化学发光微流动注射分析芯片的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控芯片又称为芯片实验室,是把化学和生物领域中所涉及到的样品制备、反应、分离、检测及细胞培养、分选、裂解等基本操作单元集成或基本集成到一块几平方厘米(或更小)的芯片上,由微通道形成网络,以可控流体贯穿整个系统,用以取代常规化学或生物实验室的各种功能的一种技术平台。其基本特征和最大优势是多种单元技术在整体可控的微小平台上灵活组合、规模集成。微流动注射分析是微流控芯片技术的一个重要分支,是在流动注射分析的基础上发展而来的,具有整体化发展的优势,更加适合于现场分析,已经成为近年来分析科学领域内的一个研究热点。
     本论文包括综述和研究报告两部分。综述部分包括三章,即第1-3章,主要涉及微流控芯片的发展概况、微流动的基本理论以及微流动注射分析的现状和发展方向。研究报告部分包括三章,即第4-6章。第4章中采用了双T进样、微阀进样以及改进的不连续微滴进样等几种不同进样方式对食品安全检测和环境分析用的微流动注射分析芯片进行了研究。这几种进样方式的使用大大减少了试剂的消耗体积,提高了测定的灵敏度和检出限。第5章中结合微固相萃取分离技术,通过在化学发光微流动注射芯片上在线富集分离实现了牛奶中β-内酰胺类抗生素的测定。第6章中将微流动注射分析芯片与微透析的取样技术相结合,活体在线测定了兔血中的葡萄糖含量以及金属离子铬在血液中的代谢情况。同时设计了一种可通过精确控制时间来控制进样体积的注射泵,时间控制精度为0.01秒,取样量为纳升至微升级。实验中无须外加采样环,保证每次的进样量为0.4μL,更好地实现了微透析的取样技术与微流动注射芯片的结合。
     1.化学发光微流动注射芯片的研究
     (1)测定面粉中过氧化苯甲酰的化学发光微流动注射分析芯片
     过氧化苯甲酰是面粉中普遍使用的增白剂,它具有漂白和消毒的作用,但面粉中过量添加的过氧化苯甲酰却能引发一些过敏反应和增加致癌的可能性。本文基于PMMA化学发光芯片首次建立了测定面粉中过氧化苯甲酰的方法。芯片上微通道的宽为200μm,深为100μm,微通道的总长为67mm,检测区域面积为5×5mm~2。过氧化苯甲酰能够直接氧化鲁米诺产生化学发光,进样方式采用了两种,分别是双T进样和微阀进样。进样量分别为0.16μL和0.25μL。测定过氧化苯甲酰的线性范围是8×10~(-7)-1×10~(-4)gmL~(-1),方法的检出限是4×10~(-7)gmL~(-1)。两种进样方式的相对标准偏差分别为3.06%(双T)和2.41%(微阀)。该方法成功应用于面粉中过氧化苯甲酰的测定。
     (2)测定自来水中次氯酸根的化学发光微流动注射分析芯片
     Cl_2和ClO~-被广泛应用于自来水的消毒剂,然而使用ClO~-作为氯消毒剂会产生对人体有害的氯酸盐和亚氯酸盐。本文基于次氯酸根能够直接氧化鲁米诺产生化学发光的原理,结合微加工技术,建立了微流动注射化学发光检测系统测定自来水中次氯酸根的方法。微芯片是在聚甲基丙烯酸甲酯(PMMA)片(50mm×40mm×5mm)上通过激光雕刻微通道(宽为200μm,深为100μm)并结合双T的进样方式(进样量约为0.3μL)来实现的。该方法测定次氯酸根的线性范围是3.0×10~(-7)-1.0×10~(-4)gmL~(-1),方法的检出限是1.4×10~(-7)gmL~(-1)。11次平行测定的相对标准偏差为4.5%。方法简单、分析速度快(368 h~(-1))、耗样量少,已成功应用于自来水中次氯酸根的测定。
     (3)用于快速测定水样中化学需氧量的化学发光微流动注射分析芯片
     化学需氧量(COD)由于代表着水体中有机污染物的多少而成为水质检测的一项重要参数。因此需要低成本、简单的、快速的、试剂消耗量少的测定COD的方法以实现现场分析。本文建立了一种室温下快速测定化学需氧量(COD)的化学发光微流动分析芯片。基于样品在2 molL~(-1)H_2SO_4介质中被K_2Cr_2O_7还原为Cr~(3+),Cr~(3+)对luminol-H_2O_2化学发光体系具有催化作用来进行测定。芯片材质是聚甲基丙烯酸甲酯,采用的是不连续的微滴进样方式。考察了pH、试剂浓度、通道长度等对发光强度的影响。方法的线性范围为0.27-10 gL~(-1),检出限为100 mgL~(-1)。该方法成功应用于污水中COD的测定。
     (4)用于水样中不同形态的铬的含量测定的化学发光微流动注射分析芯片
     建立了一种同时测定水样中Cr(Ⅲ)和Cr(Ⅵ)的化学发光微流控芯片分析系统。基于Cr(Ⅵ)能够被H_2O_2在线还原为Cr(Ⅲ),Cr(Ⅲ)催化鲁米诺-H_2O_2产生强的化学发光来实现测定。制作微流控芯片的材料为聚甲基丙烯酸甲酯(PMMA),芯片采用的是微滴进样方式,进样体积为5μL。芯片上微通道的宽为200μm、深为100μm。线性范围分别为5×10~(-8)-1×10~(-5) molL~(-1)(Cr~(3+))和1×10~(-7)-1×10~(-5)molL~(-1)(Cr_2O_7~(2-)),检出限为2×10~(-8)mol L~(-1)(Cr~(3+))和4×10~(-8)mol L~(-1)(Cr_2O_7~(2-))。该法已经成功用于水样中Cr(Ⅲ)和Cr(Ⅵ)的同时测定。
     2.微固相萃取分离-化学发光微流动注射芯片的研究
     (5)用于牛奶中β-内酰胺类抗生素测定的在线同相萃取化学发光微流动注射分析芯片
     β-内酰胺类药物也是牛奶样品中常用的抗生素,而牛奶中的抗生素残留问题已引起广泛的关注。SPE是常用的样品前处理和预富集的分析手段,具有高的选择性、易于操作和试剂消耗低的特点,将在线SPE分离技术用于共存物质干扰的消除是化学发光分析的一种理想的选择。本文建立了一种基于在线固相萃取技术的化学发光微流动注射分析芯片用于牛奶中四种β-内酰胺类抗生素(青霉素、头孢拉定、头孢羟氨苄、头孢氨苄)的测定。基于β-内酰胺类抗生素能够增强luminol-K_3Fe(CN)_6化学发光体系来进行测定。微流动注射分析芯片材料为聚甲基丙烯酸甲酯,其微通道的宽为200μm,深为150μm。C_(18)填装在微通道(长:10mm;宽:1mm;深:500μm)内作为固相萃取装置,微流动注射分析芯片在线完成分析物的萃取和富集,提高了化学发光检测的选择性。样品的检出限分别是青霉素0.5μg mL~(-1)、头孢拉定0.04μg mL~(-1)、头孢羟氨苄0.08μg mL~(-1)和头孢氨苄为0.1μg mL~(-1)。该方法已经成功应用于牛奶样品中β-内酰胺类抗生素的测定。
     3.微流动注射分析芯片用于活体在线检测的研究
     (6)微透析—微滴进样化学发光微流控芯片测定活体中的葡萄糖
     微透析取样技术已成功用于活体分析,具有取样量少的特点,因此与微流动注射分析芯片的结合具有相当的优势。本文建立了在线微透析取样-化学发光微流控芯片测定活体中葡萄糖的方法。化学发光微流控芯片采用的是微滴进样方式,微滴形成于毛细管的尖端,其样品体积为4.5μL。制作微流控芯片的材料为聚甲基丙烯酸甲酯(PMMA),利用溶胶-凝胶固定化的方法将辣根过氧化物酶(HRP)和葡萄糖氧化酶(GOD)固定在芯片微流通池的内表面上。葡萄糖被GOD氧化为D-葡萄糖酸和H_2O_2,H_2O_2在HRP的存在下氧化鲁米诺产生化学发光。使用微透析探针以20 h~(-1)的频率在兔子血液中采样,成功应用于在线测定兔子血样中的葡萄糖。
     (7)微透析取样-化学发光微流动分析芯片活体在线监测血液中Cr(Ⅲ)的代谢
     建立了微透析取样-化学发光微流动分析芯片系统用于活体在线监测家兔血液中Cr(Ⅲ)的代谢,基于Cr(Ⅲ)-luminol-H_2O_2体系来进行测定。在聚甲基丙烯酸甲酯的芯片上集成了阴离子交换微柱,芯片上微通道的宽为200μm,深为100μm。插在兔子耳缘静脉内的微透析探针连接的灌流液的流速为5μL min~(-1),微透析的样品体积为0.4μL,最终实现了兔子血液内Cr(Ⅲ)的代谢活体在位监测。
After the concept of micro total analysis system (uTAS) was introduced by Manz et al. in 1990, the field ofμTAS is growing rapidly. Because miniaturization is currently considered as one of the most important trends in the development of analytical instrumentation, the ultimate purpose ofμTAS is the integration of the entire analytical process on a micro-device. The micro-flow injection system on the chip is part of theμTAS and also has many advantages.
     The dissertation is made up of two sections. One is the review ofμTAS and micro-flow injection system on the chip. Another is the research work. In the first part of the research work, the micro-flow injection systems which are used for food analysis and environment analysis are introduced. Different sampling mode, including double-T sampling mode, micro-valve sampling mode and discrete microdroplet sampling mode, is used. With the sampling modes, the reagent consumption is reduced and the sensitivity is improved. In the second part, combining with the solid phase extraction technique, a chemiluminescence (CL) micro-flow system is presented for determination ofβ-lactam antibiotics in milk. In the last part of the research work, microdialysis sampling technique was used on the micro-flow injection system for the determination of glucose and Cr(III) metabolism in blood.
     1. Investigation on the chemiluminescence micro-flow injection analysis on a chip
     (1) Determination of benzoyl peroxide in flour
     Benzoyl peroxide(BP) is a common additive in flour because of its bleaching and sanitizing properties, but excessive benzoyl peroxide in flour could induce allergic reactions, weak cancer causing, Vitamin E and nutrients destruction. A rapid and sensitive chemiluminescence microfluidic chip fabricated in polymethyl methacrylate for determination of benzoyl peroxide in flour is described. The width of the microchannel was 200 urn and the depth was 100μm in the chip (50×40×5 mm). The total length of the microchannel was 67 mm with the detection area of 5×5 mm~2. Benzoyl peroxide can directly oxidize luminol to produce chemiluminescence. Two injectors of double-tee injector and microvalve injector were used. The sampling volume was 0.16μL for the double-tee injector and 0.25μL for the microvalve injector. The linear range of the benzoyl peroxide concentration was 8×10~(-7)-1×10~(-4) g mL~(-1). The detection limit was 4×10~(-7) g mL~(-1) and the R.S.D for eight times is 3.06% for the double-tee injector and 2.41% for the microvalve injector. The proposed method has been successfully applied to the determination of benzoyl peroxide in flour.
     (2) Determination of hypochlorite in tap water
     A micro-flow injection chemiluminescence detection system fabricated in Polymethyl methacrylate (PMMA) (50mm×40mm×5mm) for determination of hypochlorite in tap water is described, based on the direct chemiluminescence reaction of hypochlorite and luminol. The microchannel on the micro-flow injection chemiluminescence detection system are made by laser ablation (200μm width, 150μm depth) and the sampling volume was about 0.3μL with double-tee mode. The linear range of the hypochlorite concentration was 3.0×10~(-7)-1.0×10~(-4)g/mL. The detection limit is 1.4×10~(-7)g/mlL and the R.S.D for 11 times is 4.5%. The system is easy, fast (sample throughput 368h~(-1)) and reduces reagent consumption. The proposed method has been successfully applied to the determination of hypochlorite in tap water.
     (3) Rapid determination of chemical oxygen demand in water
     Chemical oxygen demand (COD) is an important parameter for water monitoring because it can represent the organic contaminants in water. A fast, continuous and automatic analysis method for COD determination was needed. A chemiluminescence (CL) micro-flow system for rapid determination of chemical oxygen demand (COD) in water at room temperature is proposed in this paper. In this system, potassium dichromate is reduced to Cr~(3+) in 2 mol L~(-1) H_2SO_4 during chemical oxidation of COD-substances in sample and Cr~(3+) can be measured by the luminol-H_2O_2 CL system. The polymethyl methacrylate micro-flow chip with discrete microdroplet sampling was used here. Effects for COD determination (such as pH, concentrations, the channel length, and interference) were investigated. The linear range for COD determination was 0.27-10 g L~(-1) and the detection limit was 100 mg L~(-1). The proposed method has been successfully applied to the determination of COD in wastewater samples. The datas obtained by the present method were fairly in good agreement with those obtained by the titrimetric method.
     (4) Simultaneous determination of Cr (III) and Cr (VI) in water
     A sensitive method for the simultaneous determination of chromium (III) (Cr~(3+)) and chromium (VI) (Cr_2O_7~(2-)) using micro-flow chemiluminescence system was developed. The chemiluminescence detection was based on the catalytic effect of Cr (III) on the chemiluminescence reaction of luminol and hydrogen peroxide. Cr (VI) was on-line reduced to Cr (III) with hydrogen peroxide, and then was detected. The polymethyl methacrylate (PMMA) micro-flow system with three plates was used to realize this procedure. The micro-flow system used the discrete sampling with microdroplet, which can be formed at the tip of the capillary with the sampling volume of 5μL. The width of the microchannel was 200μm and the depth was 100μm. The linear ranges were 5×10~(-8)-1×10~(-5)mol L~(-1) for chromium(III) and 1×10~(-7)-1×10~(-5)mol L~(-1) for chromium(VI). The detection limits were 2×10~(-8) mol L~(-1) for chromium (III) and 4×10~(-8)mol L~(-1) for chromium (VI). The proposed method has been successfully applied to the simultaneous determination for chromium (III) and chromium (VI) in water samples.
     2. Investigation on the chemiluminescence micro-flow injection analysis on a chip with on-line solid phase extraction
     (5) Determination ofβ-Lactam antibiotics in milk
     β-Lactam antibiotics are widely used in the treatment of lactating dairy cattle for several infections. Antibiotic residues in milk, besides inhibiting start of cultures in the production of milk products, can provoke allergic reactions in some hypersensitive individuals. On-line introducing in SPE separation technique for interfering element removal is undoubtedly an ideal choice for interference elimination in CL analysis. In this paper, a chemiluminescence (CL) micro-flow system combined with on-line solid phase extraction (SPE) is presented for determination ofβ-lactam antibiotics (penicillin, cefradine, cefadroxil, cefalexin) in milk. It is based on the enhancement effect ofβ-lactam antibiotics on the luminol-K_3Fe(CN)_6 CL system. The micro-flow system was fabricated from two polymethyl methacrylate (PMMA) plates (50×40×5mm) with the microchannels of 200μm wide and 150 urn deep. C_(18)-modified silica gel was packed into the microchannel (length: 10mm; wide: 1mm; depth: 500μm) to serve as SPE device. Extraction and preconcentration of the analytes were carried out using on-line SPE micro-flow system and the selectivity of CL detection was improved. The detection limits were 0.5μg mL~(-1) of penicillin, 0.04μg mL~(-1) of cefradine, 0.08μg mL"1 of cefadroxil and 0.1 ug mL"1 of cefalexin. The proposed method was also applied to analyzing theβ-lactam antibiotics in milk. Experimental results were in good agreement with those obtained by high performance liquid chromatography (HPLC) method with UV detection.
     3. Investigation on the chemiluminescence micro-flow injection analysis on a chip by microdialysis sampling
     (6) Determination of glucose in vivo
     A micro-flow chemiluminescence (CL) system in vivo for glucose determination by the on-line microdialysis sampling is described in this paper. The micro-flow CL system uses discrete sample droplets, which formed at the tip of the capillary with the sampling volume of 4.5μL. The sol-gel method is introduced to co-immobilize horseradish peroxidase (HRP) and glucose oxidase (GOD) on the inside surface of the micro-flow cell which was fabricated in polymethyl methacrylate (PMMA). The CL detection involved enzymatic oxidation of glucose to D-gluconic acid and H_2O_2, then H_2O_2 oxidizing luminol to produce CL in presence of HRP. The microdialysis probe was utilized for sampling in the rabbit blood; the sample throughput was 20 h~(-1) . The glucose level in blood of the rabbit was on-line monitored with good results.
     (7) On-line monitoring of chromium metabolism in vivo
     A micro-flow injection chemiluminescence system based on the Cr (III)-luminol-hydrogen peroxide chemiluminescence system for in vivo on-line monitoring of chromium (III) metabolism in blood by microdialysis sampling is described in this paper. It was fabricated in polymethyl methacrylate(PMMA) of two plates and the separation part of anion exchange resin was also integrated on the micro-flow system. The width of the microchannel was 200μm and the depth was 100μm on the plate(50×40×5mm). A microdialysis probe, implanted in the vein of rabbit, was perfused with perfusate at a flow rate of 5μL min~(-1). The dialysate sample volume was about 0.4μL. The metabolism of the chromium (III) in the blood of the rabbit was monitored after administration of the chromium (III) to demonstrate the favorable resolution and reliability of the system for in vivo on-line monitoring.
引文
1.林炳承,秦建华,微流控芯片实验室,北京:科学出版社,2006,07.
    2. Reyes D. R. , Iossifidis D. , Auroux P. A. , Manz A. , Micro total analysis systems. I. Introduction, theory, and technology. , Anal. Chem. , 2002, 74: 2623-2636.
    3. Auroux P. A, Iossifidis D. , Reyes D. R. , Manz A. , Anal. Chem. , 2002, 74: 2637-2652.
    4. Vilkner T. , Janasek D. , Manz A. , Micro total analysis systems. Recent developments, Anal. Chem. , 2004, 76: 3373-3386.
    5. Dittrich P. S. , Tachikawa K. , Manz A. , Micro total analysis systems, latest advancements and trends, Anal. Chem. , 2006, 78: 3887-3907.
    6.方肇伦,徐章润,方瑾,微型化在化学科学发展中的战略地位,化学进展,2006,18:1577-1583.
    7.方肇伦,微流控分析芯片的制作及应用,北京:化学工业出版社,2005,06.
    8. Manz A. , Graber N. , Widmer H. M. , Miniaturized total chemical analysis system: a novel concept for chemical sensing, Sens. Actuators B, 1990, 1: 244-248.
    9. Harrison D. J. , Manz A. , Fan Z. H. , Luedi H. , Widmer H. M. , Capillary electrophoresis and sample injection systems integrated on a planar glass chip, Anal. Chem. , 1992, 64: 1926-1932.
    10. Jacobson S. C. , Hergenroeder R. , Koutny L. B. , Warmack R. J. , Ramsey J. M, Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices, Anal. Chem. , 1994, 66: 1107-1113.
    11. Woolley A. T. , Mathies R. A. , Ultra-High-Speed DNA Sequencing Using Capillary Electrophoresis Chips, Anal. Chem. , 1995, 67: 3676-3680.
    12. Madou M. J. , Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. , Boca Raton: CRC Press, FL, 2002.
    13. Geschke O. , Klank H. , Telleman P. , Microsystem Engineering of Lab-on-a-Chip Devices, 2nd ed. ; New York: John Wiley & Sons, 2004.
    14. Oosterbroek R. E. , van den Berg A. , Lab-on-a-Chip: Miniaturized Systems for Bio(Chemical) Analysis and Synthesis, Amsterdam: Elsevier Science, 2003.
    15.方肇伦.微流控分析芯片,北京:科学出版社.2003,03.
    16. Pumera M. , Microchip-based electrochromatography: designs and applications, Talanta, 2005, 66: 1048-1062.
    17. Wang J. , Electrochemical Detection for Capillary Electrophoresis Microchips: A Review, Electroanalysis, 2005, 17: 1133-1140.
    18.王立凯,冯喜增,微流控芯片技术在生命科学研究中的应用,化学进展,2005,17:482-498.
    19.汪聪慧,张大明,微流控芯片技术在刑事科学中的应用,刑事技术,2005,1:37-40.
    20. Uchiyama K. , Nakajima H. , Hobo T. , Detection method for microchip separations, Anal. Bioanal. Chem. , 2004, 379: 375-382.
    21. Vandaveer W. R. , Pasas-Farmer S. A. , Fischer D. J. , Frankenfeld C. N. , Lunte S. M. , Recent developments in electrochemical detection for microchip capillary electrophoresis, Electrophoresis, 2004, 25: 3528-3549.
    22. Roddy E, S. , Xu H. W. , Ewing A. G. , Sample introduction techniques for microfabricated separation devices, Electrophoresis, 2004, 25: 229-242.
    23. Auroux P. A. , Koc Y. , deMello A. , Manz A. , Day P. J. R. , Miniaturised nucleic acid analysis, Lab Chip, 2004, 4: 534-546.
    24. Liu S. , Guttman A. , Electrophoresis microchips for DNA analysis, Trends Anal. Chem. , 2004, 23: 422-431.
    25. Lee S. J. , Lee S. Y. , Micro total analysis system (μ-TAS) in biotechnology, Appl. Microbiol. Biotechnol. , 2004, 64: 289-299.
    26.魏守水,张玉林,崔大付,分析芯片微通道制作技术进展,中国工程科学,2004,06:90-94.
    27.高健,殷学锋,方肇伦,微流控芯片系统在单细胞研究中的应用,化学进展,2004,16:975-983.
    28.杨蕊,邹明强,冀伟,牟颖,金钦汉,微流控芯片分析系统的最新研究进展,生命科学仪器,2004,2:41-44.
    29.岳志红,张正,微流控芯片技术及其在检验医学中的应用,现代仪器,2004,5:14-16
    30. Belder D. , Ludwig M. , Microchip electrophoresis for chiral separations, Electrophoresis, 2003, 24: 2422-2430.
    31. Belder D. , Ludwig M. , Surface modification in microchip electrophoresis, Electrophoresis, 2003, 24: 3595-3606.
    32. van der Linden H. J. , Herber S. , Olthuis W. , Bergveld P. , Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis, Analyst, 2003, 128: 325-331.
    33. Huikko K. , Kostiainen R. , Kotiaho T, Introduction to micro-analytical systems: bioanalytical and pharmaceutical applications, Eur. J. Pharmacol. Sci. , 2003, 20: 149-171.
    34. Sato K. , Hibara A. , Tokeshi M. , Hisamoto H. , Kitamori T. , Microchip-based chemical and biochemical analysis systems, Adv. DrugDrliver. Rev. , 2003, 55: 379-391.
    35. Sato K. , Hibara A, Tokeshi M, Hisamoto H. , Kitamori T. , Integration of Chemical and Biochemical Analysis Systems into a Glass Microchip, Anal. Sci. , 2003, 19: 15-22.
    36. Sheehan A. D. , Quinn J. , Daly S. , Dillon P. , O'Kennedy R. , The Development of Novel Miniaturized Immuno-sensing Devices: A Review of a Small Technology with a Large Future, Anal. Lett. , 2003, 36: 511-537.
    37.许春丽,李保新,章竹君,微全分析系统检测方法的研究进展,分析化学,2003,31:1520-1526.
    38.秦建华,冯应升,林炳承,微流控芯片实验室在基因分析研究中的应用,色谱,2003,21:464-468.
    39.刘长春,崔大付,电化学传感器及其在芯片实验室中的应用,传感器技术,2003,22:1-6.
    40. Becker H. , Locascio L. E. , Polymer microfluidic devices, Talanta, 2002, 56: 267-287.
    41. Chovan T. , Guttman A. , Microfabricated devices in biotechnology and biochemical processing, Trends in Biotech. , 2002, 20: 116-122.
    42. Vandaveer W. R. , Pasas S. A. , Martin R. S. , Lunte S. M. , Recent developments in amperometrie detection for microchip capillary electrophoresis, Electrophoresis, 2002, 23: 3667-3677.
    43.林炳承,芯片实验室技术及其应用,药学服务与研究,2002,2:205-210.
    44.殷学锋,方群,凌云扬,微流控分析芯片的加工技术,现代科学仪器,2001,4:10-14.
    45.方肇伦,方群,微流控芯片发展与展望,现代科学仪器,2001,4:3-6.
    46.程卯生,李维华,田泉,芯片实验室在有机合成中的应用,现代科学仪器,2001,4:25-28.
    47. Krishnan M. , Namasivayam V. , Lin R. S. , Pal R. , Burns M. A. , Microfabricated reaction and separation systems, Curr. Opin. Biotech. , 2001, 12: 92-98.
    48. Dolnik V. , Liu S. R. , Jovanovich S. , Capillary electrophoresis on microchip, Electrophoresis, 2000, 21: 41-54.
    49. Bruin G. J. M. , Recent developments in electrokinetically driven analysis on microfabricated devices, Electrophoresis, 2000, 21: 3931-3951.
    50. Hogan J. , A little goes a long way, Nature, 2006, 422: 351-352.
    51. Craighead H. , Future lab-on-a-chip technologies for intrerrogating individual molecules, Nature, 2006, 422: 387-393.
    52. Daw R. , Finkelstein J. , Lab on a chip, Nature, 2006, 422: 367.
    53. Whitesides G. M. , The origins and the future of microfluidics, Nature, 2006, 422: 368-373.
    54. El-Ali J. , Sorger P. K. , Jensen K. F. , Cells on chips, Nature, 2006, 422: 403-411.
    55. Yager P. , Edwards T. , Fu E. , Helton K. , Nelson K. , Tam M. R. , Weigl B. H. , Microfluidic diagnostic technologies for global public health, Nature, 2006, 422: 412-418.
    56. Janasek D. , Franzke J. , Manz A. , Scaling and the design of miniaturized chemical-analysis system, Nature, 2006, 422: 374-380.
    57. Psaltis D., Quake S. R., Yang C., Developing optofluidic technology through the fusion of microfluidics and optics, Nature, 2006, 442: 381-386.
    58. deMello A. J., Control and detection of chemical reactions in microfluidic systems, Nature, 2006, 442: 394-402.
    59. Thorsen T., Maerki S. J., Quake S. R., Microfluidic large-scale integration, Science,2002, 298: 580-584.
    60. Stone H. A., Stroock A. D., Ajdari A., Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech., 2004, 36:381-411.
    61. Squires T. M., Quake S. R., Microfluidics: fluid physics at the nanoliter scale, Rev. Mod Phys., 2005, 77: 977-1026.
    62. Beebe D. J., Mensing G. A., Walker G. M., Physics and applications of microfluidics in biology, Annu. Rev. Biomed. Eng., 2002, 4: 261-286.
    63. Santiago J. G., Electroosmotic flows in microehannels with finite inertial and pressure forces, Anal. Chem., 2001, 73: 2353-2365.
    64. Ganan-Calvo A. M, Gordillo J. M., Perfectly monodisperse microbubbling by capillary flow focusing, Phys. Rev. Lett., 2001, 87: 274501.
    65. Thorsen T., Roberts R. W., Arnold F. H, Quake S. R., Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett., 2001, 86:4163-4166.
    66. Link D. R., Anna S. L., Weitz D. A., Stone H. A., Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett., 2004, 92: 054503.
    67. Ottino J. M., Mixing, chaotic advection, and turbulence, Ann. Rev. Fluid Mech, 1990, 22: 207-254.
    68. Mengeaud V., Josserand J., Girault H. H., Mixing processes in a zigzag microchannel: finite element simulation and optical study, Anal. Chem., 2002, 74: 4279-4286.
    69. Chen H., Meiners J. C., Topologic mixing on a microfluidic chip, Appl. Phys. Lett., 2004, 84: 2193-2195.
    70. Stroock A. D., Dertinger S. K. W., Ajdari A., Mezic I., Stone H. A., Whitesides G. M., Chaotic mixer for microchannels, Science, 2002, 295: 647-651.
    71. Bums M. A., Johnson B. N., Brahmasandra S. N., Handique K., Webster J. R., Krishnan M., Sammarco T. S., Man P. M., Jones D., Heldsinger D., Mastrangelo C. H., Burke D. T., Science, 1998, 282: 484-487.
    72. Taniguchi T., Torii T., Higuchi T., Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media, Lab Chip, 2002, 2: 19-23.
    73. Bringer M. R, Gerdts C. J., Song H., Tice J. D., Ismagilov R. F., Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets, Phil. Trans. R. Soc. Lond., 2004, A 362:1087-1104.
    74. Song H., Tice J. D., Ismagilov R. F., A microfluidic system for controlling reaction networks in time, Angew. Chem. Int. Edn., 2003, 42: 768-772.
    75. Song H., Ismagilov R. F., Millisecond kinetics on a microfluidic chip using nanoliters of reagents, J. Am. Chem. Sot., 2003, 125: 14613-14619.
    76. Lin X. Z., Terepka A. D., Yang H., Synthesis of silver nanoparticles in a continuous-flow tubular microreactor, Nano Lett., 2004, 4: 2227-2232.
    77. Wagner J., Kirner T., Mayer G., Albert J. A., KOhler J. M., Generation of metal nanoparticles in a microchannel reactor, Chem. Eng. J., 2004, 101:251-260.
    78. Wang H., Nakamura H., Uehara M., Miyazaki M, Maeda H., Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor, Chem. Commun., 2002: 1462-1463.
    79. Muller D. J., Amrein M., Engle A., Adsorption of biological molecules to a solid support for scanning probe microscopy, J. Struct. Biol., 1997, 119: 172-188.
    80. Stipe B. C., A variable temperature scanning tunneling microscope capable of single molecule vibrational spectroscopy, Rev. Sci. Inst., 1999, 70:133-136.
    81. Hansma H., Hoch J., Biomolecular imaging with the atomic force microscope, Annu.Rev. Biophys. Biomol. Struct., 1994, 23:115-134.
    82. Fisher T. E., Stretching single molecules into novel confirmations using the atomic force microscope, Nature Struct. Biol., 2000, 7: 719-724.
    83. Ashkin A., Dziedzic J. M., Yamane T., Optical trapping and manipulation of single cells using infrared laser beams, Nature, 1987, 330: 769-771.
    84. Grier D. G., A revolution in optical manipulation, Nature, 2003, 424: 810-816.
    85. Stavis S. M., Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel, Lab Chip, 2005, 5: 337-343.
    86. Stavis S. M., Detection and identification of nucleic acid engineered fluorescent labels in submicrometre fluidic channels, Nanotechnology, 2005, 16:S314-S323.
    87. Stavis S. M., Single-molecule mobility and spectral measurements in submicrometer fluidic channels, J. Appl. Phys., 2005, 98: 044903-1-044903-5.
    88. Dittrich P. S., Manz A., Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in μTAS? Anal. Bioanal. Chem., 2005, 382: 1771-1782.
    89. Jiang G., Attiya S., Ocvirk G., Lee W. E., Harrison D. J., Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis, Biosens. Bioelectron., 2000, 14: 861-869.
    90. Effenhauser C. S., Bruin G. J. M., Paulus A., Ehrat M., Integrated Capillary Electrophoresis on Flexible Silicone Microdevices: Analysis of DNA Restriction Fragments and Detection of Single DNA Molecules on Microchips, Anal. Chem., 1997, 69:3451-3457.
    91. Hadd A.G., Raymond D. E., Halliweil J. W., Jacobson S. C., Ramsey J. M, Microchip Device for Performing Enzyme Assays, Anal.Chem., 1997, 69:3407-3412.
    92. Namasivayam V., Lin R. S., Johnson B., Brahmasandra S., Razzacki Z., Burke D. T., Burns M. A., Advances in onchip photodetection for applications in miniaturized genetic analysis systems, J. Micromech. Microeng, 2004, 14: 81-90.
    93. Liu Y., Foote R. S., Jacobson S. C., Ramsey R. S., Ramsey J. M., Electrophoretic Separation of Proteins on a Microchip with Noncovalent, Postcolumn Labeling, Anal.Chem., 2000, 72: 4608-4613.
    94. Lu Q., Callahan J. H., Collins G. E., The selective detection of uranium(Ⅵ) on a microchip using a derivatized 4-sulfonic calix[6]arene, Chem. Commun., 2000, 9: 1913-1914.
    95. GOsch M., Blom H., Holm J., Heino T., Rigler R., Hydrodynamic Flow Profiling in Microchannel Structures by Single Molecule Fluorescence Correlation Spectroscopy, Anal. Chem., 2000, 72: 3260-3265.
    96. Wallenborg S. R., Bailey C. G., Separation and Detection of Explosives on a Microchip Using Micellar Electrokinetic Chromatography and Indirect Laser-Induced Fluorescence, Anal. Chem., 2000, 72: 1872-1878.
    97. Webster J. R., Burns M. A., Burke D. T., Mastrangelo C. H., Monolithic Capillary Electrophoresis Device with Integrated Fluorescence Detector, Anal. Chem., 2001, 73: 1622-1626.
    98. Zugel S. A., Buyrke B. J., Regnier F. E., Lytle F. E., Electrophoretically Mediated Microanalysis of Leucine Aminopeptidase Using Two-Photon Excited Fluorescence Detection on a Microchip, Anal. Chem., 2000, 72:5731-5735.
    99. Huang Z., Munro N., Humber A. F., Landers J. P., Acousto-Optical Deflection-Based Laser Beam Scanning for Fluorescence Detection on Multichannel Electrophoretic Microchips, Anal. Chem., 1999, 71: 5309-5314.
    100. Chabinyc M. L., Chiu. D. T., McDonald C. J., Stroock A. D., Christian J. F., Karger A. M, Whitesides G. M., An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications, Anal. Chem., 2001, 73: 4491-4498.
    101. Fister J. C., Jacobson S. C., Davis L. M., Ramsey J. M, Counting Single Chromophore Molecules for Ultrasensitive Analysis and Separations on Microchip Devices, Anal. Chem., 1998, 70:431-437.
    102. Lindner D., Profile: The μChemLabTM project: micro total analysis system R&D at Sandia National Laboratories, Lab Chip, 2001, 1: 15N-19N.
    103. Kamei T. , Paegel B. M. , Scherer J. R. , Skelley A. M. , Street R. A. , Mathies R. A. , Integrated hydrogenated amorphous Si photodiode detection for microfluidic bioanalytical devices, Anal. Chem. , 2003, 75: 5300-5305.
    104. Qin J. H. , Fung Y. S. , Zhu D. R. , Lin B. C. , Native fluorescence detection of flavin derivatives by microchip capillary electrophoresis with laser-induced fluorescence intensified charge-coupled device detection. J. Chromatogr. A, 2004, 1027: 223-229.
    105.周小棉,戴忠鹏,林炳承,通用型激光诱导荧光微流控芯片分析仪的研制与性能考察.高等学校化学学报,2004,25:436-440.
    106.周小棉,戴忠鹏,林炳承等,一种微流控芯片激光诱导荧光分析仪,03213213.1,2003.
    107.周小棉,戴忠鹏,林炳承等,一种微流控芯片激光诱导荧光分析仪,03133330.3,2003.
    108.周小棉,罗勇,戴忠鹏等,一种激光诱导荧光芯片分析仪,ZL02340741.7,2003.
    109.龙志成,林炳承,周小棉等,一种集成微流控芯片控制与分析平台,200410020885.8,2004.
    110.徐章润,王世立,樊晓峰,王福仁,方肇伦,小型可连续进样微流控芯片分析仪的研制,分析化学,2003,31:1527-1530.
    111. Wang S. L. , Huang X. J. , Fang Z. L. , Dasgupta P. K. , A Miniaturized Liquid Core Waveguide-Capillary Electrophoresis System with Flow Injection Sample Introduction and Fluorometric Detection Using Light-Emitting Diodes, Anal. Chem. , 2001, 73: 4545-4549.
    112.凌云扬,殷学锋,方肇伦,微流控芯片NDA在线衍生测定单细胞中谷胱甘肽,高等学校化学学报,2005,26:247-249.
    113.陈慧清,王立世.王洪,张水峰,微流控芯片激光诱导荧光光纤检测器的研制,华南理工大学学报(自然科学版),2005,43:109-112.
    114.刘科辉,梁宁,姚波,罗国安,王义明,微流控芯片-激光诱导荧光检测器的研制及核酸片段分离检测中应用,分析化学,2005,33:1350-1353.
    115.姚波,冯雪,罗国安,王义明,微流控芯片系统流式细胞术及单细胞荧光检测,高等学校化学学报,2005,26:43-45.
    116. Shi Y. N. , Simpson P. C. , Scherer J. R. , Wexler D. , Skibola C. , Smith M. T. , Mathies R. A. , Radial Capillary Array Electrophoresis Microplate and Scanner for High-Performance Nucleic Acid Analysis, Anal. Chem. , 1999, 71: 5354-5361.
    117. Qi S. Z. , Liu X. Z. , Ford S. , Barrows J. , Thomas G. , Kelly K. , McCandless A. , Lian K. , Goetten .I. , Soper S. A. , Microfluidic devices fabricated in poly(methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection Lab Chip, 2002, 2: 88-95.
    118. Tung Y. C. , Zhang M. , Lin C. T. , Kurabayashi K. , Skerios S. J. , PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes, Sens. Actuators B, 2004, 98: 356-367.
    119. Schulze P. , Ludwig M. , Kohler F. , Belder D. , Deep UV Laser-Induced Fluorescence Detection of Unlabeled Drugs and Proteins in Microchip Electrophoresis, Anal. Chem. , 2005, 77: 1325-1329.
    120. Hellmich W. , Pelargus C. , Leffhalm K. , Ros A. , Anselmetti D. , Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology, Electrophoresis, 2005, 26: 3689-3696.
    121. Foquet M. , Korlach J. , Zipfel W. R. , Webb W. W. , Craighead H. G. , Focal Volume Confinement by Submicrometer-Sized Fluidic Channels, Anal. Chem. , 2004, 76: 1618-1626.
    122. Emrich C. A. , Tian H. , Medintz I. J. , Mathies R. A. , Microfabricated 384-Lane Capillary Array Electrophoresis Bioanalyzer for Ultrahigh-Throughput Genetic Analysis, Anal. Chem. , 2002, 74: 5076-5083.
    1.微流动-基础与模拟(译),北京:化学工业出版社,2006,03.
    2. Howe T. , Muller R. , Gabriel K. , Trimmer W. , Silicon micromechanics: Sensors and actuators on a chip, IEEE Spectrum, 1990: 29-35.
    3. Bryzek J. , Peterson K. , McCulley W. , Micromachines on the march, IEEE Spectrum, 1994: 20-31.
    4. Trimmer W. , Micromechanics and MEMS, Classic and Seminal Papers to 1990, New York: Wiley, 1997.
    5. Gad-El-Hak, M. , The fluid mechanics of microdevices, J. Fluids Engineering, 1999, 12: 5-33.
    6. Ho C. , Tai Y. , Micro-electro-mechanical systems(MEMS) and fluid flows, Ann. Rev. Fluid Mech, 1998, 30: 579-612.
    7. Evans J. , Liepmann D. , Pisano A. , Planar laminar mixer, In MEMS-97, The Tenth Annual International Workshop on MEMS, 1997: 26-30.
    8. Green N. , Morgan H. , Separation of submicrometer particles using a combination of dielectrophoretic and electrohydrodynamic forces, J. Phys. D: Appl. Phys. , 1998, 31: L25-30.
    9. Allen M. , Tildesley D. , Computer Simulation of Liquids, Oxford: Clarendon Press, 1994.
    10. Koplik J. , Banavar J. , Willemsen J. , Molecular dynamics of fluid flow at solid syrfaces. Physics of Fluids A, 1989, 1: 781-794.
    11.王立文,高殿荣,微流动系统的研究现状与趋势,液压与气动,2005,10:1-4
    12. Schaaf S. , Chambre P. , Flow of Rarefied Gases, Princeton: Princeton University Press, 1961.
    13. Sone Y. , Theoretical and numerical analyses of the Boltzmann equation Theory and analysis of rarefied gas flows, In Lecture Notes, Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, 1998.
    14.陶然,权晓波,徐建中,微尺度流动研究中的几个问题,工程热物理学报,2001,22(5):575-577.
    15. da Silva M. , Greiner K. , Liu C. , Kenny T. , Gilbert J. , Squeeze film damping effects in a micromachined tunneling accelerometer, In proceedings of 1999 ASME IMECE Meeting MEMS-Vol 1, 1999: 87-92, Nashville, TN.
    16. Heslot F. , Fraysse N. , Cazabat A. , Molecular layering in the spreading of wetting liquid-drops. Nature, 1989, 338: 640-642.
    17. Jin W. , Koplik J. , Banavar J. R. , Wetting hysteresis at the molecular scale, Phys. Rev. Lett. , 1997, 78: 1520-1523.
    18. Bird G. , Molecular Gas Dynamics and the Direct Simulation of Gas Flow, New York: Oxford University Press, 1994.
    19. Loyalka S. , Hamoodi S. , Poiseuille flow of a rarefied gas in a cylindrical tube: Solution of linearized Boltzmann equation. Physics of Fluids A, 1990, 2: 2061-2065.
    20.钱学森著,徐华舫译,气体动力学诸方程,北京:科学出版社,1966.
    21. Batchelor G. , An Introduction to Fluid Dynamics, New York: Cambridge University Press, 1998.
    22.冯晶,甘才俊,吴子牛,有限雷诺数情况下微槽道可压缩流动滑移流模型稳定性的数值模拟,计算物理,2003,20:537-541.
    23. Kamiadakis G. E. , Beskok A. Micro Flows: Fundamentals and Simulation. New York: Springer-Verlag, 2002: 40-62.
    24. Harley J. C. , Huang Y. , Bau H. H. , Zemel J. , Gas flow in micro-channels, J. Fluid Mech. , 1995, 284: 257-274.
    25. Pong K. C. , Ho C. M. , Liu J. , Tai Y. , Non-linear pressure distribution in uniform microchannels. In: Application of Microfabrieation to Fluid Mechanics. ASME Winter Annual Meeting, Chicago. NewYork: ASME, 1994, 51-56.
    26. Beskok A. , Karniadakis G. E. , Simulation of heat and momentum transfer in complex micro-geometries, J. Thermophys. Heat Transfer, 1994, 8: 647-655.
    27. Beskok A. , Karniadakis G. E. , Trimmer W. , Rarefaction and com-pressibility effects in gas microflows, J. Fluids Eng. , 1996, 118: 448-456.
    28. Arkilic E. B. , Schmidt M. A. , Breuer K. S. , Gaseous slip flow in long microchannels, J. MEMS, 1997, 6: 167-178.
    29. Colin S. , Lalonde P. , Caen R. , Validation of a second-order slip flow model in rectangular microchannels, Heat Transfer Eng. , 2004, 25: 23-30.
    30. Barber R. W. , Emerson D. R. , Challenges in modelling gas-phase flow in microchannels: From slip to transition. In: Proceeding on CDROM of 3rd International Conference on Microchannels and Minichannels (ICMM2005), Toronto. New York: ASME, 2005, 75074: 1-10.
    31. Hadjiconstantinou N. G. , Validation of a second-order slip model for transition-regime gaseous flow. In: Proceedings of 2nd International Conference on Microehannels and Minichannels (ICMM2004), Rochester. New York: ASME, 2004, 267-271.
    32.张根炬,刘明侯,张先锋,叶桃红,陈义良,王璐,微通道流的滑移连续介质模型及其适用性,科学通报,2006,51:1606-1612.
    33.冯焱颖,周兆英,叶雄英,汤扬华,微流体驱动与控制技术研究进展,力学进展,2002,32,1-16.
    34. Smits J. G. , Piezoelectric micropump with three valves working peristaltically, Sens. Actuators A, 1990, 21: 203-206.
    35. van Lintel H. T. G. , van de Pol F. C. M. , Bouwstra S. , A piezoelectric micropump based on micromaching of silicon, Sens. Actuators, 1988, 15: 153-167.
    36. Esashi M. , Shoji S. , Nakano A. , Normally close microvalve and micropump fabricated on a silicon water, Sens. Actuators, 1989, 20: 163-167.
    37. van de PoL F. C. M. , van Lintel H. T. G. , Elwenspoek M. , Fluitman J. H. J. , A thermo-pneumatic micropump based on micro-engineeing techniques, Sens. Actuators A, 1990, 21: 198-202.
    38. Yang Y. , Zhou Z. Y. , Ye X. Y. , Jiang X. N. , Thermally actuated bimetallic micropump, In: Proceeding of Symposium on Micro-Mechanical System, Winter Annual Meeting of the ASME, Atlanta Hilton & Towers, 1996, 17-22.
    39. Zou J. , Ye X. Y. , Zhou Z. Y. , Jian X. N. , A novel thermally-actuated silicon micropump. In: Proceedings of 8th International Symposium on Micromechatronics and Human Science, Nagoya, Japan, 1997, 231-234.
    40. Wang X. H. , Zhou Z. Y. , Ye X. Y. , Li Y. , Zhang W. D. , PZT-Driven micropump, In: Proceedings of the International Symposium on Micromechatronics and Human Science, MHS, Nagoya, Japan, 1998, 269-272.
    41. Stemme E. , Stemme G. , A valveless diffuser/nozzle-based fluid pump, Sens. Actuators A, 1993, 39: 159-167.
    42. Olsson A. , Stemme G. , Stemme E. , A valve-less planar fluid pump with two pump chamber, Sens. Actuators A, 1995, 47: 549-556.
    43. Zengerle R. , Ulrich J. , Kluge S. , Richter A. , A bidirectional silicon micropump, Sens. Actuators A, 1995, 50: 81-86.
    44. Zengerle R. , Sandmaier H. , Microfluidics. In: Proceedings of the Seventh International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1996, 1320.
    45. Stehr M. , Messner S. , Sandmaier H. , Zengerle R. , San Diego, A new micropump with bidirectional fluid transport and self-blocking effect. In: Proc MEMS'96, USA. 1996, 485-490.
    46. Harrison D. J. , Fluri K. , Seiler K. , Fan Z. H. , Effenhauser C. S. , Manz A. , Micromachining a miniatured capillary electrophoresis-based chemical analysis system on a chip. Science, 1993, 261: 895-897.
    47. Jacobson S. C. , HergenrsOder R. , Koutny L. B. , Warmack R J. , Ramsey J. M, Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices. Anal. Chem. , 1994, 66: 1107-1113.
    48. Harrison D. J. , Fan Z. , Fluri K. , Seiler K. , Integrated electrophoresis systems for biochemical analysis. In: Technical Digest of the 1994 Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, 1994, 21-24.
    49. Schasfoort R B. M, Schlautmann S. , Hendrikse J. , van den Berg A. , Field-effect flow control for microfabricated fluidic networks, Science, 1999, 286: 942-945.
    50. Rice C. L. , Whitehead R. , Electrokinetic flow in a narrow cylindrical capillary, J. Phys. Chem. , 1965, 69: 4017-4024.
    51. Tavares M. F. M. , McGuffin V. L. , Theoretical model of electroosmotic flow for capillary zone electrophoresis, Anal. Chem. , 1995, 67: 3687-3696.
    52. Andrews M. , Effenhuaser C. S. , Norbert B. , Harrison D. Jed, Kurt S. , Karl F. , Electtuosmotic pumping and elec-trophoretic separations for miniaturized chemical analysis systems, J. Micromech Microeng, 1994, 1: 257-265.
    53. Lazar M. L. , Karger B. L. , Multiple Open-Channel Electroosmotic Pumping System for Microfluidic Sample Handling, Anal. Chem. , 2002, 74: 6259-6268.
    54. Liu M. L. , Pu Q. S. , Lu J. J. , Electric field-decoupled electroosmotic pump for microfluidic devices, J. Chromatogr. A. , 2003, 1013: 57-64.
    55. Takamura Y. , Onoda H. , Inokuchi H. , Adachi S. , Oki A. , Horiike Y. , Low-voltage electroosmosis pump for stand-alone microfluidics devices, Electrophoresis, 2003, 24: 185-192.
    56. Chen L. X. , Ma J. P. , Tan F. , Guan Y. , Generating high-pressure sub-microliter flow rate in packed microchannel by electroosmotic force: potential application in microfluidic systems, Sens. Actuators B, 2003, 88: 260-265.
    57.谭峰,杨丙成,关亚风,小型低压电渗输液泵的研究,分析化学,2006,34:280-282.
    58.陈令新,关亚风,单级高压微流量电渗泵的研究,分析化学,2003,31:886-889.
    59. Hu J. S. , Chao C. Y. H. , A study of the performance of microfabricated electroosmotic pump, Sensors & Actuators A, in press.
    60. Prakash P. , Grissom M. D. , Rahnb C. D. , Zydney A. L. , Development of an electroosmotic pump for high performance actuation, J. Membr. Sci. , 2006, 286: 153-160.
    61. Chen L. X, Wang H. L. , Ma J. P. , Wang C. X. , Guan Y. F. , Fabrication and characterization of a multi-stage electroosmotic pump for liquid delivery, Sens. Actuators B, 2005, 104: 117-123.
    62. Tripp J. A. , Svec F. , Frechet J. M. J. , Zeng S. L. , Mikkelsen J. C. , Santiago J. G. , High-pressure electroosmotic pumps based on porous polymer monoliths, Sens. Actuators B, 2004, 99: 66-73.
    63. Yao S. H. , Hertzog D. E. , Zeng S. L. , Mikkelsen Jr. J. C. , Santiago J. G. , Porous glass electroosmotic pumps: design and experiments, J. Colloid Interface Sci. , 2003, 268: 143-153.
    64. Jiang L. , Jiang X. N. , Lu Y. , et al, Miniature highvoltage power supply for microcjip electrophoresis, Unpublished results.
    65. Bart S. F. , Tavrow L. S. , Mehregany M. , Lang J. H. , Microfabricated electrohydrodynamic pumps. Sens. Actuators A, 1990, 21: 193-197.
    66. Richter A. , Plettner A. , Hofmann K. A. , Sandmaier H. , A micromachined electrohydrodynamic (EHD) pump, Sens. Actuators A, 1991, 29: 159-168.
    67. Zheng H. J. , Dasgupta P. K. , Concentration and optical measurement of aqueous analytes in an organic solvent segmented capillary under high electric field, Anal. Chem. , 1994, 66: 3997-4004.
    68. Richter A. , Sandmaier H. , An electro-hydrodynamic micropump. In: Proc MEMS'90. Napa Valley, USA, 1990: 99-104.
    69. Yang L. J. , Wang J. M. , Huang Y. L. , The micro ion drag pump using indium-tin-oxide (ITO) electrodes to resist aging, Sens. Actuators A, 2004, 111: 118-122.
    70.方肇伦,微流控分析芯片的制作及应用,北京:化学工业出版社,2005,06.
    71.周明宝,林大键,郭履容,郭永康,微结构表面形貌的测量,光学精密工程,1999,7:7-13.
    72. van Helleputte H. R. J. R. , Haddeman T. B. J. , Verheijen M. J. , Baalbergen J. , Comparative study of 3D measurement techniques (SPM, SEM, TEM) for submicron structures, Microelectron Eng. , 1995, 27: 547-550.
    73.杜晓光,关艳霞,王福仁,方肇伦,聚甲基丙烯酸甲酯微流控分析芯片的简易热压制作法,高等学校化学学报,2003,24:1962-1966.
    74. Chetwynd D. G. , Liu X, Smith S. T. , A controlled-force stylus displacement probe, Prec. Eng. , 1996, 19: 105-111.
    75. Wu J. J. , Spectral analysis for the effect of stylus tip curvature on measuring rough profiles, Wear, 1999, 230: 194-200.
    76. Blunt L. , Jiang X. Q. , Three dimensional measurement of the surface topography of ceramic and metallic orthopaedic joint prostheses, J. Mater Sci: Mater Med. , 2000, 11: 235-246.
    77. Dai J. , Guan Y. X. , Wang S. L. , Wu Z. Y. , Fang Z. L. , Feature characterization of mierofabricated mierofluidic chips by PDMS replication and CCD imaging, Anal. Bioanal. Chem. , 2005, 381: 839-843.
    78.王晓东,罗怡,刘冲,马骊群,温敏,王立鼎,塑料(PMMA)微流控芯片微通道热压成形工艺参数的确定,中国机械工程,2005,16:2061-2063.
    79.于建群,刘军山,王立鼎,郭丽莎,塑料电泳芯片热键合的试验研究,机械工程学报,2005.41:185-188.
    80.于建群,刘军山,王立鼎,郭丽莎,塑料电泳芯片微结构模压的试验研究,机械工程学报,2004,40:93-97.
    81. Wu S. , Lin Q. , Yuen Y. , Tai Y. , MEMS flow sensors for nano-fluidie applications, Sens. Actuators A, 2001, 89: 152-158.
    82. Pittman J. L. , Henry C. S. , Gilman S. D. , Experimental Studies of Electroosmotic Flow Dynamics in Microfabricated Devices during Current Monitoring Experiments, Anal. Chem. , 2003, 75: 361-370.
    83. Paul P. H. , Garguilo M. G. , Rakestraw D. J. , Imaging of Pressure-and Electrokinetically Driven Flows through Open Capillaries, Anal. Chem. , 1998, 70: 2459-2467.
    84. Ross D. , Johnson T. J. , Locascio L. E. , Imaging of Electroosmotic Flow in Plastic Microchannels, Anal. Chem. , 2001, 73: 2509-2515.
    85. StClaire J. C. , Hayes M. A. , Heat Index Flow Monitoring in Capillaries with Interferometric Backscatter Detection, Anal. Chem. , 2000, 72: 4726-4730.
    86.由长福,祁海鹰,徐旭常,显微PIV系统与实现,流体力学实验与测量,2003,17:84-88
    87. Gosch M. , Blom H. , Holm J. , Heino T. , Rigler R. , Hydrodynamic Flow Profiling in Microchannel Structures by Single Molecule Fluorescence Correlation Spectroscopy, Anal. Chem. , 2000, 72: 3260-3265.
    88. Edel J. B. , Hill E. K. , de Mello A. J. , Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection, Analyst, 2001, 126: 1953-1957.
    1. Haswell S. J. , Development and Operating Characteristics of Micro Flow Injection Analysis Systems Based on Electroosmotic Flow, Analyst, 1997, 122: 1R-10R.
    2. Ishii D. , Development of ultra-micro flow-injection analysis, Bunseki, 2000, 11: 690-693.
    3. Teshima N. , Micro-flow injection, Bunseki, 2001, 1: 30-31.
    4. van Akker E. B. , Bos M. , van der Linden W. E. , Convection and diffusion in a micro-flow injection system, Anal. Chim Acta, 1998, 373: 227-239.
    5. Greenway G. M. , Nelstrop L. J. , Port S. N. , Tris(2, 2-bipyridyl)ruthenium (Ⅱ) chemiluminescence in a microflow injection system for codeine determination, Anal. Chim. Acta, 2000, 405: 43-50.
    6. Petsul P. H. , Greenway G. M, Haswell S. J. , The development of an on-chip micro-flow injection analysis of nitrate with a cadmium redactor, Anal. Chim. Acta, 2001, 428: 155-161.
    7. del Mar Baeza M, Ibanez-Garcia N. , Baucells J. , Bartroli J. , Alonso J. , Microflow injection system based on a multicommutation technique for nitrite determination in wastewaters, Analyst, 2006, 131: 1109-1115.
    8. Daykin R. N. C. , Haswell S. J. , Development of a micro flow injection manifold for the determination of orthophosphate, Anal. Chim. Acta, 1995, 313: 155-159.
    9. Jia Q. , Matoba T. , Nishihima S. , Yoshizuka K. , Micro Flow Injection Analysis Combined with a Separation Technique for the Urinary Glucose Assay, Anal. Sci. , 2006, 22: 99-103.
    10. Yao T. , Nanjyo Y. , Nishino H. , Micro-flow in vivo Analysis of L-Glutamate with an On-line Enzyme Amplifier Based on Substrate Recycling, Anal. Sci. , 2001, 17: 703-708.
    11. Zhang W. , Danielson N. D. , Characterization of a micro spiral flow cell for chemiluminescence detection, Microchem. J. , 2003, 75: 255-264.
    12. Nozaki O. , Kawamoto H. , Reactivation of inactivated horseradish peroxidase with ethyleneurea and allantoin for determination of hydrogen peroxide by micro-flow injection horseradishperoxidase-catalyzed chemiluminescence, Anal. Chim. Acta, 2003, 495: 233-238.
    13. Nozaki O. , Kawamoto H. , Determination of hydrogen peroxide by microflow-injection chemiluminescence using a coupled flow cell reactor chemiluminometer, Luminescence, 2000, 15: 137-142.
    14. Nozaki O. , Kawamoto H. , Moriyama H. , Total free catecholamines assay by identification of its two functional groups and micro-flow-injection chemiluminescence, Luminescence, 1999, 14: 369-374.
    15. Wei Y. , Oshima M. , Simon J. , Motomizu S. , The application of the chromatomembrane cell for the absorptive sampling of nitrogen dioxide followed by continuous determination of nitrite using a micro-flow injection system, Talanta, 2002, 57: 355-364.
    16. Ma L. , Oshima M, Motomizu S. , Microscale absorption procedure for simple and rapid gas-liquid extraction and its application to the determination of nitrogen dioxide in the atmosphere coupled with microflow-injection analysis. Chem. Lett. , 2001, 4: 318-319.
    17. Ma L. , Oshima M. , Takayanagi T. , Motomizu S. , Determination of nitrogen dioxide in the atmosphere by microflow-injection absorptiometry with a portable-type flow system after batchwise absorption collection, J. Flow Injec. Anal. , 2000, 17: 188-193.
    18. Ma L. , Tsuboi T. , Hattori T. , Oshima M, Takayanagi T. , Motomizu S. , On-site chemical analysis for nitrogen, phosphorus and sulfate compounds in the environment: sensitive determination by microflow-injection method, J. Flow lnjec. Anal. , 1999, 16: 79-87.
    19. Neufeld T. , Eshkenazi I. , Cohen E. , Rishpon J. , A micro flow injection electrochemical biosensor for organophosphorus pesticides, Biosens. Bioelectron. , 2000, 15: 323-329.
    20. Gorbounov V. , Kuban P. , Dasgupta P. K. , Temkin H. , A Nanoinjector for Microanalysis, Anal. Chem. , 2003, 75: 3919-3923.
    21. Liu W. , Zhang Z. J. , Liu H. S. , Droplet-based Micro-flow Chemiluminescence System for Glucose Determination in vivo by Microdialysis Sampling, Anal. Sci. , 2005, 21: 413-416.
    22. He D. , Zhang Z. , Huang Y. , Chemiluminescence Microflow Injection Analysis System on a Chip for the Determination of Sulfite in Food, Anal. Lett. , 2005, 38: 563-571.
    23. He D. , Zhang Z. , Zhou H. , Huang Y. , Micro flow sensor on a chip for the determination of terbutaline in human serum based on chemiluminescence and a molecularly imprinted polymer, Talanta, 2006, 69: 1215-1220.
    24. Huang Y. , Zhang Z. , He D. , Hu Y. , Chemiluminescence Microflow Injection Analysis System on a Chip for the Determination of Hydrogen Peroxide in Rainwater, Chin. J. Anal. Chem. , 2005, 33: 958-960.
    25. Liu H. , Liu W. , Zhang Z. , Chemiluminescence Micro-flow Injection Chip Integrated with Microvalve and Reagents, Chin. J. Anal. Chem. , 2005, 33: 811-813.
    26.林炳承,秦建华,微流控芯片实验室,北京:科学出版社,2006,07.
    27.方肇伦,微流控分析芯片的制作及应用,北京:化学工业出版社,2005,06.
    28.方肇伦,微流控分析芯片,北京:科学出版社,2003,03.
    29. Becket H. , Locascio L. E. , Polymer microfluidic devices, Talanta, 2002, 56: 267=287.
    30.丛辉,王惠民,王跃国,微流控芯片技术及应用展望,现代检验医学杂志,2005,20:88-89.
    31.邹志青,周天,赵建龙,徐元森,芯片实验室的制备技术,功能材料与器件学报,2003,9:493-498.
    32. Jia Z. J. , Fang Q. , Fang Z. L. , Bonding of Glass Microfluidic Chips at Room Temperatures, Anal. Chem. , 2004, 76: 5597-5602.
    33. Howlader M. M. R. , Suehara S. , Suga T. , Room temperature wafer level glass/glass bonding, Sens. Actuators A, 2006, 127, 31-36.
    34.林金明,李海芳,苏荣国,微流控芯片的研制及其相关仪器的集成化研究,生命科学仪器,2005,3:7-14.
    35. Simpson P. C. , Woolley A. T. , Mathies R. A. , Microfabrication Technology for the Production of Capillary Array Electrophoresis Chips, Biomed. Microdev. , 1998, 1: 7-26.
    36.印燕,吴冲若,玻璃与玻璃的静电键合,微细加工技术,1998,4:47-51.
    37.殷学锋,沈宏,方肇伦,制造玻璃微流控芯片的简易加工技术,分析化学,2003,31:116-119.
    38. Bethold A. , Nicola L. , Sarro P. M. , Vellekoop M. J. , Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers, Sens. Actuators A, 2000, 82: 224-228.
    39.王辉,黄淮青,戴忠鹏,高雁,马波,王利,白吉玲,林炳承,自制玻璃微流控芯片及其基本性能考察,高等学校化学学报,2005,26:2037-2039.
    40. Wang H. Y. , Foote R. S. , Jacobson S. C. , Schneibel J. H. , Ramsey J. M. , Low temperature bonding for microfabrication of chemical analysis devices, Sens. Actuators B, 1997, 45: 199-207.
    41. Sayah A, Solignac D. , Cueni T. , Gijs M. A. M. , Development of novel low temperature bonding technologies for microchip chemical analysis applications, Sens. Actuators A, 2000, 84: 103-108.
    42. Satyanarayana, S. , Kamik, R. N. , Majumdar A. , Stamp-and-stick room-temperature bonding technique for microdevices, J. Microelectromech. Syst. , 2005, 14, 392-399.
    43. Ziaie B. , Baldi A. , Lei M. , Gu Y. , Siegel R. A. , Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery, Adv. Drug Delivery. Rev. , 2004, 56: 145-172.
    44. Maluf N. , An introduction to Microelectromechanicai System Engineering. Artech House, Boston, 2000.
    45. Martynova L. , Locascio L. E. , Gaitan M. , Kramer G. W. , Christensen R. G. , MacCrehan W. A. , Fabrication of plastic microfluidic channel by imprinting methods, Anal. Chem. , 1997, 69: 4783-4789.
    46. Elders J. , Jansen H. V. , Elweenspoek M. , DEEMO: a new technology for the fabrication of microstructures. Proceedings MEMS'95, 1995: 238-243.
    47. Fukuba T. , Yamamoto T. , Naganuma T. , Fujii T. , Microfabricated flow-through device for DNA amplification-towards in situ gene analysis, Chem. Eng. J. , 2004, 101: 151-156.
    48. McCormick R. M. , Nelson R. J. , Alonso-Amigo M. G. , Benvegnu D. J. , Hooper H. H. , Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal. Chem. , 1997, 69: 2626-2630.
    49. Roberts M. A. , Rossier J. S. , Bercier P. , Girault H. , UV laser machined polymer substrates for the development of microdiagnostic system, Anal. Chem. , 1997, 69: 2035-2042.
    50.伊福延,吴坚武,冼鼎昌,微细加工新技术-LIGA技术,微细加工技术,1993,4:1-7
    51. Xia Y. N. , Whitesides G. M. , Soft Lithography, Annu. Rev. Mater. Res. , 1998, 28: 84-153.
    52.刘长春,崔大付,王利,聚二甲基硅氧烷微流体芯片的制作技术,传感器技术,2004,23:77-80.
    53.于建群,王立鼎,刘军山,集成毛细管电泳芯片的结构及其制作技术研究进展,中国机械工程,2003,14:168-175.
    54. Liu B. F. , Ozaki M. , Utsumi Y. , Hattori T. ,. Terabe S. , Chemiluminescence detection for a microchip capillary electrophoresis system fabricated in poly (dimethy-siloxane), Anal. Chem. , 2003, 75: 36-41.
    55. Chabinyc M. L. , Chiu D. T. , McDonald J. C. , Stroock A. D. , Christian J. F. , Karger A. M. , Whitesides G. M. , An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications, Anal. Chem. , 2001, 73: 4491-4498.
    56. Khoo M. , Liu C. , Micro magnetic silicone elastomer membrane actuator, Sens. Actuators A, 2001, 89: 259-266.
    57.苏波,崔大付,耿照新,PDMS微流控电泳芯片的快速制备,功能材料与器件学报,2006,12:285-288.
    58. Duffy D. C. , McDonald J. C. , Schueller O. J. A. , Whitesides G. M. , Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane), Anal. Chem. , 1998, 70: 4974-4984.
    59. McDonald J. C. , Duffy D. C. , Anderson J. R. , Chiu D. T. , Wu H. , Schueller O. J. A. , Whitesides G. M. , Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis, 2000, 21: 27-40.
    60. Ng J. M. K. , Gitlin G. I. , Stroock A. D. , Whitesides G. M. , Components for integrated poly(dimethyisiloxane) microfluidic systems, Electrophoresis, 2002, 23: 3461-3473.
    61. McDonald J. C. , Chabinyc M. L. , Metallo S. J. , Anderson J. R. , Stroock A. D. , Whitesides G. M. , Prototyping of Microfluidic Devices in Poly(dimethylsiioxane) Using Solid-Object Printing, Anal. Chem. , 2002, 74: 1537-1545.
    62. Wu D. P. , Luo Y. , Zhou X. M. , Dai Z. , Lin B. , Multilayer Poly(vinyl alcohol)-adsorbed coating on poly(dimethylsiloxane) microfluidic chips for biopolymer separation, Electrophoresis, 2005, 26: 211-218.
    63.张峰,张宏毅,周勇芳,杨渭,陈彬彬,湿法腐蚀硅制作PDMS微流控芯片,机械工程学报,2005,41:194-198.
    64. Kuo T. , Cannon D. M. Jr. , Chen Y. , Tulock J. J. , Shannon M. A. , Sweedler J. V. , Bohn P. W. , Gateable Nanofluidic Interconnects for Multilayered Microfluidic Separation Systems, Anal. Chem. , 2003, 75: 1861-1867.
    65. Cannon D. M, Kuo T. , Bohn P. W. , Sweedler J. V. , Nanocapillary Array Interconnects for Gated Analyte Injections and Electrophoretic Separations in Multilayer Microfluidic Architectures Anal. Chem. , 2003, 75: 2224-2230.
    66. Chen H. , Acharya D. , Gajraj A. , Meiners J. , Robust Interconnects and Packaging for Microfluidic Elastomeric Chips, Anal. Chem. , 2003, 75: 5287-5291.
    67. Wang B. , Abdulali-Kanji Z. , Dodwell E, Horton J. H. , Oleschuk R. D. , Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for microfluidic device applications, Electrophoresis, 2003, 24: 1442-1450.
    68. Jackman R. J. , Wilbur J. L, Whitesides G. M. , Fabrication of submicrometer features on curved substrates by microcontact printing, Science, 1995, 269: 664-666.
    69. Xia Y. , Whitesides G. M. , Extending Microcontact Printing as a Microlithographic Technique, Langmuir, 1997, 13: 2059-2067.
    70. Kim E, Xia Y. , Whitesides G. M. , Polymer microstructures formed by moulding in capillaries, Nature, 1995, 376: 581-583.
    71. Zhao X. M. , Xia Y. , Whitesides G. M. , Fabrication of three-dimensional micro-structures: Microtransfer molding, Adv. Mater. , 1996, 8: 837-840.
    72. Xia Y. , Kim R. , Zhao X. M. , Rogers J. A. , Prentiss M. , Whitesides G. M. , Complex Optical Surfaces Formed by Replica Molding Against Elastomeric Masters, Science, 1996, 273: 347-349.
    73.杜晓光,关艳霞,王福仁,方肇伦,聚甲基丙烯酸甲酯微流控分析芯片的简易热压制作法,高等学校化学学报,2003,24:1962-1966.
    74.徐溢,唐守渊,有机玻璃微液流化学芯片的研制及性能,分析化学,2003,31:950-953.
    75. Graβ B. , Neyer A. , Johnck M. , Siepe D. , Eisenbeiβ F. , Weber G. , Hergenroder R. , A new PMMA-microchip device for isotachophoresis with integrated conductivity detection. Sens. Actuators B. , 2001, 72: 249-258.
    76.文伟力,左春柽,于建群,张学军,聚合物微流控芯片微通道模压成型分析,吉林大学学报(工学版),2006,36:696-700.
    77.罗怡,王晓东,刘冲,王立鼎,微流控芯片制作及电特性研究,高技术通讯,2005,15:31-34.
    78. Kelly, R. T. , Woolley, A. T. , Thermal Bonding of Polymeric Capillary Electrophoresis Microdevices in Water, Anal. Chem. , 2003, 75: 1941-1945.
    79. Muck A. Jr. , Wang J. , Jacobs M. , Chen G. , Chatrathi M. P. , Jurka V. , Vyborny Z. , Spillman S. D. , Sridharan G. , Schoning M J. , Fabrication of Poly(methyl methacrylate) Microfluidic Chips by Atmospheric Molding, Anal. Chem. , 2004, 76: 2290-2297.
    80.王辉,戴忠诚,王利等,一种注塑型聚甲基丙烯酸甲酯微流控芯片的质量检测方法:200310119500.9,2003.
    81. Roberts M. A. , Rossier J. S. , Bercier P. , Girault H. , UV laser machined polymer substrates for the development of microdiagnostic system, Anal. Chem. , 1997, 69: 2035-2042.
    82.刘莹,姚李,任康,吴坚,刘世炳,罗国安,陈涛,新型快速准分子激光微加工方法制备毛细管电泳芯片的研究,传感技术学报,2006,19:2004-2007.
    83.姚李英,张瑜,陈涛,王升启,左铁钏,激光制备PMMA基PCR微流控芯片的热压键合研究,激光杂志,2006,27:75-77.
    84. Zhang C. X. , Manz A. , Narrow Sample Channel Injectors for Capillary Electrophoresis on Microehips, Anal. Chem. , 2001, 73, 2656-2662.
    85. Chiem N. , Harrison D. J. , Microchip-Based Capillary Electrophoresis for Immunoassays: Analysis of Monoclonal Antibodies and Theophylline, Anal. Chem. , 1997, 69, 373-378.
    86. Chiem N. , Lockyear-Shuitz L. , Andersson P. , Skinner C. , Harrison D. J. , Room temperature bonding of micromachined glass devices for capillary electrophoresis, Sens. Actuators B, 2000, 63, 147-152.
    87. Wang J. , Chatrathi M. P. , Tian B. , Capillary electrophoresis microchips with thick-film amperometric detectors: separation and detection of phenolic compounds, Anal. Chim. Acta, 2000, 416, 9-14.
    88. Culbertson C. T. , Jacobson S. C. , Ramsey J. M. , Dispersion Sources for Compact Geometries on MicrochipsAnal. Chem. , 1998, 70: 3781-3789.
    89. Ocvirk G. , Munroe M. , Tang T. , Oleschuk R. , Westra K. , Harrison D. J. , Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices, Electrophoresis, 2000, 21, 107-115.
    90. Wallenborg S. R. , Bailey C. G. , Separation and Detection of Explosives on a Microchip Using Micellar Electrokinetic Chromatography and Indirect Laser-Induced Fluorescence, Anal. Chem. , 2000, 72, 1872-1878.
    91. Hashimoto M, Tsukagoshi K. , Nakajima R. , Kondo K. , Arai A. , Microchip capillary electrophoresis using on-line chemiluminescence detection, J. Chromatogr. A, 2000, 867, 271-279.
    92. Fu L. M, Yang R. J. , Lee G. B. , Liu H. H. , Electrokinetic Injection Techniques in Microfluidic Chips Anal. Chem. , 2002, 74: 5084-5091.
    93. Fu L. M. , Yang R. J. , Lee G. B. , Electrokinetic Focusing Injection Methods on Microfluidic Devices, Anal. Chem. , 2003, 75: 1905-1910.
    94. Thomas C. D. , Jacobson S. C. , Ramsey J. M. , Strategy for Repetitive Pinched Injections on a Microfluidic Device, Anal. Chem. , 2004, 76: 6053-6057.
    95. Leach A. M. , Wheeler A. R. , Zare R. N. , Flow Injection Analysis in a Microfluidic Format, Anal. Chem. , 2003, 75: 967-972.
    96. Bai X. X. , Lee H. J. , Rossier J. S. , Reymond F. , Schafer H. , Wossner M. , Girault H. H. , Pressure pinched injection of nanolitre volumes in planar micro-analytical devices, Lab Chip, 2002, 2: 45-49.
    97. Wu Z. Y. , Jensen H. , Gamby J. , Bai X. , Girault H. H. , A flexible sample introduction method for polymer microfluidic chips using a push/pull pressure pump, Lab Chip, 2004, 4: 512-515.
    98. Jacobson S. C. , Koutny L. B. , Hergenroder R. , Moore A. W. , Ramsey J. M, Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor, Anal. Chem. , 1994, 66: 3472-3476.
    99. Jacobson S. C. , Hergenruder R. , Moore A. W. , Ramsey J. M, Precolumn Reactions with Electrophoretic Analysis Integrated on a Microchip, Anal. Chem. , 1994, 66: 4127-4132.
    100. Jacobson S. C. , Ermakov S. V. , Ramsey J. M. , Minimizing the Number of Voltage Sources and Fluid Reservoirs for Electrokinetic Valving in Microfluidic Devices, Anal. Chem. , 1999, 71, 3273-3276.
    101. Slentz B. E. , Penner N. A. , Regnier F. , Sampling BIAS at Channel Junctions in Gated Flow Injection on Chips, Anal. Chem. , 2002, 74: 4835-4840.
    102. Lin Y. H. , Lee G. B. , Li C. W. , Huang G. , Chen S. , Flow-through sampling for electrophoresis-based microfluidic chips using hydrodynamic pumping, J. chromatogr. A, 2001, 937: 115-125.
    103. Solignac D. , Gijs A. M. , Pressure Pulse Injection: a Powerful Alternative to Electrokinetic Sample Loading in Electrophoresis Microchips, Anal. Chem. , 2003, 75: 1652-1657.
    104. Backofen U. , Matysik F. M. , Lunte C. E. , Flow-Through Sampling for Electrophoresis-Based Microchips and Their Applications for Protein Analysis, Anal. Chem. , 2002, 74: 5146-5153.
    105. Gai H. W. , Yu L. F. , Dai Z. P. , Ma Y. F. , Lin B. C. , Injection by hydrostatic pressure in conjunction with electrokinetic force on a microfluidic chip, Electrophoresis, 2004, 25: 1888-1894.
    106.盖宏伟,於林芬,马银法等,一种基于压力和电动力联用的微流控芯片进样方法:03134125.X,2003.
    107. Xu H. , Roddy T. P. , Lapos J. A. , Ewing A. G. , Parallel Analysis with Optically Gated Sample Introduction on a Multichannel Microchip, Anal. Chem. , 2002, 74: 5517-5522.
    108. Du W. B. , Fang Q. , He Q. H. , Fang Z. L. , High-Throughput Nanoliter Sample Introduction Microfluidic Chip-Based Flow Injection Analysis System with Gravity-Driven Flows, Anal. Chem. , 2005, 77: 1330-1337.
    109 黄艳贞,方群,李丹妮,连续进样的重力驱动微流控芯片流动分析系统,高等学校化 学学报,2004,25:1628-1631.
    110.徐章润,王世立,樊晓峰,王福仁,方肇伦,小型可连续进样微流控芯片分析仪的研制,分析化学,2003,31:1527-1530.
    111.吴建刚,岳瑞峰,曾雪锋,刘理天,新型开放式液滴驱动芯片,电子器件,2005,28:699-702.
    1. Xu Y. , Bessoth F. G. , Eijkel J. C. T. , Martz A. , On-line monitoring of chromium(Ⅲ) using a fast micromachined mixer/reactor and chemiluminescence detection, Analyst, 2000, 125: 677-683.
    2. Greenway G. M. , Nelstrop L. J. , Port S. N. , Tris(2, 2-bipyridyl)ruthenium (Ⅱ) chemiluminescence in a microflow injection system for codeine determination, Anal. Chim. Acta, 2000, 405: 43-50.
    3. Greenwood P A. , Merrin C. , McCreedy T. , Greenway G. M. , Chemiluminescence μTAS for the determination of atropine and pethidine, Talanta, 2002, 56: 539-545.
    4. Nakamura H. , Murakami Y. , Yokoyama K. , Tamiya E. , Karube I. , Suda M. , Uchiyaraa S. , A Compactly Integrated Flow Cell with a Chemiluminescent FIA System for Determining Lactate Concentration in Serum, Anal. Chem. , 2001, 73: 373-378.
    5. Liu B. F. , Ozaki M. , Utsumi Y. , Hattori T. , Terabe S. , Chemiluminescence for a microchip capillary electrophoresis system fabricated in poly(dimethylsiloxane), Anal. Chem,, 2003, 75: 36-41.
    6. Huang X. J. , Pu Q. S. , Fang Z. L. , Capillary electrophoresis system with flow injection sample introduction and chemiluminescence detection on a chip platform, Analyst, 2001, 126: 281-284.
    7. Hashimoto M. , Tsukagoshi K. , Nakajima R. , Kondo K. , Arai A. , Microchip capillary electrophoresis using online chemiluminescence detection, J. Chromatogr. , 2000, 867: 271-279.
    8. Mangru S. D. , Harrison D. J. , Chemiluminescence detection in integrated post-separation reactors for microchip-based capillary electrophoresis and affinity electrophoresis, Electrophoresis, 1998, 19: 2301-2307.
    9. Huang X. Y. , Ren J. C. , On-line chemiluminescence detection for isoelectric focusing of heme proteins on microchips, Electrophoresis, 2005, 26: 3595-3601.
    10. Yakovleva J. , Davidsson R. , Lobanova A. , Bengtsson M. , Eremin S. , Laurell T. , Emneus J. , Microfluidic Enzyme Immunoassay Using Silicon Microchip with Immobilized Antibodies and Chemiluminescence Detection, Anal. Chem. , 2002, 74: 2994-3004.
    11. Tsukagoshi K. , Jinno N. , Nakajima R. , Development of a Micro Total Analysis System Incorporating Chemiluminescence Detection and Application to Detection of Cancer Markers, Anal. Chem. , 2005, 77: 1684-1688.
    12. Cheek B. J. , Steel A. B. , Torres M. P. , Yu Y. -Y. , Yang H. , Chemiluminescence Detection for Hybridization Assays on the Flow-Thru Chip, a Three-Dimensional Microchannel Biochip, Anal. Chem. , 2001, 73: 5777-5783.
    13. Jiang L. , Lu Y. , Kong J. , et al, Radial scanner for multi-channel chemiluminescence detection, Unpublished results.
    14. Shen H. , Fang Q, Fang Z. L. , A microfluidic chip based sequential injection system with trapped droplet liquid-liquid extraction and chemiluminescence detection, Lab Chip, 2006, 6: 1387-1389.
    15. Lv Y. , Zhang Z. J. , Chen F. N. , Chemiluminescence biosensor chip based on a microreactor using carrier air flow for determination of uric acid in human serum, Analyst, 2002, 127: 1176-1179.
    16. Liu W. , Zhang Z. J. , Liu H. S. , Droplet-based Micro-flow Chemiluminescence System for Glucose Determination in vivo by Microdialysis Sampling, Anal. Sci. , 2005, 21: 413-416.
    17.徐溢,微芯片化学反应器实现酶催化化学发光测定葡萄糖的研究,高等学校化学学报,2003,24:49-51.
    18.颜流水,梁宁,罗国安,王义明,王建勇,整体式PDMS电泳芯片快速成型及高灵敏化学发光检测氨基酸,高等学校化学学报,2003,24:1193-1197.
    19.苏荣国,林金明,屈锋,高云华,陈志锋,金属离子Cu2+,Co2+,Ni2+的微芯片电泳分离及化学发光检测,化学学报,2003,61:885-888.
    1. 1. Fennema O. R. , Food additives, In O. R. Fennema (Ed.), Food chemistry (second ed), New York: Marcel Dekker Inc. , 1985, 629-687.
    2. 2. Saiz A. I. , Manrique G. D. , Fritz R. , Determination of Benzoyl Peroxide and Benzoic Acid Levels by HPLC during Wheat Flour Bleaching Process, J. Agric. Food Chem. , 2001, 49: 98-102.
    3. 3. Wada M. , Inoue K. , Ihara A. , Kishikawa N. , Nakashima K. , Kuroda N. , Determination of organic peroxides by liquid chromatography with on-line post-column ultraviolet irradiation and peroxyoxalate chemiluminescence detection. J. Chromatogr. A, 2003, 987: 189-195.
    4. 4. Onishi Y. A. , Yomota C. , Sugimoto N. , Kubota H. , Tanamoto K. , Determination of benzoyl peroxide and benzoic acid in wheat flour by high-performance liquid chromatography and its identification by high-performance liquid chromatography-mass spectrometry, J. Chromatogr. A, 2004, 1040: 209-214.
    5.5. Akasaka K., Ohrui H., Meguro H., Simultaneous determination of hydroperoxides of phosphatidylcholine, cholesteol ester and triacylglycerols by column-switching high-performance liquid chromatography with a post-column detection system, J. Chromatogr., 1993, 622: 153-159.
    6.6. Mori I., Tominaga H., Fujita Y., Matsuo T., Sensitive spectrophotometric determination of benzoylperoxide with N,N,N',N'-tetramethyl-p-phenylenediamine, Anal. Lett., 1997, 30: 2433-2439.
    7.7. Chen Q. C., Mou S. F., Hou X. P., Ni Z. M., Determination of benzoyl peroxide in wheat flour by ion chromatography with precolumn derivatization, J. Liq. Chromatogr. Relat. Technol., 1998, 21: 705-716.
    8.8. Miyazawa T., Fujimoto K., Kaneda T., Determination of picomole levels in lipid hydroperoxides by a chemiluminescence assey, Agric. Biol. Chem., 1987, 51: 2569-2573.
    9.9. Yang W. P., Zhang Z. J., Hun X., A novel capillary microliter droplet sample injection-chemiluminescence detector and its application to the determination of benzoyl peroxide in wheat flour, Talanta, 2004, 62: 661-666.
    10.10. Manz A., Graber N. N, Widmer H. M., Miniaturized total chemical analysis system: a novel concept for chemical sensing, Sens. Actuators B, 1990, 1: 244-248.
    11.11. Fu L. M., Yang R. J., Lee G. B., Liu H. H., Electrokinetic injection techniques in microfluidic chips, Anal. Chem., 2002, 74: 5084-5091.
    12.12. Becker H., Locascio L. E., Polymer microfluidic devices, Talanta, 2002, 56: 267-287.
    13.13. Chabinye M. L., Chiu D T., McDonald J. C., Stroock A. D., Christian J. F., Karger A. M, Whitesides G. M., An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications, Anal. Chem., 2001, 73: 4491-4498.
    14.14. Liu B. F., Ozaki M., Utsumi Y., Hattori T., Terabe S., Chemiluminescence detection for a microchip capillary electrophoresis system fabricated in poly(dimethylsiloxane), Anal. Chem., 2003, 75: 36-41.
    15.15. Lv Y., Zhang Z. Z., Chen F. N., Chemiluminescence microfluidic system sensor on a chip for determination of glucose in human serum with immobilized reagents, Talanta, 2003, 59: 571-576.
    16.16. Xu Y., Bessoth F. G., Eijkel J. C. T., Manz A., On-line monitoring of chromium(Ⅲ) using a fast micromachined mixer/reactor and chemiluminescence detection, Analyst, 2000, 125: 677-684.
    17.17. Greenwood P. A., Merrin C, McCreedy T., Greenway G. M, Chemiluminescence μTAS for the determination of atropine and pethidine, Talanta, 2002, 56: 539-545.
    18. 18. Greenway G. M. , Nelstrop L. J. , Port S. N. , Tris(2, 2-bipyridyl)ruthenium (Ⅱ) chemiluminescence in a microflow injection system for codeine determination, Anal. Chim. Acta, 2000, 405: 43-50.
    19.19.蔡伟红,张红,分光光度法测定面粉中过氧化苯甲酰含量的研究,河南预防医学杂志,2002.13:9-10.
    1. Adam L. C, Gordon G. , Direct and sequential potentiometric determination of hypochlorite, chlorite, and chlorate ions when hypochlorite ion is present in large excess, Anal. Chem. , 1995, 67: 535-540.
    2. Verma K. K. , Jain A. , Townshend A. . Determination of free and combined residual chlorine by flow-injection spectrophotometry, Anal. Chim. Acta, 1992, 261: 233-240.
    3.贾汉东,孟祥茹,李继杰,李燕红,FeO42-与ClO-共存体系的氧化还原滴定分析法,分析化学,1999,27:536-539
    4. Ohura H. , Imato T. , Yamasaki S. , Simultaneous potentiometric determination of ClO3--ClO2- and ClO3--HClO by flow injection analysis using Fe(Ⅲ)-Fe(Ⅱ) potential buffer, Talanta, 1999, 49: 1003-1015.
    5. Gallina A. , Pastore P. , Magno F. , The use of nitrite ion in the chromatographic determination of large amounts of hypochlorite ion and of traces of chlorite and chlorate ions, Analyst, 1999, 124: 1439-1442.
    6. Watanabe T. , Idehara T. , Yoshimura Y. , Nakazawa H. , Simultaneous determination of chlorine dioxide and hypochlorite in water by high-performance liquid chromatography, J. Chromatogr. A, 1998, 796: 397-400.
    7. Manz A. , Graber N. , Widmer H. M. , Miniaturized total chemical analysis systems: a novel concept for chemical sensing, Sens. Actuators B, 1990, 1: 244-248.
    8. Lv Y, Zhang Z. Z. , Chen F. N. , Chemiluminescence microfluidic system sensor on a chip for determination of glucose in human serum with immobilized reagents, Talanta, 2003, 59: 571-576.
    9. Greenwood P. A. , Merrin C. , McCreedy T. , Greenway G. M. , Chemiluminescence μTAS for the determination of atropine and pethidine, Talanta, 2002, 56: 539-545.
    10. Xu Y. , Bessoth F. G. , Eijkel J. C. T. , Manz A. , On-line monitoring of chromium(Ⅲ) using a fast micromachined mixer/reactor and chemiluminescence detection, Analyst, 2000, 125: 677-683.
    11. Qin W. , Zhang Z. J. , Liu S. N. , Flow-injection Chemiluminescence Sensor for the Determination of free chlorine in tap water, Anal. Lett. , 1997, 30: 11-19.
    12. Evmiridis N. P., Thansonlias N. K., Vlessidis A. G., Chemiluminescence (CL) emission generated during oxidation of pyrogallol and its application in analytical chemistry. I. Effect of oxidant compound, Talanta, 1998, 46:179-196.
    1.1. Kim Y., Lee K., Sasaki S., Hashimoto K., lkebukuro K., Karube I., Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode, Anal. Chem., 2000, 72: 3379-3382.
    2.2. Xi D., Song Y., Liu X., Environmental Monitoring, Beijing, Advanced Education Press, 1996, 78.
    3.3. Greenberg A E., Clescent L. S., Eaton A. D., Standard Methods for the Examination of Water and Wastewater, 18th ed. Washington D. C., American Public Health Association, 1992.
    4.4. Belkin S., Brenner A., Abeliovich A., Effect of inorganic constituents on chemical oxygen demand—Ⅱ. Organic carbon to halogen ratios determine halogen interference, Water Res., 1992, 26: 1583-1588.
    5.5. Apppleton J. M. H., Tyson J. F., Mounce R. P., The rapid determination of chemical oxygen demand in waste waters and effluents by flow injection analysis, Anal. Chim. Acta., 1986, 179: 267-278.
    6.6. Hejzlar J., Kopacek J., Determination of low chemical oxygen demand values in water by the dichromate semi-micro method, Analyst, 1990, 115:1463-1467.
    7.7. Jirka A. M., Carter M. J., Micro semiautomated analysis of surface and waste waters for chemical oxygen demand, Anal. Chem., 1975, 47:1397-1402.
    8.8. Hansen E H., 30 years of flow injection analysis-And passing the torch, Anal. Chim. Acta., in press.
    9.9. Korenaga T., Flow-injection analysis using potassium permanganate: an approach for measuring chemical oxygen demand in organic wastes and waters, Anal. Lett., 1980, 13: 1001-1011.
    10.10. Korenaga T., Ikatsu H., Continuous-flow injection analysis of aqueous environmental samples for chemical oxygen demand, Analyst, 1981, 106: 653-662.
    11.11. Korenaga T., Ikatsu H., The determination of chemical oxygen demand in waste-waters with dichromate by flow injection analysis, Anal. Chim. Acta, 1982, 141: 301-309.
    12.12. Korenaga T., Zhou X., Okada K., Moriwake T., Shinoda S., Determination of chemical oxygen demand by a flow-injection method using cerium(IV) sulphate as oxidizing agent, Anal. Chim. Acta, 1993, 272: 237-244.
    13. 13. Goto M. , Monitoring of environmental water using continuous flow, Trends Anal. Chem. , 1983, 2: 92-94.
    14. 14. Tian L. C. , Wu S. M. , Determination of chemical oxygen demand in aqueous environmental samples by segmented flow-injection analysis, Anal. Chim. Acta, 1992, 261: 301-305.
    15. 15. Cuesta A. , Todoli J. L. , Mora J. , Canals A. , Rapid determination of chemical oxygen demand by a semi-automated method based on microwave sample digestion, chromium(Ⅵ) organic solvent extraction and flame atomic absorption spectrometry, Anal. Chim Acta, 1998, 372: 399-409.
    16. 16. Cuesta A. , Todoli J. L. , Canals A. , Flow injection method for the rapid determination of chemical oxygen demand based on microwave digestion and chromium speciation in flame atomic absorption spectrometry, Spectrochim. Acta, Part B, 1996, 51: 1791-1800.
    17. 17. Li J. Q, Li L. P. , Zheng L. , Xian Y. Z. , Ai S. Y. , Jin L. T. , Amperometric determination of chemical oxygen demand with flow injection analysis using F-PbO2 modified electrode, Anal. Chim. Acta, 2005, 548: 199-204.
    18. 18. Kim Y. , Sasaki S. , Yano K. , Ikebukuro K. , Hashimoto K. , Karube I. , Photocatalytic sensor for the determination of chemical oxygen demand using flow injection analysis, Anal. Chim. Acta, 2001, 432: 59-66.
    19. 19. Fujimori K. , Takenaka N. , Bandow H. , Maeda Y. , Continuous monitoring method for organic pollutants in water based on chemiluminescence reaction with potassium permanganate, Anal. Commun. , 1998, 35: 307-308.
    20. 20. Li B. X. , Zhang Z. J. , Wang J. , Xu C. L. , Chemiluminescence system for automatic determination of chemical oxygen demand using flow injection analysis, Talanta, 2003, 61: 651-658.
    21. 21. Hu Y. G. , Yang Z. Y. , A simple chemiluminescence method for determination of chemical oxygen demand values in water, Talanta, 2004, 63: 521-526.
    22. 22. Fujimori K. , Ma W. L. , Kawakami T. M, Shibutani Y. , Takenata N. , Bankow H, Maeda Y. , Chemiluminescence method with potassium permanganate for the determination of organic pollutants in seawater, Anal. Sci. , 2001, 17: 975-978.
    23.23.杨泽玉,胡涌刚,化学发光-化学需氧量测定新方法,分析化学,2003,31:1430-1432.
    24.24.王娟,李保新,章竹君,田穗康,流动注射化学发光法快速测定化学需氧量,分析试验室,2004.23:19-21.
    25. 25. Dittrich P. S. , Tachikawa K. , Manz A. , Micro total analysis systems. Latest advancements and trends, Anal. Chem. , 2006, 78: 3887-3907.
    26. 26. Vilkner T. , Janasek D. , Manz A. , Micro Total Analysis Systems. Recent Developments, Anal. Chem. , 2004, 76: 3373-386.
    27. 27. Zhang W. , Danielson N. D. , Characterization of a micro spiral flow cell for chemiluminescence detection, Microchem. J. , 2003, 75: 255-264.
    28. 28. Liu W. , Zhang Z. J. , Yang L. , Chemiluminescence microfluidic chip fabricated in PMMA for determination of benzoyl peroxide in flour, Food Chem. , 2006, 95: 693-698.
    29. 29. He D. Y. , Zhang Z. J. , Zhou H. J. , Huang Y. , Micro flow sensor on a chip for the determination of terbutaline in human serum based on chemiluminescence and a molecularly imprinted polymer, Talanta, 2006, 69: 1215-1220.
    30. 30. Su R. G. , Lin J. M, Uchiyama K. , Yamada M. , Integration of a flow-type chemiluminescence detector on a glass electrophoresis chip, Talanta, 2004, 64: 1024-1029.
    31. 31. Westbroek P. , Temmerman E. , In line measurement of chemical oxygen demand by means of multipulse amperometry at a rotating Pt ring—Pt/PbO2 disc electrode, Anal. Chim. Acta, 2001, 437: 95-105.
    32. 32. Dan D. , Dou F. , Xiu D. , Qin Y. , Chemical oxygen demand determination in environmental waters by mixed-acid digestion and single sweep polarography, Anal. Chim Acta, 2000, 420: 39-44.
    33.33.章竹君,吕九如,铬(Ⅲ)催化鲁米诺-过氧化氢体系化学发光反应的研究,化学通报,1984,5:25-30.
    1. Stohs S. J. , Bagchi D. , Oxidative mechanisms in the toxicity of metal ions, Free Radic. Biol. Med. , 1995, 18, 321-336.
    2. Kawanishi S. , Hiraku Y. , Murata M. , Oikawa S. , The role of metals in site-specific DNA damage with reference to carcinogenesis, Free Radic. Biol. Med. , 2002, 32: 822-832.
    3. Nriagu J. O. , Nieboer E. , Chromium in the Natural and Human Environment, New York, Wiley, 1988.
    4. Biedermann K. A. , Landolph J. R. , Role of Valence State and Solubility of Chromium Compounds on Induction of Cytotoxicity, Mutagenesis, and Anchorage Independence in Diploid Human Fibroblasts, Cancer Res. , 1990, 50: 7835-7842.
    5. Andersen J. E. T. , Introduction of hydrogen peroxide as an oxidant in flow injection analysis: speciation of Cr(Ⅲ) and Cr(Ⅵ), Anal. Chim. Acta, 1998, 361: 125-131.
    6. Girard L. , Hubert J. , Speciation of chromium (Ⅵ) and total chromium determination in welding dust samples by flow-injection analysis coupled to atomic absorption spectrometry, Talanta, 1996, 43: 1965-1974.
    7. Allen T. L. , Microdetermination of Chromium with 1, 5-Diphenylcarbohydrazide, Anal. Chem. , 1958, 30: 447-450.
    8. Chen Z. , Naidu R. , Subramanian A. , Separation of chromium (Ⅲ) and chromium (Ⅵ) by capillary electrophoresis using 2, 6-pyridinedicarboxylic acid as a pre-column complexation agent, J. Chromatogr. A, 2001, 927: 219-227.
    9. Sperling M, Xu S. , Welz B. , Determination of chromium(Ⅲ) and chromium(Ⅵ) in water using flow injection on-line preconcentration with selective adsorption on activated alumina and flame atomic absorption spectrometric detection, Anal. Chem. , 1992, 64: 3101-3108.
    10. Ou-Yang G. , Jen J. , Simultaneous preconcentration of chromium(Ⅲ) and chromium(Ⅵ) prior to speciation analysis, Anal. Chim. Acta, 1993, 279: 329-334.
    11. Abroad S. , Murthy R. C. , Chandra S. V. , Chromium speciation by column chromatography using a direct current plasma atomic emission spectrometer, Analyst, 1990, 115: 287-289.
    12. Urasa I. T. , Nam S. H. , Direct determination of chromium(Ⅲ) and chromium(Ⅵ) with ion chromatography using direct-current plasma emission as element-selective detector, J. Chromatogr. Sci. , 1989, 27: 30-37.
    13. Luo S. K. , Berndt H. , Chromium(Ⅲ)/chromium(Ⅵ) determination in waste water by ICP AES with online HPLC high-pressure nebulization (HHPN) sample introduction, Fresenius J. Anal. Chem. , 1998, 360: 545-549.
    14. Tang A. N. , Jiang D. Q, Jiang Y. , Wang S. W. , Yan X. P. , Cloud point extraction for high-performance liquid chromatographic speciation of Cr(Ⅲ) and Cr(Ⅵ) in aqueous solutions, J. Chromatogr. A, 2004, 1036: 183-188.
    15. Inoue Y. , Sakai T. , Kumagai H. , Simultaneous determination of chromium(Ⅲ) and chromium(Ⅵ) by ion chromatography with inductively coupled plasma mass spectrometry, J. Chromatogra. A, 1995, 706: 127-136.
    16. Steiner S. A. , Porter M. D. , Fritz J. S. , Ultrafast concentration and speciation ofchromium(Ⅲ) and (Ⅵ), J. Chromatogr. A, 2006, 1118: 62-67.
    17.吕九如,张新荣,张八合,秦伟,章竹君,水中铬(Ⅵ)和铬(Ⅲ)的在线化学发光监测法,高等学校化学学报,1993,14:771-774.
    18.张海松,杨秀岑,伍莉萍,流动注射化学发光同时测定废水中的三价铬和六价铬,分析化学,1995,23:1148-1150
    19.章竹君,吕九如,水中铬(Ⅲ)和铬(Ⅵ)的化学发光测定,分析测试学报,1983,2:86-90.
    20. Williams T. , Jones P. , Ebdon L. , Simultaneous determination of cr(Ⅲ) and cr(Ⅵ) at ultratrace levels using ion chromatography with chemiluminescence detection, J. Chromatogra. A, 1989, 482: 361-366.
    21. Escobar R. , Lin Q. X. , Guiraum A. , de la Rosa F. F. , Determination of trivalent and hexavalent chromium in waste water by flow-injection chemiluminescence analysis, Int. J. Environ. Anal.Chem., 1996, 61,169-175.
    22. Yang W. P., Zhang Z. J., Deng W., Speciation of chromium by in-capillary reaction and capillary electrophoresis with chemiluminescence detection, J. Chromatogr. A, 2003, 1014: 203-214.
    23. Yang W. P., Zhang Z J., Deng W., Simultaneous, sensitive and selective online chemiluminescence determination of chromium(Ⅲ) and ehromium(Ⅵ) by capillary electrophoresis, Anal. Chim. Acta, 2003, 485:169-177.
    24. Dittrich P. S., Tachikawa K., Manz A., Micro total analysis systems, latest advancements and trends, Anal. Chem., 2006, 78: 3887-3907.
    25. Song Q. J., Greenway G. M., McCreedy T., Interfacing microchip capillary electrophoresis with inductively coupled plasma mass spectrometry for chromium speciation, J. Anal. At. Spectrom, 2003, 18: 1-3.
    26. Song Q. J., Greenway G. M, McCreedy T., Interfacing a microfluidic electrophoresis chip with inductively coupled plasma mass spectrometry for rapid elemental speciation, J. Anal. At. Spectrom, 2004, 19: 883-887.
    27. Liu B. F., Ozaki M, Utsumi Y., Hattorim T., Terabe S., Chemiluminescence Detection for a Microchip Capillary Electrophoresis System Fabricated in Poly(dimethylsiloxane), Anal. Chem., 2003, 75: 36-41.
    28. Tsukagoshi K., Jinno N., Nakajima R., Development of a Micro Total Analysis System Incorporating Chemiluminescence Detection and Application to Detection of Cancer Markers, Anal. Chem., 2005, 77: 1684-1688.
    29. Guan Y. X., Xu Z. R., Dai J., Fang Z. L., The use of a micropump based on capillary and evaporation effects in a microfluidic flow injection chemiluminescence system, Talanta, 2006, 68: 1384-1389.
    30. Liu W., Zhang Z. J., Yang L., Chemiluminescence mierofluidic chip fabricated in PMMA for determination of benzoyl peroxide in flour, Food Chem., 2006, 95: 693-698.
    31. Marie L., Greenway G. M., Determination of hydrogen peroxide in rainwater in a miniaturised analytical system, Anal. Chim. Acta, 2005, 548: 20-25.
    32. He D. Y., Zhang Z. J., Huang Y., Chemiluminescence Microflow Injection Analysis System on a Chip for the Determination of Sulfite in Food, Anal.Lett., 2005, 38: 563-571.
    33. Liu W., Zhang Z. J., Liu H. S., Droplet-based Micro-flow Chemiluminescence System for Glucose Determination in vivo by Microdialysis Sampling, Anal. Sci., 2005, 21: 413-416.
    34.章竹君,吕九如,铬(Ⅲ)催化鲁米诺-过氧化氢体系化学发光反应的研究,化学通报,1984,5:25-30.
    35. Chang C. A., Patterson H. H., Halide ion enhancement of chromium(Ⅲ), iron(Ⅱ), and cobalt(Ⅱ) catalysis of luminol chemiluminescence, Anal. Chem. , 1980, 52: 653-656.
    36. Seitz W. R. , Suydam W. W. , Hercules D. M. , Determination of trace amounts of chromium(Ⅲ) using chemiluminescence analysis, Anal. Chem. , 1972, 44: 957-963
    1. Broyles B. S. , Jacobson S. C. , Ramsey J. M. , Sample Filtration, Concentration, and Separation Integrated on Microfluidic Devices, Anal. Chem. , 2003, 75: 2761-2767.
    2. Jemere A. B. , Oleschuk R. D. , Ouchen F. , Fajuyigbe F. , Harrison D. J. , An integrated solid-phase extraction system for sub-picomolar detection, Electrophoresis, 2002, 23: 3537-3544.
    3. Breadmore M. C. , Wolfe K. A. , Arcibal I. G. , Leung W. K. , Dickson D. , Giordano B. C. , Power M. E. , Ferrance J. P. , Feldman S. H. , Norris P. M. , Landers J. P. , Microchip-Based Purification of DNA from Biological Samples, Anal. Chem. , 2003, 75: 1880-1886.
    4. Cady N. C. , Stelick S. , Batt C. A. , Nucleic acid purification using microfabricated silicon structures, Biosens. Bioelectron. , 2003, 19: 59-66.
    5. Yu C. , Davey M. H. , Svec F. , Frechet J. M. J. , Monolithic Porous Polymer for On-Chip Solid-Phase Extraction and Preconcentration Prepared by Photoinitiated in Situ Polymerization within a Microfluidic Device, Anal. Chem. , 2001, 73: 5088-5096.
    6. Ferrance J. P. , Wu Q. R. , Giordano B, Hernandez C. , Kwok Y. , Snow K. , Thibodeau S. , Landers J. P. , Developments toward a complete micro-total analysis system for Duchenne muscular dystrophy diagnosis, Anal. Chim. Acta, 2003, 500: 223-236.
    7. Tan A. M. , Benetton S. , Henion J. D. , Chip-Based Solid-Phase Extraction Pretreatment for Direct Electrospray Mass Spectrometry Analysis Using an Array of Monolithic Columns in a Polymeric Substrate, Anal. Chem. , 2003, 75: 5504-5511.
    8. Benetton S. , Kameoka J. , Tan A. M. , Wachs T. , Craighead H. , Henion J. D. , Chip-Based P450 Drug Metabolism Coupled to Electrospray Ionization-Mass Spectrometry Detection, Anal. Chem. , 2003, 75: 6430-6436.
    9.徐溢,张晓凤,张剑,复合式微流控芯片上阴离子型固相萃取微柱柱性能分析,分析化学,2005,33:447-450.
    10.陈兴,崔大付,刘长春,蔡浩原,基于BioMEMS技术的DNA固相萃取芯片的制备,分析化学,2006,34:433-436.
    11.陈兴,崔大付,刘长春,王利,基于BioMEMS技术的样品预处理微流控芯片研制,MEMS技术与器件,2006,1:43-46.
    12. Kutter J. P. , Jacobson S. C, Ramsey J. M. , Solid phase extraction on microfluidic devices, J. Microcolumn Sep. , 2000, 12: 93-97.
    13. Oleschuk R. D., Shultz-Loekyear L. L., Ning Y. B., Harrison D. J., Trapping of Bead-Based Reagents within Microfluidic Systems: On-Chip Solid-Phase Extraction and Electrochromatography, Anal. Chem., 2000, 72: 585-590.
    14. Li J., Wang C., Kelly J. F., Harrison D. J., Thibault P., Rapid and sensitive separation of trace level protein digests using microfabricated devices coupled to a quadrupole-time-of-flight mass spectrometer, Electrophoresis, 2000, 21: 198-210.
    15. Wolfe K. A., Breadmore M. C., Ferrance J. P., Power M. E., Conroy J. F., Norris P. M, Landers J. P., Toward a microchip-based solid-phase extraction method for isolation of nucleic acids, Electrophoresis, 2002, 23: 727-733.
    16. Bhattacharyya A., Klapperich C. M., Thermoplastic Microfluidic Device for On-Chip Purification of Nucleic Acids for Disposable Diagnostics, Anal. Chem., 2006, 78: 788-792.
    17. Ramsey J. D., Collins G. E., Integrated Microfluidic Device for Solid-Phase Extraction Coupled to Micellar Electrokinetic Chromatography Separation, Anal. Chem., 2005, 77: 6664-6670.
    18. Legendre L. A., Bienvenue J. M., Roper M. G., Ferrance J. P., Landers J. P., A Simple, Valveless Microfluidic Sample Preparation Device for Extraction and Amplification of DNA from Nanoliter-Volume Samples, Anal. Chem., 2006, 78: 1444-1451.
    1. Hardman J. G., Limbird L. E., Gilman A. G., Goodman and Gilman's the Pharmacological Basis of Therapeutics, 10th ed., McGraw-Hill Company, New York, USA, 2001.
    2. Dayan A. D., Allergy to antimicrobial residues in food: assessment of the risk to man, Vet. Microbiol., 1993, 35: 213-226.
    3. El-Ashry S. M., Belal F., El-Kerdawy M. M., El Wasseef D. R., Spectrophotometric determination of some phenolic antibiotics in dosage forms, Mikrochim. Acta, 2000, 135: 191-196.
    4. Salem H., Saleh G.A., Selective spectrophotometric determination of phenolic β-lactam antibiotics, J. Pharm. Biomed. Anal., 2002, 28: 1205-1213.
    5. Saleh G. A., Askal H. F., Darwish L. A., A El-Shorbagi A. N, Spectroscopic Analytical Study for the Charge-Transfer Complexation of CertainCephalosporins with Chloranilic Acid, Anal. Sci., 2003, 19: 281-287.
    6. Salem H., Askal H., Coiourimetric and AAS determination of cephalosporins using Reineck's salt, J. Pharm. Biomed. Anal., 2002, 29: 347-354.
    7. Ivaska A., Nordstrom F., Determination of some cephalosporins by differential pulse polarography and linear scan voltammetry, Anal. Chim. Acta., 1983, 146: 87-95.
    8. Ozkan S. A., Erk N., Uslu B., Yilmaz N., Biryol I., Study on electrooxidation of cefadroxil monohydrate and its determination by differential pulse voltammetry, J. Pharm. Biomed. Anal., 2000, 23: 263-273.
    9. Samanidou V. F., Hapeshi E A., Papadoyannis I. N, Rapid and sensitive high-performance liquid chromatographic determination of four cephalosporin antibiotics in pharmaceuticals and body fluids, J. Chromatogr. B, 2003, 788: 147-158.
    10. Fagerquist C. K., Lightfield A. R., Lehotay S. J., Confirmatory and Quantitative Analysis of β-Lactam Antibiotics in Bovine Kidney Tissue by Dispersive Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry, Anal. Chem., 2005, 77: 1473-1482.
    11. Samanidou V. F., Evaggelopoulou E. N., Papadoyannis I. N., Development of a validated HPLC method for the determination of four penicillin antibiotics in pharmaceuticals and human biological fluids, J. Sep. Sci., 2006, 29: 1550-1560.
    12. Fletcher K. A., Fakayode S. O., Lowry M., Tucker S. A., Neal S. L., Kimaru I. W., McCarroll M. E, Patonay G., Oldham P. B., Rusin O., Strongin R. M, Warner I. M., Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry, Anal. Chem., 2006, 78: 4047-4068.
    13. Aly F. A., Alarfaffj N. A., Alwarthan A. A., Permanganate-based chemiluminescence analysis of cefadroxil monohydrate in pharmaceutical samples and biological fluids using flow injection, Talanta, 1998, 47: 471-478.
    14. Thongpoon C., Liawruangrath B., Liawruangrath S., Wheafley R. A., Townshend A., Flow injection chemiluminescence determination of cephalosporins in pharmaceutical preparations using tris (2,2'-bipyridyl) ruthenium (Ⅱ)-potassium permanganate system, Anal. Chim. Acta, 2005, 553: 123-133.
    15. Thongpoon C., Liawruangrath B., Liawruangrath S., Wheatley R. A., Townshend A., Flow injection chemiluminescence determination of cefadroxil using potassium permanganate and formaldehyde system, J. Pharm Biomed. Anal., 2006, 42: 277-282.
    16. Sun Y. Y., Tang Y. H., Yao H., Li Y. H., Flow Injection Chemiluminescence Analysis of Some Penicillins by Their Sensitizing Effect on the Potassium Permanganate-Glyoxal Reaction, Anal. Sci., 2005, 21: 457-460.
    17. Sun Y. Y., Tang Y. H., Yao H., Zheng X. H., Potassium permanganate—glyoxal chemiluminescence system for flow injection analysis of cephalosporin antibiotics: cefalexin, cefadroxil, and cefazolin sodium in pharmaceutical preparations, Talanta, 2004, 64:156-159.
    18. Kubo H., Saitoh M., Murase S., lnomata T., Yoshimura Y., Nakazawa H., Chemiluminescence of β-lactam antibiotics based on the luminol reaction, Anal. Chim. Acta, 1999, 389: 89-94.
    19. Kubo H. , Saitoh M. , Chemiluminescence Determination on a Luminol Reaction of beta-Lactam Antibiotics by FIA, Anal. Sci. , 1999, 15: 919-921.
    20. Ventura S. , Silva M. , Bendito D. P. , Stopped-flow chemiluminescence spectrometry to improve the determination of pencillins based on the luminol-iodine reaction, Anal. Chim. Acta, 1992, 266: 301-307.
    21. Chen S. , Yan G. , Schwartz M. A. , Perrin J. H. , Schulman S. G. , Penicillin-enhanced chemiluminescence of the luminol-H2O2-Co2+system, J. Pharm. Sci. , 1991, 80: 1017-1019.
    22. Yao H. , Tang Y. , Li Y. , Sun Y. , Flow Injection Chemiluminescence Determination of Cephalosporin Antibiotics by Their Enhancing Effects on Luminol-Potassium Periodate System, Anal. Lett. , 2003, 36: 2975-2983.
    23. Sun J. S. , Schulman S. G. , Perrin J. H. , Chemiluminescence of β-lactam antibiotics following oxidation by potassium superoxide, Anal. Chim. Acta, 1997, 338: 1-2.
    24.何云华,吕九如,祝兴华,杜建修,可溶性锰(Ⅳ)化学发光反应的研究,化学学报,2005,63:729-733.
    25. Haginaka J. , Selectivity of affinity media in solid-phase extraction of analytes, Trends Anal. Chem. , 2005, 24: 407-415.
    26. Liska I. , Fifty years of solid-phase extraction in water analysis-historical development and overview, J. Chromatogr. A, 2000, 885: 3-16.
    27. Fletcher P. J. , Andrew K. N. , Forbes S. , Worsfold P. J. , Automated Flow Injection Analyzer with On-Line Solid-Phase Extraction and Chemiluminescence Detection for the Determination of Dodecylamine in Diesel Fuels, Anal. Chem. , 2003, 75: 2618-2625
    28. Huclova J. , Satinsky D. , Sklenarova H. , Karlicek R. , Determination of salbutamol using online solid-phase extraction and sequential-injection analysis. Comparison of chemiluminescence and fluorescence detection, Anal. Bioanal. Chem. , 2003, 376: 448-454.
    29. Qi H. L. , Lv J. G. , Li B. X. , Determination of phenol at ng 1-1 level by flow-injection chemiluminescence combined with on-line solid-phase extraction, Spectrochim. Acta Part A, in press.
    30. Ussher S. J. , Yaqoob M. , Achterberg E. P. , Nabi A. , Worsfold P. J. , Effect of Model Ligands on Iron Redox Speciation in Natural Waters Using Flow Injection with Luminol Chemiluminescence Detection, Anal. Chem. , 2005, 77: 1971-1978.
    31. Liang Y. , Yuan D. X. , Li Q. L. , Lin Q. M. , Flow injection analysis of ultratrace orthophosphate in seawater with solid-phase enrichment and luminol chemiluminescence detection, Anal. Chim. Acta, 2006, 571: 184-190.
    32. Dittrich P. S. , Tachikawa K. , Manz A. , Micro Total Analysis Systems. Latest Advancements and Trends, Anal. Chem. , 2006, 12, 3887-3908.
    33. Reyes D. R. , Iossifidis D. , Auroux P. , Manz A. , Micro Total Analysis Systems. I. Introduction, Theory, and Technology, Anal. Chem. , 2002, 74: 2623-2636.
    34. Hu G. Q. , Lee J. S. H. , Li D. Q, A microfluidic fluorous solid-phase extraction chip for purification of amino acids, J. Colloid Interface Sci. , 2006, 301: 697-702.
    35. Figeys D. , Aebersold R. , Nanoflow Solvent Gradient Delivery from a Microfabricated Device for Protein Identifications by Electrospray Ionization Mass Spectrometry, Anal. Chem. , 1998, 70: 3721-3727.
    36. Song S. , Singh A. K. , On-chip sample preconcentration for integrated microfluidic analysis, Anal. Bioanal. Chem. , 2006, 384: 41-43.
    37. Kutter J. P. , Jacobson S. C. , Ramsey J. M. , Solid-phase extraction on microfluidic devices, J. Microcol. Sep. , 2000, 12: 93-97.
    38. Broyles B. S. , Jacobson S. C. , Ramsey J. M. , Sample Filtration, Concentration, and Separation Integrated on Microfluidic Devices, Anal. Chem. , 2003, 75: 2761-2767.
    39. Jemere A. B. , Oleschuk R. D. , Ouchen F. , Fajuyigbe F. , Harrison D. J. , An integrated solid-phase extraction system for sub-picomolar detection, Electrophoresis, 2002, 23: 3537-3544.
    40. Karwa M. , Hahn D. , Mitra S. , A sol-gel immobilization of nano and micron size sorbents in poly(dimethylsiloxane) (PDMS) microchannels for microscale solid phase extraction (SPE), Anal. Chim. Acta, 2005, 546: 22-29.
    41. Huber D. L. , Manginell R. P. , Samara M. A. , Kim B. , Bunker B. C. , Programmed Adsorption and Release of Proteins in a Microfluidic Device, Science, 2003, 301: 352-354.
    42. Oleschuk R. D. , Shultz-Lockyear L. L. , Ning Y. B. , Harrison D. J. , Trapping of Bead-Based Reagents within Microfluidic Systems: On-Chip Solid-Phase Extraction and Electrochromatography, Anal. Chem. , 2000, 72: 585-590.
    43. Tan A. , Benetton S. , Henion J. D. , Chip-Based Solid-Phase Extraction Pretreatment for Direct Electrospray Mass Spectrometry Analysis Using an Array of Monolithic Columns in a Polymeric Substrate, Anal. Chem. , 2003, 75: 5504-5511.
    44. Santos S. M. , Henriques M. , Duarte A. C. , Estevcs V. I. , Development and application of a capillary electrophoresis based method for the simultaneous screening of six antibiotics in spiked milk samples, Talanta, 2007, 71: 731-737.
    45.蔡玉娥,蔡亚岐,牟世芬,鲁毅强,高效液相色谱-紫外光度法检测尿液和牛奶中多种头孢类抗生素,分析化学,2006,34:745-748.
    46.张媛,黄利平,樊海斌,高效液相色谱法测定青霉素钠的含量,中国兽药杂志,2001,35:27-28.
    1.陈敏,微透析技术在生命科学研究中的应用,科技视野,2005,14:10-12.
    2. Pijanowska D. G. , Sprenkels A. J. , van der Linden H. , Olthuis W. , Bergveld P. , van den Berg A. , A flow-through potentiometric sensor for an integrated microdialysis system, Sens. Actuators, B, 2004, 103: 350-355.
    3. Huynh B. H. , Fogarty B. A. , Nandi P. , Lunte S. M. , A microchip electrophoresis device with on-line microdialysis sampling and on-chip sample derivatization by naphthalene 2, 3-dicarboxaldehyde/2-mercaptoethanol for amino acid and peptide analysis, J. Pharm. Biomed. Anal. , 2006, 42: 529-534.
    4. Sandlin Z. D. , Shou M S. , Shackman J. G. , Kennedy R T. , Microfluidic electrophoresis chip coupled to microdialysis for in vivo monitoring of amino acid neurotransmitters, Anal. Chem. , 2005, 77: 7702-7708.
    5. Cellar N. A. , Burns S. T. , Meiners J. -C. , Chen H. , Kennedy R. T. , Microfluidic chip for low-flow push-pull perfusion sampling in vivo with on-line analysis of amino acids, Anal. Chem. , 2005, 6755: 7067-7073.
    6. Steinkuhl R. , Sundermeier C. , Hinkers H. , Dumschat C. , Cammann K. , Knoll M. , Microdialysis system for continuous glucose monitoring, Sens. Actuators, B, 1996, B33: 19-24.
    7. Pijanowska D. G. , Sprenkels A J. , Olthuis W. , Bergveld P. , A flow-through amperometric sensor for micro-analytical systems, Sens. Actuators, B, 2003, B91: 98-102.
    8. Hsieh Y. C. , Zahn J. D. , Glucose recovery in a microfluidic microdialysis biochip, Sens. Actuators, B, 2005, 107: 649-656.
    9.张新荣,化学发光检测体系的微型化技术及其在药物分析中的应用,福州大学学报(自然科学版),1999,27(增):1-2.
    1. Reach G. , Wilson G. S. , Can continuous glucose monitoring be used for the treatment of diabetes? Anal. Chem. , 1992, 64: 381A-386A
    2. Davies M. I. , A review of microdialysis sampling for pharmacokinetic applications, Anal. Chim. Acta, 1999, 379: 227-249.
    3. Torto N. , Laurell T. , Gorton L. , Marko-Varga G. , Recent trends in the application of microdialysis in bioprocesses, Anal. Chim. Acta, 1998, 374: 111-135.
    4. Linhares M. C. , Kissinger P. T. , Bioanalytical sample preparation using microdialysis and ultrafiltration capillaries, Trends Anal. Chem. , 1992, 11: 171-176.
    5. Kaptein W. A. , Zwaagstra J. J. , Venema K. , Korf J. , Continuous ultraslow microdialysis and ultrafiltration for subcutaneous sampling as demonstrated by glucose and lactate measurements in rats, Anal. Chem., 1998, 70: 4696-4700.
    6. Hayashi K, Niwa O., Measurement of biomolecules in the brain and neurotransmitters released from cells using electrochemical sensing systems, Bunseki Kagaku, 2002, 51, 1-12.
    7. Dempsey E., Diamond D., Smrth M. R., Urban G., Jobst G., Moser I., Verpoorte E. M. J., Manz A., Widmer H. M., Rabenstein K., Freaney R., Design and development of a miniaturised total chemical analysis system for online lactate and glucose monitoring in biological samples, Anal. Chim Acta, 1997, 346: 341-349.
    8. Moscone D., Pasini M., Mascini M., Subcutaneous micro-dialysis probe coupled with glucose biosensor for in vivo continuous monitoring, Talanta, 1992, 39: 1039-1044.
    9. Vering T., Adam S., Drewer H., Dumschat C., Steinkuhl R., Schulze A., Siegel E. G., Knoll M., Wearable microdialysis system for continuous in vivo monitoring of glucose, Analyst, 1998, 123: 1605-1609.
    10. Kurita R., Hayashi K., Fan X., Yamamoto K., Kato T., Niwa O., Microfluidic device integrated with pre-reactor and dual enzyme-modified microelectrodes for monitoring in vivo glucose and lactate, Sens. Actuators B, 2002, 87, 296-303.
    11. Yao T., Yano T., Nanjyo Y., Nishino H., Simultaneous determination of glucose and L-lactate in rat brain by an electrochemical in vivo flow-injection system with an on-line microdialysis sampling, Anal. Sci., 2003, 19: 61-65.
    12. Yao D. C., Vlessidis A. G., Evmiridis N. P., Microdialysis sampling and monitoring of uric acid in vivo by a chemiluminescence reaction and an enzyme on immobilized chitosan support membrane, Anal. Chim. Acta, 2003, 478: 23-30.
    13. Baeyens W. R. G., Schulman S. G., Calokerinos A. C., Zhao Y., Garcia-Campana A. M., Nakashima K., De Keukeleire D., Chemiluminescence-based detection: principles and analytical applications in flowing streams and in immunoassays, J. Pharm. Biomed. Anal., 1998, 17: 941-953.
    14. Naslund B., Amer P., Boimder J., Hallander L., Lundin A., Glucose determination in samples taken by micro-dialysis by peroxidase-catalysed luminol chemiluminescence, Anal. Biochem., 1991, 192: 237-242.
    15. Fang Q., Shi X. T., Sun Y. Q., Fang Z. L., A flow-injection microdialysis sampling chemiluminescence system for in vivo online monitoring of glucose in intravenous and subcutaneous tissue fluid microdialysates, Anal. Chem., 1997, 69: 3570-3577.
    16. Li B. X., Zhang Z. J., Jin Y., Chemiluminescence flow sensor for in vivo on-line monitoring of glucose in awake rabbit by microdialysis sampling, Anal. Chim. Acta, 2001,432: 95-100.
    17. Wang X. Y., Wang Q., Chen Y., Han H. W., Determination of carbohydrates as their 3-aminophthalhydrazide derivatives by capillary zone electrophoresis with on-line chemiluminescence detection, J. Chromatogr. A. , 2003, 992: 181-191.
    18. Wei Y. L. , Oshima M. , Simon J. , Motomizu S. , The application of the chromatomembrane cell for the absorptive sampling of nitrogen dioxide followed by continuous determination of nitrite using a micro-flow injection system, Talanta, 2002, 57: 355-364.
    19. Nozaki O. , Kawamoto H. , Reactivation of inactivated horseradish peroxidase with ethyleneurea and allantoin for determination of hydrogen peroxide by micro-flow injection horseradish peroxidase-catalyzed chemiluminescence, Anal. Chim. Acta, 2003, 495: 233-238.
    20. Zhang W. , Danielson N. D. , Characterization of a micro spiral flow cell for chemiluminescence detection, Microchem. J. , 2003, 75: 255-264.
    21. Kiba N. , Tokizawa T. , Kato S. , Tachibana M. , Zani K. , Koizumi H. , Yomezawa E. , Flow-through micro sensor using immobilized peroxidase with chemiluminometric FIA system for determining hydrogen peroxide, Anal. Sci. , 2003, 19: 823-827.
    22. Gill I. , Ballesteros A. , Encapsulation of Biologicals within Silicate, Siloxane, and Hybrid Sol-Gel Polymers: An Efficient and Generic Approach, J. Am. Chem. Soc. , 1998, 120: 8587-8598.
    23. Chen Q. , Kenausis G. L. , Heller A. , Stability of Oxidases Immobilized in Silica Gels, J. Am. Chem. Soc. , 1998, 120: 4582-4585.
    24. Parang U. , Prasad P. N. , Bright F. V. , Ramanthan K. , Kumar N. D. , Malhotra B. D. , Kamalasanan M. N. , Chandra S. , Glucose Biosensor Based on a Sol-Gel-Derived Platform, Anal. Chem. , 1994, 66: 3139-3144.
    25.章竹君,马望百,光导纤维胆固醇生物传感器的研究,高等学校化学学报,1993,14:1366-1369.
    26. Zhao Y. , Liang X. , Lunte C. E. , Comparison of recovery and delivery in vitro for calibration of microdialysis probes, Anal. Chim. Acta, 1995, 316: 403-410.
    1. Mertz W. , Schwarz K. , Relation of glucose tolerance factor to impaired intravenous glucose tolerance of rats on stock diets, Am. J. Physiol. , 1959, 196: 614-618.
    2. Anderson R. A. , Chromimum, glucose intolerance and diabetes, J. Am. Coll. Nutr. , 1998, 17: 548-555.
    3. US Environmental Protection Agency (EPA), Toxicological Review of Trivalent Chromium (CAS No. 16065-83-1). In Support of Summary Information on the Integrated Risk Information System (IRIS). Washington, D C. , 1998.
    4. Institute of Medicine (IOM), Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, D C. , National Academy Press, 2001.
    5 Richard A. A. , Chromium as an essential nutrient for humans, Regul. Toxicol. Pharmacol. , 1997, 26: S35-S41.
    6. Marek A. S. , Lucy M. A. , William E. U. Jr. , Haleem J. I. , Kazimierz S. K. , Uptake and tissue distribution of chromium(Ⅲ) in mice after a single intraperitoneal or subcutaneous administration, Toxicol. Lett. , 1997, 93: 9-14.
    7. Zhou J. , Heckert D. M. , Zuo H. , Lunte C. E. , Lunte S. M. , Recent trends in the application of microdialysis in bioprocesses, Anal. Chim Acta, 1999, 379: 281-305.
    8. Fang Q. , Shi X. T. , Sun Y. Q. , Fang Z. L. , A Flow Injection Microdialysis Sampling Chemiluminescence System for in Vivo On-Line Monitoring of Glucose in Intravenous and Subcutaneous Tissue Fluid Microdialysates, Anal. Chem. , 1997, 69: 3570-3577.
    9. Li B. X. , Zhang Z. J. , Jin Y. , Plant tissue-based chemiluminescence flow biosensor for determination of unbound dopamine in rabbit blood with online microdialysis sampling, Biosens. Bioelectron. , 2002, 17: 585-589.
    10. Torto N. , Mwatseteza J. , Sawula G. , A study of microdialysis sampling of metal ions, Anal. Chim. Acta, 2002, 456: 253-261.
    11. Li B. X. , Zhang Z. J. , Jin Y. , Chemiluminescence flow sensor for in vivo on-line monitoring of glucose in awake rabbit by m icrodialysis sampling, Anal. Chim Acta, 2001, 432: 95-100.
    12. Huang Y. M. , Zhang Z. J. , Zhang D. J. , Lv J. G. , Flow-injection analysis chemiluminescence detection combined with microdialysis sampling for studying protein binding of drug, Talanta, 2001, 53: 835-841.
    13. Wang Z. P. , Zhang Z. J. , Fu Z. F. , Chen D. L. , Zhang X. , Flow-injection chemiluminescence detection for studying protein binding of terbutaline sulfate with on-line microdialysis sampling, J. Pharm. Biomed. , 2003, 33: 765-773.
    14. Kaptein W. A. , Zwaagstra J. J. , Venema K. , Korf J. , Continuous Ultraslow Microdialysis and Ultrafiltration for Subcutaneous Sampling As Demonstrated by Glucose and Lactate Measurements in Rats, Anal. Chem. , 1998, 70: 4696-4700.
    15. Yao D. C. , Vlessidis A. G. , Evmiridis N. P. , Microdialysis sampling and monitoring of uric acid in vivo by a chemiluminescence reaction and an enzyme on immobilized chitosan support membrane, Anal. Chim. Acta, 2003, 478: 23-30.
    16. Yao D. C. , Vlessidis A. G. , Evmiridis N. P. , Monitoring reactive oxygen species in vivo using microdialysis sampling and chemiluminescence detection as an alternative global method for determination of total antioxidant capacity, Anal. Chim. Acta, 2002, 467: 133-144.
    17. Manz A. , Graber N. N. , Widmer H. M. , Miniaturized total chemical analysis system: a novel concept for chemical sensing, Sens. Actuators B, 1990, 1: 244-248.
    18. Dempsey E. , Diamond D. , Smyth M. R. , Urban G. , Jobst G. , Moser I. , Verpoone E. M. J. , Manz A. , Widmer H. M. , Rabenstein K. , Freaney R, Design and development of a miniaturised total chemical analysis system for on-line lactate and glucose monitoring in biological samples, Anal. Chim Acta, 1997, 346: 341-349.
    19. Lv Y. , Zhang Z. J. , Chen F. N. , Chemiluminescence microfluidic system sensor on a chip for determination of glucose in human serum with immobilized reagents, Talanta, 2003, 59: 571-576.
    20. Chang C. A. , Patterson H. H. , Halide ion enhancement of chromium(Ⅲ), iron(Ⅱ), and cobalt(Ⅱ) catalysis of luminol chemiluminescence, Anal. Chem. , 1980, 52: 653-656.
    21. Zhao Y. , Liang X. , Lunte C. E. , Comparison of recovery and delivery in vitro for calibration of microdialysis probes, Anal. Chim Acta, 1995, 316: 403-410.
    22.方京冲,俞茂华,杨秀芳,朱禧星,石墨炉原子吸收光谱法测定血清中微量铬的探讨,上海医科大学学报,1994,21:51-54.
    23. Debasis B. , Sidney J. S. , Bernard W. D. , Manashi B. , Harry G. P. , Cytotoxicity and oxidative mechanisms of different forms of chromium, Toxicology, 2002, 180: 5-22.
    24. Shrivastava R, Upreti R. K. , Seth P. K. , Chaturvedi U. C. , Effects of chromium on the immune system, FEMS Immunol Med Microbiol, 2002, 34: 1-7.
    25.章竹君,吕九如,铬(Ⅲ)催化鲁米诺-过氧化氢体系化学发光反应的研究,化学通报,1984,5:25-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700