene expression. Trends Biochem Sci, 1995, 20:191-197.
    [184] Samson M L. Evidence for 3′untranslated region-dependent autoregulation of the Drosophila gene encoding the neuronal nuclear RNA-binding protein ELAV. Genetics, 1998, 150: 723-733.
    [185] Decker C J, Parker R. Diversity of cytoplasmic functions for the 3′untranslated region of eukaryotic transcripts. Curr Opin Cell Biol, 1995, 7: 386-392.
    [186] Ito M, Sentoku N, Nishimura A, et al.. Position dependent expression of GL2-type homeobox gene, Roc1: significance for protoderm differentiation and radial pattern formation in early rice embryogenesis. Plant J, 2002,29: 497–507.
    [187] Yang J Y, Chung M C, Tu C Y, et al. OSTF1: a HD-GL2 family homoebox gene is developmentally regulated during early embtyogenesis in rice. Plant Cell Physiol, 2002,43:628-638.
    [188] Ito M, Sentoku N, Nishimura A, et al. Roles of rice GL2-type homeobox genes in epidermis differentiation. Breeding Science, 2003,53:245-253.
    [189] Wesley S V, Helliwell1 C A, Smith N A, et al. Construct design for effcient, effective and high-throughput gene silencing in plants. Plant J, 2001, 27(6):581-590.
    [190] Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6: 271-282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700