原子荧光在线联用技术在形态分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在发展原子荧光(AFS)在线联用技术,并将其应用于环境和生物样品中痕量元素的形态分析和汞形态稳定性研究,内容包括以下五章。
     第一章为文献综述。第一部分简要评述了气相色谱-AFS、高效液相色谱(HPLC)-AFS和毛细管电泳(CE)-AFS在线联用系统的接口技术,总结了这几种联用技术在形态分析中的应用。第二部分综述了Hg(Ⅱ)和甲基汞(MeHg)的贮存稳定性影响因素,讨论了汞损失机理,总结了汞损失的防止方法。
     第二章成功地把浊点萃取法应用到HPLC-CV(冷蒸气发生)-AFS联用系统中,为HPLC联用系统汞形态分析提供了一种操作简单、费用低廉的样品预富集方法。pH为3.5时,MeHg、乙基汞(EtHg)、苯基汞(PhHg)和Hg(Ⅱ)以吡咯烷二硫代氨基甲酸铵(APDC)络合物的形式被Triton X-114胶束萃取,40℃下平衡10min相分离后,汞化合物被富集到表面活性剂相。采用ODS柱,以甲醇、乙腈和水(65:15:20,v/v/v)混合溶液(pH3.5)为流动相,表面活性剂富集相中的四种汞-APDC络合物在HPLC中得到基线分离。HPLC流出液先与2%m/v K_2S_2O_8-10%v/v HC1混合溶液在200cm的编结反应器(KR)中充分混合,汞-APDC络合物被在线氧化为Hg(Ⅱ),再与KBH_4溶液反应生成汞蒸气,AFS测定。预富集10mL样品溶液得到MeHg、EtHg、PhHg和Hg(Ⅱ)的富集倍数分别为29,43,80和98,检出限(3α)范围为0.1~0.9ng L~(-1)(以Hg计)。此方法成功地应用于鱼肉样品萃取液中汞化合物的富集和形态分析。
     第三章应用CE-AFS联用新技术进行了有机锡形态分析。使用50cm长,75μm内径的毛细管,选择50mmol L~(-1)H_3BO_3-50mmol L~(-1)Tris-10%v/v甲醇(pH7.10)缓冲体系,添加0.008mmol L~(-1)CTAB能有效抑制有机锡阳离子在毛细管内壁的吸附,20KV电压下实现了三甲基锡、一丁基锡、二丁基锡和三丁基锡的基线分离。然后以KBH_4为还原剂,把有机锡在线转化为氢化物,AFS测定。有机锡化合物的迁移时间、峰面积和峰高的精密度范围(RSD,n=5)分别为1.7~3.1%、3.8~4.7%和1.6~2.8%。
     第四章采用流动注射(FI)在线吸附预富集在线氧化洗脱CV-AFS联用技术建立了一种快速、灵敏、费用低廉的天然水样中痕量Hg(Ⅱ)的测定方法。天然水样中痕量的Hg(Ⅱ)通过FI在线形成中性的汞-二乙基二氨基甲酸(Hg-DDTC)络合物并吸附在聚四氟乙烯管编制的KR的内壁上实现预富集。然后用16%v/v HCl-10%v/v H_2O_2混合溶液作为洗脱剂洗脱吸附在KR内的Hg-DDTC络合物。在线氧化洗脱能在冷蒸气发生前有效地把Hg-DDTC络合物氧化分解为容易被KBH_4还原的Hg(Ⅱ),大大提高了冷蒸气发生效率。用3.1mL min~(-1)流速富集样品60s,得到的检测限(3σ)为4.4ng L~(-1),采样频率为36h~(-1)。MeHg、EtHg和PhHg等有机汞化合物对Hg(Ⅱ)的测定没有干扰。本方法成功地用于测定标准参考物GBW(E)080392(模拟天然雨水)、河水、湖水和海水中的Hg(Ⅱ)。
     第五章利用CV-AFS和HPLC-CV-AFS联用技术考察了干燥脱水处理鱼肉样品以及调节HCl萃取液pH值对总汞和汞形态的影响。初步实验表明,短时间微波炉和烘箱干燥对新鲜鱼肉中总汞含量没有明显的影响。HCl萃取液的pH降低,甲基汞(保留时间为7.10min)的保留时间提前。这可能是因为酸度变化引起萃取液中的甲基汞发生了形态改变,其根本原因有待更深入的研究。
This dissertation deals with atomic fluorescence spectrometry (AFS) based on-line hyphenation techniques for speciation analysis and stability study of mercury species. It consists of the following chapters.
     In Chapter 1, on-line hyphenation techniques of AFS with gas chromatography, high performance liquid chromatography (HPLC) and capillary electrophoresis (CE) were reviewed with emphasis on the interface design and analytical applications. Factors affecting the stability of inorganic mercury and methylmercury during storage were reviewed. Several possible proposed mechanisms for mercury losses and various reported approaches for prevention of such losses were discussed.
     In Chapter 2, cloud point extraction was applied for simultaneous preconcentration of Hg(II), methylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg) prior to HPLC-CV (cold vapor)-AFS. The four mercury species were taken into complexes with ammonium pyrrolidine dithiocarbamate (APDC) in Triton X-114 medium and concentrated in the surfactant-rich phase by bringing the solution to the temperature of 40℃. Baseline separation of the enriched complexes was achieved on an ODS column with a mixture of methanol, acetonitrile and water (65:15:20, v/v/v) as the mobile phase (pH 3.5). A post-column oxidation of the elute solution from HPLC, in the presence of K_2S_2O_8 in HCl, was applied to convert organomercury compounds into Hg(II) for cold vapor generation. The preconcentration of 10 mL of sample solution gives enhancement factors of 29, 43, 80 and 98 for MeHg, EtHg, PhHg and Hg (II), respectively. Detection limits (3σ) ranged from 0.1 to 0.9 ng L~(-1) (as Hg). The developed method was successfully applied to the speciation of mercury in real fish samples.
     In Chapter 3, CE coupled with hydride generation (HG)-AFS was developed for the speciation analysis of organotin compounds. The four organotin cations of trimethyltin, monobutyltin, dibutyltin and tributyltin were completely separated by CE in a 50 cm×75μm i.d. fused-silica capillary at 20 kV and using a mixture of 50 mmol L~(-1) H_3BO_3-50 mmol L~(-1) Tris-10% v/v methanol (pH 7.10) as electrolyte. 0.008 mmol L~(-1) CTAB added to the electrolyte suppressed the adsorption of the organotin cations on the inner wall of capillary. The generated hydride species were on-line detected with AFS. The relative standard deviation (RSD, n = 5) were in the range of 1.7 to 3.1% for migration time, 3.8 to 4.7 % for peak area response, and 1.6 % to 2.8% for peak height response for the four organotin species.
     In Chapter 4, a rapid, sensitive, and cost-effective method was developed for the determination of trace mercury in water samples by on-line coupling of flow injection sorption preconcentration with oxidative elution to CV-AFS. Trace Hg(II) in aqueous solution was preconcentrated by on-line formation of mercury diethyldithiocarbamate complex (Hg-DDTC) and adsorption of the resulting neutral complex on the inner walls of a PTFE knotted reactor. A mixture of 16% v/v HCl and 10% v/v H_2O_2 was used as the eluent to remove the adsorbed Hg-DDTC from the KR, then convert on-line the Hg-DDTC into Hg(II) prior to its reduction to elemental mercury by KBH4 for subsequent on-line CV-AFS detection. No serious interferences from the organomercury species of methylmercury, ethylmercury and phenylmercury up to 0.5 mg L~(-1) were observed for the preconcentration of Hg (II) in the developed system. With a sample loading flow rate of 3.1 mL min~(-1) for a 60 s preconcentration, a detection limit (3a) of 4.4 ng L~(-1) was achieved at a sample throughput of 36 samples h~(-1). The method was successfully applied to the determination of mercury in a certified reference material, GBW(E) 080392, and a number of local natural water samples.
     In Chapter 5, CV-AFS and HPLC-CV-AFS were used to study the stability of mercury species in fish samples during sample treatment. From the preliminary results obtained it can be concluded that fresh fish sample show good stability against temperature during microwave oven and oven drying. On the other hand, significant species interconversion takes place during the pH adjustment of fish sample extract. This implies that the HC1 leaching provides a source of error in mercury species determination because of species interconversion. More effort should be made to solve the problems associated with the stability of mercury species.
引文
[1] D. M. Templeton, F. Arises, R. Cornelis, L. Danielsson, H. Muntau, H. P. Van Leeuwen, R. Lobinski, Guidelines for terms related to chemical speciation and fractionation of elements. Definition, structural aspects, and methodological approaches, Pure Appl. Chem. 72 (2000) 1453-1470.
    [2] 蔡卓,肖少荣,郑海林,元素形态分析,广西大学学报 21(1996)242-246.
    [3] 江桂斌,有机金属化合物形态分析,环境科学进展 7(1999)7-12.
    [4] 黄业茹,杨福全,色谱技术在有机金属化合物形态分析中的应用进展,环境科学研究 12(1999)60-64.
    [5] M. Horvat, L. Liang, N. S. Bloom, Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples, Anal. Chim. Acta 282 (1973) 153-168.
    [6] 倪哲明,色谱—原子光谱应用于环境中痕量金属有机物的分析,光谱学与光谱分析 15(1995)87-94.
    [7] 胡广林,王小如,杨芃原,黄本立,气相色谱—原子光谱测定痕量金属有机化合物形态的样品前处理,分析科学学报 14(1998)170-175.
    [8] L. Ebdon, S. Hill, R. W. Ward, Directly coupled chromatography-atomic Spectroscopy, part 1, directly coupled gas chromatography-atomic Spectroscopy, a review, Analyst 111 (1986) 1113-1138.
    [9] P. E. Gardiner, Gas chromatography coupled with atomic spectrometry, CRC press, 1989, p.45.
    [10] J. C. Van Loon, J. Lichwa, B. Radziuk, Non-dispersive atomic fluorescence Spectroscopy, a new detector for chromatography, J. Chromatogr. 136 (1977) 301-305.
    [11] B. Radziuk, Y. Thomassen, L. R. P. Butler, J. C. Van Loon, Y. K. Chau, A study of atomic absorption and atomic fluorescence atomization systems as detectors in the gas chromatographic determination of lead, Anal. Chim. Acta 108 (1979) 31-38.
    [12] A. Dulivo, P. Papoff, Simultaneous detection of alkylselenide, alkyllead and alkyltin compounds by gas-chromatography using a multichannel nondispersive atomic-fluorescence spectrometric detector and a miniature flame as the atomizer, J. Anal. At. Spectrom. 1 (1986)479-484.
    [13] N. S. Bloom, W. F. Fitzgerald, Determination of volatile mercury species at the picogram level by low-temperature gas-chromatography with cold-vapor atomic fluorescence detection, Anal. Chim. Acta 208 (1988) 151 -161.
    [14] L. Liang, M. Horvat, N. S. Bloom, An improved speciation method for mercury by GC/CV-AFS after aqueous phase ethylation and room temperature precollection. Talanta 41 (1994) 371-379.
    [15] Y. Cai, R. Jaffe, A. Alli, R. D. Jones, Determination of organomercury compounds in aqueous samples by capillary gas chromatography atomic fluorescence spectrometry following solid-phase extraction, Anal. Chim. Acta 334 (1996) 251-259.
    [16] L. Liang, M. Horvat, E. Cernichiari, B. Gelein, S. Balogh, Simple solvent extraction technique for elimination of matrix interferences in the determination of methylmercury in environmental and biological samples by ethylation gas chromatography cold vapor atomic fluorescence spectrometry, Talanta 43 (1996) 1883-1888.
    
    [17] K. C. Bowles, S. C. Apte, Determination of methylmercury in natural water samples by steam distillation and gas chromatography atomic fluorescence spectrometry, Anal. Chem. 70 (1998) 395 -399.
    [18] H. E. L. Armstrong, W. T. Corns, P. B. Stockwell, G. O'Connor, L. Ebdon, E. H. Evans, Comparison of AFS and ICP-MS detection coupled with gas chromatography for the determination of methylmercury in marine samples, Anal. Chim. Acta 390 (1999) 245-253.
    
    [19] Y. Cai, S. Monsalud, K. G. Furton, Determination of methyl- and ethylmercury compounds using gas chromatography atomic fluorescence spectrometry following aqueous derivatization with sodium tetraphenylborate, Chromatographia 52 (2000) 82-86.
    
    [20] Y. Cai, S. Monsalud, R.Jaffe, R. D. Jones, Gas chromatographic determination of organomercury following aqueous derivatization with sodium tetraethylborate and sodium tetraphenylb orate - Comparative study of gas chromatography coupled with atomic fluorescence spectrometry, J Chromatogr. A 876 (2000) 147-155.
    
    [21] L. Ebdon, M. E. Foulkes, S. Le Roux, R. Muoz-Olivas, Cold vapour atomic fluorescence spectrometry and gas chromatography-pyrolysis-atomic fluorescence spectrometry for routine determination of total and organometallic mercury in food samples, Analyst 127 (2002) 1108-1114.
    
    [22] S. Diez, J. M. Bayona, Determination of methylmercury in human hair by ethylation followed by headspace solid-phase microextraction-gas chromatography-cold-vapour atomic fluorescence spectrometry, J. Chromatogr. A 963 (2002) 345-351.
    
    [23] M. Leermakers, H. L. Nguyen, S. Kurunczi, B. Vanneste, S. Galletti, W. Baeyens, Determination of methylmercury in environmental samples using static headspace gas chromatography and atomic fluorescence detection after aqueous phase ethylation, Anal. Bioanal. Chem. 377 (2003) 327-333.
    
    [24] T. Stoichev, R. C. Rodriguez Martin-Doimeadios, E. Tessier, D. Amouroux, O. F. X.Donard, Improvement of analytical performances for mercury speciation by on-line derivatization, cryofocussing and atomic fluorescence spectrometry, Talanta 62 (2004) 433 -438.
    
    [25] C. B. Ke, K. D. Su, K. C. Lin, Laser-enhanced ionization and laser-induced atomic fluorescence as element-specific detection methods for gas chromatography - Application to organotin analysis, J Chromatogr. A 921 (2001) 247-253.
    
    [26] L. Ebdon, S. Hill, R. W. Ward, Directly coupled chromatography-atomic Spectroscopy: part 2. Directly coupled liquid chromatography- atomic Spectroscopy (a review), Analyst 112 (1987) 1-16.
    [27] J. C. Van Loon, B. Radziuk, G W. Rwing, Editor, Environmental analysis, Academic Press, New York, 1977, pp 47-55.
    [28] D. D. Siemer, P. Koteel, D. T. Haworth, W. J. Taraszewski, S. R. Lawson, Continuum source atomic fluorescence detector for liquid-chromatography, Anal. Chem. 51(1979): 575-579.
    [29] D. J. Mackey, Metal organic-complexes in seawater-an investigation of naturally-occurring complexes of Cu, Zn, Fe, Mg, Ni, Cr, Mn and Cd using high-performance liquid-chromatography with atomic fluorescence detection, Mac Chem. 13(1983) 169-180.
    [30] A. P. Walton, G T. Wei, Z. Liang, R. G Michel, Laser-excited atomic fluorescence in a flame as a high-sensitivity detector for organomanganese and organotin compounds following separation by high-performance liquid-chromatography, Anal. Chem. 63 (1991) 232-240.
    [31] A. Woller, Z. Mester, P. Fodor, Determination of arsenic species by high-performance liquid-chromatography ultrasonic nebulization atomic fluorescence spectrometry, J. Anal. At. Spectrom. 10 (1995) 609-613.
    [32] Z. Mester, A. Woller, P. Fodor, Determination of arsenic species by high-performance liquid chromatography hydride generation (ultrasonic nebulizer) atomic fluorescence spectrometry, Microchem. J. 54 (1996) 184-194.
    [33] Z. Mester, P. Fodor, Analytical system for arsenobetaine and arsenocholine speciation, J. Anal. At. Spectrom. 12 (1997) 363-367.
    [34] N. M. M. Coelho, C. N. Parrilla, M. L. Cervera, A. Pastor, M. de la Guardia, High performance liquid chromatography-atomic fluorescence spectrometric determination of arsenic species in beer samples, Anal. Chim. Acta 482 (2003) 73-80.
    [35] J. T. van Elteren, Z. Slejkovec, Ion-exchange separation of eight arsenic compounds by high-performance liquid chromatography UV decomposition hydride generation atomic fluorescence spectrometry and stability tests for food treatment procedures, J. Chromatogr. A 789(1997) 339-348.
    [36] 梁立娜,江桂斌,高效液相色谱及其联用技术在汞形态分析中的应用,分析科学学报 18(2002)338-343.
    [37] R. Falter, G. Ilgen, Coupling of the RP C18 preconcentration HPLC-UV-PCO system with atomic fluorescence detection for the determination of methylmercury in sediment and biological tissue, Fresenius' J. Anal. Chem. 358 (1997) 407-410.
    [38] J. L. Gomez-Ariza, D. Sanchez-Rodas, I. Giraldez, E. Morales, A comparison between ICP-MS and AFS detection for arsenic speciation in environmental samples, Talanta 51 (2000) 257 -268.
    [39] Z. Mester, P. Fodor, High-performance liquid chromatography hydride generation atomic fluorescence spectroscopic determination of arsenic species in water, J. Chromatogr. A 756 (1996) 292 -299.
    [40] X. C. Le, M. S. Ma, N. A. Wong, Speciation of arsenic compounds using high-performance liquid chromatography at elevated temperature and selective hydride generation atomic fluorescence detection, Anal. Chem. 68 (1996) 4501- 4506.
    [41] X. C. Le, M. S. Ma, Short-column liquid chromatography with hydride generation atomic fluorescence detection for the speciation of arsenic, Anal. Chem. 70 (1998) 1926 -1933.
    [42] Z. Slejkovec, J. T. van Elteren, A. R. Byrne, Determination of arsenic compounds in reference materials by HPLC- (UV)-HG-AFS, Talanta 49 (1999) 619 -627
    [43] M. Vilano, A. Padro, R. Rubio, Coupled techniques based on liquid chromatography and atomic fluorescence detection for arsenic speciation, Anal. Chim. Ada 411 (2000) 71-79.
    [44] M. A. Suner, V. Devesa, I. Rivas, D. Velez, R. Montoro, Speciation of cationic arsenic species in seafood by coupling liquid chromatography with hydride generation atomic fluorescence detection, J. Anal. At. Spectrom. 15 (2000) 1501-1507.
    [45] Z. Slejkovec, I. Salma, J. T. van Elteren, E. Zemplen-Papp, Speciation of arsenic in coarse and fine urban aerosols using sequential extraction combined with liquid chromatography and atomic fluorescence detection, Fresenius'J. Anal. Chem. 366 (2000) 830 -834.
    [46] B. He, G- B. Jiang, X- B. Xu, Arsenic speciation based on ion exchange high-performance liquid chromatography hyphenated with hydride generation atomic fluorescence and on-line UV photo oxidation, Fresenius'J. Anal. Chem. 368 (2000) 803-808.
    [47] M. V. Gallardo, Y. Bohari, A. Astruc, M. Potin-Gautier, M. Astruc, Speciation analysis of arsenic in environmental solids Reference Materials by high-performance liquid chromatography-hydride generation-atomic fluorescence spectrometry following orthophosphoric acid extraction, Anal. Chim. Acta 441 (2001) 257-268.
    [48] B. He, Y. Fang, G. B. Jiang, Z. M. Ni, Optimization of the extraction for the determination of arsenic species in plant materials by high-performance liquid chromatography coupled with hydride generation atomic fluorescence spectrometry, Spectrochim. Acta part B 57 (2002)1705-1711.
    [49] D. Sanchez-Rodas, A. Geiszinger, J. L. Gomez-Ariza, K. A. Francesconi, Determination of an arsenosugar in oyster extracts by liquid chromatography-electrospray mass spectrometry and liquid chromatography-ultraviolet photo-oxidation-hydride generation atomic fluorescence spectrometry, Analyst 127 (2002) 60 -65.
    [50] L. Pitts, A. Fisher, P. Worsfold, J. H. Steven, Selenium speciation using high-performance liquid-chromatography hydride generation atomic fluorescence with online microwave reduction, J. Anal. At. Spectrom 10 (1995) 519-520.
    [51] Z. Mester, P. Fodor, Selenium speciation with on-column preconcentration high-performance liquid chromatography atomic fluorescence spectrometry using ultrasonic nebulization technique, Anal. Chim. Acta 386 (1999) 89 -97.
    [52] E. Puskel, Z. Mester, P. Fodor, Determination of selenoamino acids by high-performance liquid chromatography-hydraulic high pressure nebulization-atomic fluorescence spectrometry, J. Anal. At. Spectrom. 14 (1999) 973 -976.
    [53] M. Vilano, R. Rubio, Liquid chromatography-UV irradiation-hydride generation-atomic fluorescence spectrometry for selenium speciation, J. Anal. At. Spectrom. 15 (2000) 177 -180.
    [54] J. L Gomez-Ariza, D. Sanchez-Rodas, M. A. C. de la Torre, I. Giraldez, E. Morales, Column-switching system for selenium speciation by coupling reversed-phase and ion-exchange high-performance liquid chromatography with microwave-assisted digestion-hydride generation-atomic fluorescence spectrometry, J. Chromatogr. A 889 (2000) 33-39.
    [55] I. Ipolyi, Z. Stefanka, P. Fodor, Speciation of Se(IV) and the selenoamino acids by high-performance liquid chromatography-direct hydride generation-atomic fluorescence spectrometry, Anal. Chim. Acta 435 (2001) 367-375.
    [56] E. Ramalhosa, S. Rio-Segade, E. Pereira, C. Vale, A. Duarte, Microwave-assisted extraction for methylmercury determination in sediments by high performance liquid chromatography-cold vapour-atomic fluorescence spectrometry, J. Anal. At. Spectrom 16(2001) 643-647.
    [57] E. Ramalhosa, S. Rio-Segade, E. Pereira, C. Vale, A. Duarte, Microwave treatment of biological samples for methylmercury determination by high performance liquid chromatography-cold vapour atomic fluorescence spectrometry, Analyst 126(2001) 1583-1587.
    [58] E. Ramalhosa, S. Río-Segade, E. Pereira, C. Vale, A. Duarte, Simple methodology for methylmercury and inorganic mercury determinations by high-performance liquid chromatography-cold vapour atomic fluorescence spectrometry, Anal. Chim. Acta 448 (2001) 135-143.
    [59] L.-N. Liang, G-B. Jiang, J.-F. Liu, et al., Speciation analysis of mercury in seafood by using high-performance liquid chromatography on-line coupled with cold-vapor atomic fluorescence spectrometry via a post column microwave digestion, Anal. Chim. Acta 477 (2003) 131-137.
    [60] X.-B. Yin, X.-P. Yan, Y. Jiang, X.-W. He, On-line coupling of capillary electrophoresis to hydride generation atomic fluorescence spectrometry for arsenic speciation analysis, Anal. Chem.74 (2002) 3720-3725.
    [61] X.-P. Yan, X.-B. Yin, D.-Q. Jiang, X.-W. He, Speciation of mercury by hydrostatically modified electroosmotic flow capillary electrophoresis coupled with volatile species generation atomic fluorescence spectrometry, Anal. Chem. 75 (2003) 1726-1732.
    [62] M. L. Magnuson, J. T. Creed, C. A. Brockhoff, Speciation of selenium and arsenic compounds by capillary electrophoresis with hydrodynamically modified electroosmotic flow and on-line reduction of selenium (Ⅵ) to selenium (Ⅳ) with hydride generation inductively coupled plasma mass spectrometric detection, Analyst 122 (1997) 1057-1061.
    [63] 尹学博,原子荧光联用新技术及其在砷和汞形态分析中的应用,南开大学博士学位论文,2003.
    [1] I. Havezov, Atomic absorption spectrometry (AAS) —a versatile and selective detector for trace element speciation, Fresenius'J. Anal. Chem. 355 (1996) 452-456.
    
    [2] P. E. Gardiner, Chemical speciation in biology and medicine: the role of atomic spectrometric techniques, J. Anal. Atom. Spectrom. 3 (1988) 163-168.
    [3] R. Puk, J. H. Waber, Determination of mercury (II) and monomethylmercury cation, dimethylmercury and diethylmercury by hydride generation, cryogenic trapping and atomic absorption spectrometric detection, Anal. Chim. Acta 292 (1994) 175-183.
    [4] A. DeDiego, C. H. Tseng, T. Stoichev, D. Amouroux, O. F. X. Donard, Interferences during mercury speciation determination by volatilization, cryofocusing, gas chromatography and atomic absorption Spectroscopy: comparative study between hydride generation and ethylation techniques, J. Anal. At. Spectrom. 13 (1998) 623-629.
    [5] E. Munaf, H. Haraguchi, D. Ishii, T. Tokeuchi, M. Goto, Speciation of mercury compounds in waste water by microcolumn liquid chromatography using a preconcentration column with cold-vapor atomic absorption spectrometric detection, Anal. Chim. Acta 235 (1990) 399-404.
    [6] J. C. G. Wu, Interfacing high-performance liquid chromatography and cold-vapor atomic absorption with on-line preconcentration for mercury speciation, Spectrosc. Lett. 24 (1991) 681-697.
    [7] R. Ritsema, O. F. X. Donard, Hyphenated technique applied to the speciation of organometallic compounds in environment, Appl. Organomet. Chem 8 (1994) 571-575.
    [8] A. Prange, E. Jantzen, Determination of organometallic species by gas chromatography inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 10 (1995) 105-109.
    [9] H. Hintelmann, R. D. Evans, J. Y. Villeneuve, Measurement of mercury methylation in sediments by using enriched stable mercury isotopes combined with methylmercury determination by gas chromatography-inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 10 (1995) 619-624.
    
    [10] C. Gerbersmann, M. Heisterkamp, F. C. Adams, J. A. C. Broekart, Two methods for the speciation analysis of mercury in fish involving microwave-assisted digestion and gas chromatography-atomic emission spectrometry. Anal. Chim. Acta 350 (1997) 273-285.
    
    [11] J. Costa-Fernandez, F. B.Lunzer, R. Pereiro-Garcia, A. Sanz-Medel, N. J. Bordel-Garcia, Direct coupling of high-performance liquid chromatography to microwave-induced plasma atomic emission spectrometry via volatile-species generation and its application to mercury and arsenic speciation, J. Anal. At. Spectrom. 10 (1995) 1019-1025.
    [12] C. F. Harrington, The speciation of mercury and organomercury compounds by high-performance liquid chromatography, Trends Anal. Chem. 19 (2000) 167-179.
    [13] H. Hintelmann, R. D. Wilken, The analysis of organic mercury compounds using liquid chromatography with on-line atomic fluorescence spectrometric detection, Appl. Organomet. Chem. 7(1993) 173-180.
    [14] C- C. Wan, C- S. Chen, S.- J. Jiang, Determination of mercury compounds in water samples by liquid chromatography-inductively coupled plasma mass spectrometry with an in situ nebulizer/vapor generator, J. Anal. At. Spectrom. 12 (1997) 683-690.
    [15] D. S. E. Bushee, Speciation of mercury using liquid chromatography with detection by inductively coupled plasma mass spectrometry, Analyst 113 (1988) 1167-1170.
    [16] I. S. Krull, D. S. Bushee, R. G. Schleicher, S. B. Smith, Determination of inorganic and organomercury compounds by high-performance liquid chromatography inductively coupled plasma mass spectrometry with cold-vapor generation, Analyst 111 (1986) 345-349.
    [17] W. L. Clevenger, B. W. Smith, J. D. Winefordner, Trace determination of mercury: a review, Crit. Rev. Anal. Chem. 27 (1997) 1-27.
    [18] J. E. Sanchez Uria, A. Sanz-Medel, Inorganic and methylmercury speciation in environmental samples, Talanta 47 (1998) 509-524.
    [19] A. M. Carro, M. C. Mejuto, Application of chromatographic and electrophoretic methodology to the speciation of organomercury compounds in food analysis, J. Chromatogr. A 882 (2000) 283-307
    [20] D. Cossa, J. Sanjuan, J. Cloud, P. B. Stockwell, W. T. Corns, Automated technique for mercury determination at sub-nanogram per litre levels in natural water, J. Anal. At. Spectrom. 10 (1995) 287-291.
    [21] M. Horvat, L. Liang, N. S. Bloom, Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples, Anal. Chim. Acta 282 (1973) 153-168.
    [22] R. V. Coyne, J. A. Collins, Loss of mercury from water during storage, Anal. Chem. 44 (1972)1093-1096.
    [23] R. A. Carr, P. E. Wilkniss, Mercury: short-term storage of natural waters, Environ. Sci. Technol 7(1973)62-63.
    [24] R. M .Rosain, C. M. Wai, The rate of loss of mercury from aqueous solution when stored in various containers. Anal. Chim. Acta 65 (1973) 279-284.
    [25] R. W. Heiden, D. A. Aikens, Humic acid as a preservative for trace mercury(II) solutions stored in polyolefin containers, Anal. Chem. 55 (1983) 2327-2332.
    [26] R. Ahmed, M. Stoeppler, Storage and stability of mercury and methylmercury in sea water, Anal. Chim. Acta 192 (1987) 109-113.
    [27] M. Leermakers, P. Lansens, W. Baeyens, Storage and stability of inorganic and methylmercury solutions, Fresenius'J. Anal. Chem. 336 (1990) 655-662.
    [28] D. D. Copeland, M. Facer, R. Newton, P. J. Walker, Use of poly(ethylene terephthatate) plastic bottles for sampling, transportation and storage of potable water prior to mercury determination, Analyst 121 (1996) 173-176.
    [29] R. W. Baier, L. Wojnowich, L. Petrie, Mercury loss from culture media, Anal. Chem. 47 (1975) 2464-2467.
    [30] M. Horvat, A. R. Byrne, Preliminary study of the effect of some physical parameters on the stability of methylmercury in biological samples, Analyst 117 (1992) 665-668.
    [31] K. R. Olson, Loss of carbon-14 and mercury-203 labeled methylmercury from various solutions, Anal. Chem. 49 (1977) 23-26.
    [32] R. W. Heiden, D. A. Aikens, Pretreatment of polyolefin bottles with chloroform and aqua regia vapor to prevent losses from stored trace mercury(II) solutions, Anal. Chem. 51 (1979) 151-156.
    [33] R. Ahmed, M. Stoeppler, Decomposition and stability studies of methylmercury in water using cold vapour atomic absorption spectrometry, Analyst 111 (1986) 1371-1374.
    [34] V. Krivan, H. F. Haas, Prevention of loss of mercury(II) during storage of dilute solution in various containers, Fresenius'Z. Anal. Chem. 332 (1988) 1-6.
    [35] P. Lansens, C. Meuleman, W. Baeyens, Long-term stability of methylmercury standard solutions in distilled, deionized water, Anal. Chim. Acta 229 (1990) 281-285.
    [36] J. Luna, M. R. Brunetto, J. M. L. Burguera, M. Burguera, M. Gallignani, A factorial design to determination the effects of some variables in the long-term stability of methylmercury standard solutions in water, Fresenius' J. Anal. Chem. 354 (1996) 367-369.
    [37] J. Snell, J. Qian, M.Johansson, K. Smit, W. Frech, Stability and reactions of mercury in organic solution, Analyst 123 (1998) 905-909.
    [38] N. S. Bloom, Analysis and stability of mercury speciation in petroleum hydrocarbons, Fresenius'J. Anal. Chem. 366 (2000) 438-443.
    [39] W. D. Burrows, P. A. Krenkel, Uptake and loss of methylmercury-203 by bluegills (Lepomis macrochirus), Environ. Sci. Technol. 7 (1973) 1127-1130.
    
    [40] C. Feldman, Preservation of dilute mercury solution, Anal. Chem. 46 (1974) 99-102.
    
    [41] M. Stoeppler, W. Matthes, Storage behaviour of inorganic mercury and methylmercury chloride in sea water, Anal. Chim. Acta 98 (1978) 389-392.
    [42] P. S. Fadini, W. F. Jardim, Storage of natural water samples for total and reactive mercury analysis in PET bottles, Analyst 125 (2000) 549-551.
    [43] G. E. Batley, Trace Element Speciation: Analytical Methods and Problems. CRC press, Inc., Boca Raton, Florid, 1989, P. 5-9
    [44] P. Benes, I. Rajman, Radiochemical study of the sorption of trace elements. V. Adsorption and desorption of bivalent mercury on polyethylene, Collect. Czech. Chem. Commun. 34 (1969) 1375.
    [45] P. Benes, Radiochemical study of the sorption of trace elements. VI. Adsorption and desorption of bivalent mercury on glass, Collect. Czech. Chem. Commun. 35 (1970) 1349-1355.
    [46] J. M. Lo, C. M. Wai, Mercury loss from water during storage: mechanism and prevention, Anal. Chem. 47 (1975) 1869-1870.
    [47] S. P. Piccolino, Preservation of mercury in polyethylene containers, J. Chem. Educ. 60 (1983)235-235.
    [48] K. May, M. Stoeppler, Pretreatment studies with biological and environmental material IV. Complete wet digestion in partly and completely closed quartz vessels for subsequent trace and ultratrace mercury determination, Fresenius'Z. Anal. Chem. 317 (1984) 248-251.
    [49] K. J. M. Kramer, Ph. Quevauviller, W.S. Dorten, E. M. Van der Vlies, H. P. M. de Haan. Certification of total Hg in a seawater reference material, CRM579, Analyst 123 (1998) 959-963.
    [50] Ph. Quevauviller, M. B. de la Calle-Guntifias, E. A. Maier, C. Camara, A survey on stability of chemical species in solution during storage: the BCR experience, Microchim. Acta 118 (1995) 131-141.
    [51] I. Devai, R. D. Delaune, W. H. Patrick Jr., R. P. Gambrell. Changes in methylmercury concentration during storage: effect of temperature, Organ. Geochem. 32 (2001) 755-758.
    [52] J. L. Gomez Ariza, E. Morales, D. Sanchez-Rodas, I. Giraldez, Stability of chemical species in environmental matrices, Trends Anal. Chem. 19 (2000) 200-209.
    [53] Ph. Quevauviller, I. Drabaek, H. Muntau, B. Griepink, Improvements in methylmercury determination prior to the certification of two tuna fish materials, Appl. Organomet. Chem. 7(1993)413-420.
    [54] Ph. Quevauviller, I. Drabaek, H. Muntau, M. Bianchi, A. Bortoli, B. Griepink, Certified reference materials (CRMs 463 and 464) for the quality control of total and methylmercury determination in tuna fish, Trends Anal. Chem. 15 (1996) 160-167.
    [55] M. Horvat, L. Liang, S. Azemard, V. Mandic, J. P. Villeneuve, M. Coquery, Certification of total mercury and methylmercury concentrations in mussel homogenate (mytilus edulis) reference material, IAEA-142, Fresenius'J. Anal. Chem. 358 (1997) 411-418.
    [56] J. A. Tossell. Theoretical study of the photodecomposition of methyl Hg complexes, J. Phys. Chem. A 102 (1998) 3587-3591.
    [57] Ph. Quevauviller, G U. Fortunati, M. Filippelli, A. Bortoli, H. Muntau, Certification of toyal mercury and methylmercury in an estuarine sediment, CRM 580, Appl. Organomet. Chem. 12(1998)531-539.
    [58] T. Y. Toribara, C. P. Sheilds, L. Koval, Behaviour of dilute solutions of mercury, Talanta 17 (1970) 1025-1028.
    [59] O. Lindstrom, Rapid microdetermination of mercury by spectrophotometric flame combustion, Anal. Chem. 31 (1959) 461-467.
    [60] D. E. Robertson, The adsorption of trace elements in sea water on various container surfaces, Anal. Chim. Acta 42 (1968) 533-536.
    
    [61] D. W. Newton, R. Ellis, Jr., J. Environ. Qual. 3 (1974) 20.
    [62] H. Morita, T. Mitsuhashi, H. Sakurai, S. Shimomura. Absorption of mercury by solutions containing oxidants, Anal. Chim. Acta 153 (1983) 351-355.
    [63] R. J. Baltisberger, D. A. Hildebrand, D. Grieble, T. A. Ballintine, A study of the disproportionnation of mercury(II) induced by gas sparging in acid aqueous solutions for cold-vapor atomic absorption spectrometry, Anal. Chim. Acta 111 (1979) 111-122.
    [64] S. Shimomura, Y. Nishihara, Y. Tanase, Loss of mercury from dilute mercury (II) solution, Jpn.Anal. 17(1969)1148-1149.
    [65] S. Shimomura, Y Nishihara, Y Tanase, Decrease of mercury content in dilute mercury (II) solutions, Jpn. Anal. 18 (1969)1072-1077.
    [66] M. H. Bothner, D. E. Robertson, Mercury contamination of sea water samples stored in polyethylene containers, Anal. Chem. 47 (1975) 592-595.
    [67] I. Sanemasa, T. Deguchi, K. Urata, J. Tomooka, H. Nagai, Loss and recovery of mercury from sea water during storage, Anal. Chim. Acta 87 (1976) 479-481.
    [68] D. R. Christmann, J. D. Ingle, Jr., Problems with sub-p.p.b. mercury determinations: preservation of standards and prevention of water mist interferences, Anal. Chim. Acta 86 (1976)53-62.
    [69] K. Tonomura, K. Furukawa, M. Yamada, Environmental Toxicology of Pesticides. Academic Press, New York, N. Y, 1972, P. 115-227.
    [70] K. I. Mahan, S. E. Mahan, Mercury retention in untreated water samples at the part-per-billion level, Anal. Chem. 49 (1977) 662-664
    [71] J. Carron, H. Agemian, Preservation of sub-ppb levels of mercury in distilled and natural fresh waters, Anal. Chim. Acta 92 (1977) 61-70.
    [72] M. Stoeppler, K. May, Proc. Int. Conf. Heavy Metals in the Environment, vol.1, CEP Consultants, Edinburgh, 1983, P. 241
    [73] J. E. Hawley, J. D. Ingle, Jr., Improvements in cold vapor atomic absorption determination of mercury, Anal. Chem. 47 (1975) 719-723.
    [74] S. H. Omang, Determination of mercury in natural waters and effluents by flameless atomic absorption spectrophotometry, Anal. Chim. Acta 53 (1971) 415-420.
    [75] APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 18th edn., Washington D. C, 1992.
    [76] H. J. Issaq, W. L. Zielinski, Jr., Hot atomic absorption spectrometry method for the determination of mercury at the nanogram and subnanogram level, Anal. Chem. 46 (1974) 1436-1438.
    [77] M. S. Masri, M. Friedman, Competitive binding of mercuric chloride in dilute solutions by wool and polyethylene or glass containers, Environ. Sci. Technol. 7 (1973) 951-953.
    [78] M. Ambe, K. Suwabe, The preparation of standard solutions of mercury at the ppb level, Anal. Chim. Acta 92 (1977) 55-60.
    [79] I. Sanemasa, T. Deguchi, K. Urata, J. Tomooka, H. Nagai, The effect of ammonium thiocyanate and sodium chloride on loss and recovery of mercury from water during storage, Anal. Chim. Acta 94 (1977) 421-427.
    
    [80] G. Kaiser, D. Gotz, P. Schoch, G. Tolg, (German), Tanlanta 22 (1975) 889-899.
    [81] D. P. H. Laxen, R. M. Harrison, Cleaning methods for polythene containers prior to the determination of trace metals in freshwater samples, Anal. Chem. 53 (1981) 345-350.
    [82] B. Kinsella, R. L. Willix, Ultrasonic bath in container preparation for storage of seawater samples in trace metal analysis, Anal. Chem. 54 (1982) 2614-2616.
    [83] H. V. Weiss, W. H. Shipman, M. A. Guttman, Effective storage of dilute mercury solutions in polyethylene, Anal. Chim. Acta 81 (1976) 211-217.
    [84] H. Emteborg, N. Hadgu, D. C. Baxter. Quality control of a recently developed analytical method for the simultaneous determination of methylmercury and inorganic mercury in environmental and biological samples, J. Anal. At. Spectrom. 9 (1994) 297-302.
    [85] Ph. Quevauviller, K. J. M. Kramer, E. M. Van der Vlies, W. Dorten, B. Griepink, Interlaboratory studies to improve the quality of mercury determination in seawater, Fresenius'J. Anal. Chem. 356 (1996) 411-415.
    [86] Ph. Quevauviller, I. Drabaek, H. Muntau, M. Bianchi, A. Bortoli, B. Griepink, Certified reference materials (CRM 463 and 464) for the quality control of total and methylmercury determination in tuna fish, Trends Anal. Chem. 15 (1996) 160-167.
    [87] R. Falter, H. Hintelmann, Ph. Quevauviller. Conclusion of the workshop on "sources of error in methylmercury determination during sample preparation, derivatisation and detection", Chemosphere 39 (1999) 1039-1049.
    [88] Ph. Quevauviller, O. F. X. Donard, E. A. Maier, B. Griepink, Improvements of speciation analyses in environmental matrices, Microchim. Acta 109 (1992) 169-190.
    [89] N. S. Bloom, J. A. Colman, L. Barber, Artifact formation of methyl mercury during aqueous distillation and alternative techniques for the extraction of methyl mercury from environmental samples, Fresenius' J. Anal. Chem. 358 (1997) 371-377'.
    [90] H. Hintelmann, Comparison of different extraction techniques used for methylmercury analysis with respect to accidental formation methylmercury during sample preparation, Chemosphere 39 (1999) 1093-1105.
    [91] C. R. Hammerschmidt, W. F. Fitzgerald, Formation of artifact methylmercury during extraction from a sediment reference material, Anal. Chem. 73 (2001) 5930-5936.
    [92] G. E. M. Hall, J. C. Pel chat, P. Pel chat, J. E. Vaive, Sample collection, filtration and preservation protocols for the determination of 'total dissolved' mercury in waters, Analyst 127 (2002) 674-680.
    [93] R. S. Daniels, D. C. Wigfield, Gas-phase adsorptional losses elemental mercury in cold-vapor atomic absorption spectrometry, Anal. Chim. Acta 248 (1991) 575-577.
    [94] H. Emteborg, J. Snell, J. Qian, W. Frech, Sources of systematic errors in mercury speciation using grignard reagents and capillary gas chromatography coupled to atomic spectrometry, Chemosphere 39 (1999) 1137-1152.
    [95] P. J. Craig, R. O. Jenkins, G. H. Stojak, The analysis of inorganic and methyl mercury by derivatisation methods: opportunities and difficulties, Chemosphere 39 (1999) 1181-1197.
    [96] J. P. Snell, E. Bjorn, W. Frech, Investigation of errors introduced by the species distribution of mercury in organic solutions on total mercury determination by electrothermal vaporisation-inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 15 (2000) 397-402.
    [1] J. E. Sánchez Uría, A. Sanz-Medel, Inorganic and methylmercury speciation in environmental samples, Talanta 47 (1998) 509-524.
    [2] C. Sarzanini, G Sacchero, M. Aceto, O. Abollino, E. Mentasti, Simultaneous determination of methyl-, ethyl-, phenyl- and inorganic mercury by cold vapour atomic absorption spectrometry with on-line chromatographic separation, J. Chromatogr. 626 (1992) 151-157.
    [3] R. Falter, H. F. Scholer, Determination of mercury species in natural waters at pictogram level with on-line RP C18 preconcentration and HPLC-UV-PCO-CVAAS, Fresenius J. Anal. Chem. 353 (1995)34-38.
    [4] X. -F. Yin, W. French, E. Hoffmann, C. Lüdke, S. Jochen, Mercury speciation by coupling cold vapour atomic absorption spectrometry with flow injection on-line preconcentration and liquid chromatographic separation, Fresenius'J. Anal. Chem. 361 (1998) 761-766.
    [5] S. Rio-Segade, C. Bendicho, On-line high-performance liquid chromatographic separation and cold-vapor atomic absorption spectrometric determination of methylmercury and inorganic mercury, Talanta 48 (1999) 477-484.
    
    [6] E. Ramalhosa, S. Rio-Segade, E. Pereira, C. Vale, A. Duarte, Simple methodology for methyl mercury and inorganic mercury determinations by high-performance liquid chromatography-cold vapour atomic fluorescence spectrometry, Anal. Chim. Acta 448 (2001) 135-143.
    
    [7] L.- N. Liang, G. - B. Jiang, J. - F. Liu, J.- T. Hu, Speciation analysis of mercury in seafood by using high-performance liquid chromatography on-line coupled with cold-vapor atomic fluorescence spectrometry via a post column microwave digestion, Anal. Chim. Acta 477 (2003) 131-137.
    [8] R. Falter, G. Hgen, Determination of trace amount of methylmercury in sediment and biological tissue by using water vapor distillation in combination with RP C18 preconcentration and HPLC-HPF/ HHPN-ICP-MS, Fresenius' J. Anal. Chem. 358 (1997) 401-406.
    [9] C. C. Wan, C. S. Chen, S. J. Jiang, Determination of mercury compounds in water samples by liquid chromatography-inductively coupled coupled plasma mass spectrometry with an in situ nebulizer/ vapor generator, J. Anal. At. Spedrom. 12 (1997) 683-687.
    [10] I. S. Krull, D. S. Bushee, R. G. Schleicher, S. B. Smith, Determination of inorganic and organomercury compounds by high-performance liquid chromatography-inductively coupled plasma emission spectrometry with cold vapour generation, Analyst 111 (1986) 345-349.
    
    [11] J. M. Costa-Fernandez, F. Lunzer, R. Pereiro-Garcia, A. Sanz-Medel, N. Bordel-Garcia, Direct coupling of high-performance liquid chromatography to microwave-induced plasma atomic emission spectrometry via volatile-species generation and its application to mercury and arsenic speciation, J. Anal. At. Spedrom. 10 (1995) 1019-1025.
    
    [12] C. F. Harrington, The speciation of mercury and organomercury compounds by using high-performance liquid chromatography, Trends Anal. Chem. 19 (2000) 167-179.
    [13] C. D. Stalikas, Micelle-mediated extraction as a tool for separation and preconcentration in metal analysis, Trends Anal. Chem. 21 (2002) 343-355.
    
    [14] J. R. Chen, K. C. Teo, Determination of cadmium, copper, lead and zinc in water samples by flame atomic absorption spectrometry after cloud point extraction, Anal. Chim. Ada 450 (2001)215-222.
    [15] S. R. Sirimanne, J. R. Barr, D. G. Patterson. Jr, Quantification of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins in human serum by combined micelle-mediated extraction (cloud-point extraction) and HPLC, Anal. Chem. 68 (1996) 1556-1560.
    [16] R. Carabias Martinez, E. Rodriguez Gonzalo, B. Moreno Cordero, J. L. Perez Pavon, C. Garcia Pinto, E. F. Laespada, Surfactant cloud point extraction and preconcemtration of organic compounds prior to chromatography and capillary electrophoresis, J. Chromatgr. A 902(2000)251-265.
    
    [17] E. K. Paleologos, D. L. Giokas, S. M. Tzouwara-Karayanni, M. I. Karayannis, Micelle mediated methodology for the determination of free and bound iron in wines by flame atomic absorption spectrometry, Anal. Chim. Acta 458 (2002) 241-248.
    [18] D. L. Giokas, E. K. Paleologos, M. I. Karayannis, Speciation of Fe(II) and Fe(III) by the modified ferrozine method, FIA-spectrophotometry, and flame AAS after cloud-point extraction, Anal. Bioanal. Chem. 373 (2002) 237-243.
    [19] C. Garcia Pinto, J. L. Perez Pavon, B. Moreno Cordero, Cloud point preconcentration and high-performance liquid chromatographic determination of organophosphorus pesticides with dual electrochemical detection, Anal. Chem. 67(1995) 2606-2612.
    [20] R. Carabias Martinez, E. Rodriguez Gonzalo, M. G Garcia Jimenez, C. Garcia Pinto, J. L. Perez Pavon, J. Hernandez Mendez, Determination of the fungicides folpet, captan and captafol by cloud-point preconcentration and high-performance liquid chromatography with electrochemical detection, J. Chromatogr. A 754 (1996) 85-96.
    [21] D. S. Bai, J. L. Li, S. B. Chen, B. H. Chen, A novel cloud -point extraction process for preconcentrating selected polycyclic aromatic hydrocarbons in aqueous solution, Environ. Sci. Technol. 35 (2001) 3936-3940.
    [22] R. Carabias Martinez, E. Rodriguez Gonzalo, J. Dominguez Alvarez, J. Hernandez Mendez, Cloud point extraction as a preconcentration step prior to capillary electrophoresis, Anal. Chem. 71 (1999) 2468-2474.
    [23] A.-N. Tang, D.-Q. Jiang, X.-P. Yan, Cloud point extraction preconcentration for capillary electrophoresis of metal ions, Anal. Chim. Acta 507 (2004) 199-204.
    [24] E. K. Paleologos, C. D. Stalikas, S. M. Tzouwara-Karayanni, M. I. Karayannis, Selective speciation of trace chromium through micelle-mediated preconcentration coupled with micellar flow injection analysis-spectrofluorimetry, Anal. Chim. Ada 436 (2001) 49-57.
    [25] Q. Fang, M. Du, C. W. Huie, On-line incorporation of cloud point extraction to flow injection analysis, Anal. Chem. 73 (2001) 3502-3505.
    [26] C. Ortega, S. Cerutti, R. A. Olsina, M. F. Silva, L. D. Martinez, On-line complexation/cloud point preconcentration for the sensitive determination of dysprosium in urine by flow injection inductively coupled plasma-optical emission spectrometry, Anal. Bioanal. Chem. 375 (2003) 270-274.
    [27] T. Saitoh, W. L. Hinze, Concentration of hydrophobic organic compounds and extraction of protein using alkylammoniosulfate zwitterionic surfactant mediated phase separations (cloud point extractions), Anal. Chem. 63 (1991)2520-2526.
    [28] D. Sicilia, S. Rubio, D. Perez-Bendito, N. Maniasso, E. A. G. Zagatto, Anionic surfactants in acid media: a new cloud point extraction approach for the determination of polycyclic aromatic hydrocarbons in environmental samples, Anal. Chim. Acta 392 (1999) 29-38.
    [29] C. Garcia Pinto, J. L. Perez Pavon, B. Moreno Cordero, Cloud point preconcentration and high-performance liquid chromatographic analysis with electrochemical detection, Anal. Chem. 64 (1992) 2334-2338.
    [30] B. Moreno Cordero, J. L. Perez Pavon, C. Garcia Pinto, E. F. Laespada, Cloud point methodology: a new approach for preconcentration and separation in hydrodynamic systems of analysis, Talanta 40 (1993)1703-1710.
    [31] Y. Li, L.-M. Dong, X.-P Yan, S.-W. Wang, Y Jiang, D.-Q. Jiang, Development of a room-temperature post-column oxidation system for high-performance liquid chromatography on-line coupled with cold vapor atomic fluorescence spectrometry for mercury speciation in seafood, submitted.
    
    [32] A. I. C. Ortiz, Y M. Albarran, C. C. Rica, Evaluation of different sample pre-treatment and extraction procedures for mercury speciation in fish samples, J. Anal. At. Spedrom. 17 (2002)1595-1601.
    [33] D. L. Giokas, E. K. Paleologos, S. M. Tzouwara-Karayanni, M. I. Karayannis, Single-sample cloud point determination of iron, cobalt and nickel by flow injection analysis flame atomic absorption spectrometry - application to real samples and certified reference materials, J. Anal. At. Spectrom. 16 (2001) 521-526.
    [34] M. A. M. Silva, V. L. A. Frescura, F. J. N. Aguilera, A. J. Curtius, Determination of Ag and Au in geological samples by flame atomic absorption spectrometry after cloud point extraction, J. Anal. At. Spectrom. 13 (1998) 1369-1373.
    [35] W. Langseth, Determination of organic and inorganic mercury compounds by reverse-phase high-performance liquid chromatography after extraction of the mercuries as alkyldithiocarbamate chelates, Fresenius'Z. Anal. Chem. 325 (1997) 267-271.
    [36] D. M. Sanchez, R. Martin, R. Morante, J. Marin, M. L. Munuera, Preconcentration speciation method for mercury compounds in water samples using solid phase extraction followed by reversed phase high performance liquid chromatography, Talanta 52 (2000) 671-679.
    
    [37] R. Falter, G. Ilgen, Coupling of the RP C18 preconcentration HPLC-UV-PCO system with atomic fluorescence detection for the determination of methylmercury in sediment and biological tissue, Fresenius' J. Anal. Chem. 358 (1997) 407-410.
    [1] S. P. Blunden, L. A. Hobbs, D. J. Smith, Environmental chemistry, The royal society of chemistry, London, 1982, P.49.
    [2] T. M. Florence, The speciation of trace elements in waters, Talanta 29 (1982) 345-364.
    [3] J. J. Zuckerman, R. P. Reisdorf, H. V. Ellis, R. R. Wilkinson, Organometals and organometalloids: Occurrence and fate in the environment, American chemical society, Washington, DC, 1978, P.388.
    [4] D. T. Burns, F. Glocking, M. Harriott, Investigation of the determination of tin tetraalkyls and alkyltin chlorides by atomic-absorption spectrometry after separation by gas-liquid or high-performance liquid-liquid chromatography, Analyst 106 (1981) 921-930.
    [5] L. Ebdon, S. Hill, R. W. Ward, Directly coupled chromatography-atomic Spectroscopy, part 1, directly coupled gas chromatography-atomic Spectroscopy, a review, Analyst 111 (1986) 1113-1138.
    [6] W. M. R. Dirkx, W. E. Van Mol, R. J. A. Van Cleuvenbergen, F. C. Adams, Speciation of organotin compounds in water by gas chromatography atomic absorption spectrometry, Fresenius'J. Anal. Chem. 335 (1989) 169-11 A.
    [7] D. S. Forsyth, C. Cleroux, Determination of butyltin, methyltin and tetraalkyltin in marine food products with gas-chromatography-atomic absorption spectrometry, Talanta 38 (1991) 951-957. [8] M. D. Mueller, Tributyltin detection of trace levels in water and sediments using GC with flame-photometric detection and GC-MS, Fresenius' J. Anal. Chem. 317 (1984) 32-36.
    [9] J. Szpnuar- Lobinska, M. Ceulemans, R. Lobinski, F. C. Adams, Flow-injection sample preparation for organotin speciation analysis of water by capillary gas chromatography-microwave-induced plasma atomic emission spectrometry, Anal. Chim. Acta 278 (1993)99-113.
    [10] H. Suyani, J. Creed, J. Caruso, Helium microwave-induced plasma mass spectrometry for capillary gas chromatographic detection: speciation of organotin compounds, J. Anal. At. Spectrom. 4 (1989) 777-782.
    [11] F. J. Lanmyhr, Direct analysis of solids by atomic-absorption spectrophotometry, Analyst 104(1979)993-1016
    [12] W. G. Lakata, E. P. Lankmayr, K. Muller, Speciation of organotin compounds by complex chromatography and reaction detection, Fresenius' J. Anal. Chem. 319 (1984) 563-568.
    [13] L. Ebdon, J. I. Garcia-Alonso, Determination of tributyltin ions in estuarine waters by high-performance liquid chromatography with fluorimetric detection using morin in micellar solution, Analyst 112(1987) 1551-1554.
    [14] J. W. McLaren, K. W. M. Siu, J. W. Lam, S. N. Willie, P. S. Maxwell, A. Palepu, M. Koether, S. S. Berman, Applications of ICP-MS in marine analytical chemistry, Fresenius'J. Anal. Chem. 337 (1990) 721-728.
    [15] L. Ebdon, S. J. Hill, P. Jones, Speciation of tin in natural waters using coupled high-performance liquid chromatography- flame atomic-absorption spectrometry, Analyst 110(1985)515-517.
    [16] H. suyani, J. Creed, T. Davidson, J. Caruso, Inductively coupled plasma mass spectrometry and atomic emission spectrometry coupled to high-performance liquid chromatography for speciation and detection of organotin compounds, J. Chromatogr. Sci. 27(1989) 139-143.
    [17] L. Ebdon, S. J. Hill, P. Jones, HPLC coupled with in-line photolysis, hydride generation and flame atomic absorption spectrometry for the speciation of tin in natural waters, Talanta 38 (1991) 607-611.
    [18] M. Astruc, A. Astruc, R. Pinel, Speciation of butyltin compounds by on line HPLC- ETAAS, Mikrochim. Acta 109 (1992) 83-86.
    [19] J. I. Garcia-Alonso, A. Sanz-Medel, L. Ebdon, Determination of butyltin ion species by ion-exchange chromatography with inductively coupled plasma mass spectrometric and spectrofluorimetric detection, Anal. Chim. Acta 283 (1993) 261-271.
    [20] U. T. Kumar, J. G. Dorsey, J. A. Caruso, E. H. Evans, Speciation of inorganic and organotin compounds in biological samples by liquid chromatography with inductively coupled plasma mass spectrometric detection, J. Chromatogr. A 654 (1993) 261-268.
    [21] G. Schulze,C. Lehmann, Separation of mono-, di and tributyltin compounds by isocratic ion-exchange liquid chromatography coupled with hydride-generation atomic absorption spectrometric determination, Anal. chim. Acta, 288 (1994) 215-220.
    [22] W.-S. Chao, S.-J. Jiang, Determination of organotin compounds by liquid chromatography-inductively coupled plasma mass spectrometry with a direct injection nebulizer, J. Anal. At. Spectrom. 13 (1998) 1337-1341.
    [23] D. L. Tsalev, M. Sperling, B. Welz, On-line UV-photooxidation with peroxodisulfate for automated flow injection and for high-performance liquid chromatography coupled to hydride generation atomic absorption spectrometry, Spectrochim. Acta Part B 55 (2000) 339-353.
    [24] M. Grotti, P. Rivaro, R. Frache, Determination of butyltin compounds by high-performance liquid chromatography-hydride generation-electrothermal atomization atomic absorption spectrometry, J. Anal. At. Spectrom. 16 (2001) 270-274.
    [25] A. R. Timerbaev, Element speciation analysis by capillary electrophoresis, Talanta 52 (2000) 573-606.
    [26] A. R. Timerbaev, Strategies for selectivity control in capillary electrophoresis of metal species, J. Chromatogr. A 792 (1997) 495-518.
    [27] B.-F. Liu, L.-B. Liu, J.-K. Cheng, Analysis of inorganic cations as their complexes by capillary electrophoresis, J. Chromatogr. A 834 (1999) 277-308.
    [28] 贾丽,陈曦,王小如,徐木生,杨芃原,毛细管电泳在形态分析中的应用,色谱16(1998)402-405.
    [29] W. P. Liu; H. K. Lee, Chemical modification of analytes in speciation analysis by capillary electrophoresis, liquid chromatography and gas chromatography, J. Chromatogr. A 834 (1999) 45-63.
    [30] K. Li, S. F. Y. Li, Determination of alkyllead and alkyltin compounds in solid samples by supercritical and subcritical fluid extraction and MEKC, J. Chromatogr. Sci. 33 (1995) 309-315.
    [31] E. Pobozy, B. Glód, J. Kaniewska, M. Trojanowicz, Determination of triorganotin compounds by ion chromatography and capillary electrophoresis with preconcentration using solid-phase extraction, J. Chromatogr. A 718 (1995) 329 -338.
    [32] E. P. C. Lai, W.G. Zhang, X. Trier, A. Georgi, S. Kowalski, S. Kennedy, T. MdMuslim, E. Dabek-Zlotorzynska, Speciation of mercury at ng/mL concentration levels by capillary electrophoresis with amperometric detection, Anal. Chim. Acta 364 (1998) 63-74.
    [33] D. Schlegel, J. Mattusch, R. Wennrich, Speciation analysis of arsenic and selenium compounds by capillary electrophoresis, Fresenius J. Anal. Chem. 54 (1996)535-539.
    [34] E. S. Yeung, W. G. Kuhr, Indirect detection methods for capillary separations, Anal. Chem. 639 (1991) 275A-282A.
    [35] M. Nordén, E. Dabek-Zlptorzynska, Study of metal-fulvic acid interactions by capillary electrophoresis, J. Chromatogr. A 739 (1996) 421-429.
    [36] F. Han, J. L. Fasching, P. R. Brown, Speciation of organotin compounds by capillary electrophoresis using indirect ultraviolet absorbance detection, J. Chromatogr. B 669 (1995) 103-112.
    [37] K.-S. Whang, C.-W. Whang, Capillary electrophoresis of organotin compounds with indirect UV detection, Electrophoresis 18 (1997)241-246.
    [38] P. D. Zhang, G. W. Xu, J. H. Xiong, Y. F. Zheng, Q. Yang, F. S. Wei, Capillary electrophoretic analysis of arsenic species with indirect laser induced fluorescence detection, J. Separ. Sci. 25 (2002) 155-159.
    [39] Y.-T. Lee, C.-W. Whang, Capillary electrophoresis of triorganotin compounds with indirect fluorescence detection, J. Chromatogr. A 746 (1996) 269 -275.
    [40] S. S. Kannamkumarath, K. Wrobel, C. B. Hymer, J. A. Caruso, Capillary electrophoresis-inductively coupled plasma-mass spectrometry: an attractive complementary technique for elemental speciation analysis, J. Chromatogr. A 975 (2002) 245-266.
    [41] J. W. Olesik, J. A. Kinzer, S. V. Olesik, Capillary electrophoresis inductively coupled plasma spectrometry for rapid elemental speciation, Anal. Chem. 67(1995) 1-12.
    [42] X.-B. Yin, X.-P. Yan, Y. Jiang, X.-W. He, On-line coupling of capillary electrophoresis to hydride generation atomic fluorescence spectrometry for arsenic speciation analysis, Anal. Chem.74 (2002) 3720-3725.
    [43] X.-P. Yan, X.-B. Yin, D.-Q. Jiang, X.-W. He, Speciation of mercury by hydrostatically modified electroosmotic flow capillary electrophoresis coupled with volatile species generation atomic fluorescence spectrometry, Anal. Chem. 75 (2003) 1726-1732.
    [44] 尹学博,原子荧光联用新技术及其在砷和汞形态分析中的应用[博士学位论文],南开大学,2003.
    [1] J. Allibone, E. Fatemian, P. J. Walker, Determination of mercury in potable water by ICP-MS as a stabilising agent, J. Anal. At. Spectrom. 14 (1999) 235-239.
    [2] D. Cossa, J. Sanjuan, J. Cloud, P. B. Stockwell, W. T. Corns, Automated technique for mercury determination at sub-nanogram per litre levels in natural waters, J. Anal. At. Spectrom. 10(1995)287-291.
    [3] Y. Cai, Speciation and analysis of mercury, arsenic, and selenium by atomic fluorescence spectrometry, Trends Anal. Chem. 19 (2000) 62-66.
    [4] C.-C. Wan, C.-S. Chen, S.-J. Jiang, Determination of mercury compounds in water samples by liquid chromatography-inductively coupled plasma mass spectrometry with an in-situ nebulizer/ vapor generator, J. Anal. At. Spectrom. 12 (1997) 683-687. [5] C. D. West, Relative effect of molecular absorption on atomic absorption and atomic fluorescence, Anal. Chem. 46 (1974) 797-799.
    [6] M. J. Bloxham, S. J. Hill, P. J. Worsfold, Determination of mercury in filtered sea-water by flow injection with on-line oxidation and atomic fluorescence spectrometric detection, J. Anal. At. Spectrom. 11 (1996) 511-514.
    [7] L. Rahman, W. T. Corns, D. W. Bryce, P. B. Stockwell, Determination of mercury, selenium, bismuth, arsenic and antimony in human hair by microwave digestion atomic fluorescence spectrometry, Talanta 52 (2000) 833-843.
    [8] H. Bagheri, A. Gholami, Determination of very low levels of dissolved mercury(II) and methylmercury in river waters by continuous flow with on-line UV decomposition and cold-vapor atomic fluorescence spectrometry after pre-concentration on a silica
    gel-2-mercaptobenzimidazol sorbent, Talanta 55 (2001) 1141-1150.
    [9] J. D. Winefordner, R. C. Elser, Atomic fluorescence spectrometry, Anal. Chem. 43 (1971) (3)24A-32A. [10] K. C. Thompson, G. D. Reynolds, The atomic-fluorescence determination of mercury by the cold vapour technique, Analyst 96 (1971) 771-775. [11] K. C. Thompson, R. G. Godden, Improvements in the atomic-fluorescence determination of mercury by the cold-vapour technique, Analyst 100 (1975) 544-548. [12] Z.-L. Fang, Flow Injection Atomic Absorption Spectrometry, Wiley, Chichester, U. K., 1995.
    [13] X.-P Yan, Y. Jiang, Flow injection on-line preconcentration and separation coupled with atomic (mass) spectrometry for trace element (speciation) analysis based on sorption of organo-metallic complexes in a knotted reactor, Trends Anal. Chem. 20 (2001) 552-562. [14] E. L. Seibert, V. L. Dressier, D. Pozebon, A. J. Curtius, Determination of Hg in seawater by inductively coupled plasma mass spectrometry after on-line pre-concentration, Spectrochim. Acta Part B. 56 (2001) 1963-1971. [15] L. Gamiz-Gracia, M. D. Luque de Castro, Determination of mercury in cosmetics by flow injection- cold vapour generation- atomic fluorescence spectrometry with on-line preconcentration, J. Anal. At. Spectrom. 14 (1999) 1615-1617.
    [16] M. F.Garcia, R. P. Garcia, N. B. Garcia, A. Sanz-Medel, On-line preconcentration of inorganic mercury and methylmercury in sea-water by sorbent-extraction and total mercury determination by cold vapour atomic absorption spectrometry, Talanta 41 (1994) 1833-1839.
    [17] A. da C. P. Monteiro, L. S. N. de Andrade, R. C. de Campos, On-line mercury and methylmercury pre-concentration by adsorption of their dithiophosphoric acid diacyl ester chelates on a C_(18) column and cold-vapor atomic-absorption detection, Fresenius J. Anal. Chem. 371 (2001) 353-357.
    [18] P. Canada Rudner, J. M. Cano Pavon, F. Sanchez Rojas, A. Garcia de Torres, Use of flow injection cold vapour generation and preconcentration on silica functionalized with methylthiosalicylate for the determination of mercury in biological samples and sea-water by inductively coupled plasma atomic emission spectrometry, J. Anal. At. Spectrom. 13 (1998) 1167-1171.
    [19] P. Canada Rudner, A. Garcia de Torres, J. M. Cano Pavon, F. Sanchez Rojas, On-line preconcentration of mercury by sorption on an anion-exchange resin loaded with l,5-bis[(2-pyridyl)-3-sulphophenyl methylene] thiocarbono -hydrazide and determination by cold-vapour inductively coupled plasma atomic emission, Talanta 46 (1998) 1095-1105.
    [20] Z.-L. Fang, S.-K. Xu, L.-P Dong, W.-Q. Li, Determination of cadium in biological materials by flame atomic absorption spectrometry with flow-injection on-line sorption preconcentration, Talanta 41 (1994) 2165-2172.
    [21] X.-P Yan, W. Van Mol, F. Adams, Determination of (ultra)trace amounts of antimony(III) in water by flow injection on-line sorption preconcentration in a knotted reactor coupled with electrothermal atomic absorption spectrometry, Analyst 121 (1996) 1061-1067.
    [22] X.-P. Yan, X.-B. Yin, X.-W. He and Y. Jiang, Flow injection on-line sorption preconcentration coupled with hydride generation atomic fluorescence spectrometry for determination of (ultra)trace amounts of arsenic(III) and arsenic(V) in natural water samples, Anal. Chem. 74 (2002) 2162-2166.
    [23] X.-P. Yan, M. J. Hendry, R. Kerrich, Speciation of dissolved iron(III) and iron(II) in water by on-line coupling of flow injection separation and preconcentration with inductively coupled plasma mass spectrometry, Anal. Chem. 72 (2000) 1879-1884.
    [24] J. C. A. Wuilloud, R. G. Wuilloud, J. A. Gasquez, R. A. Olsina, L. D. Martinez, On-line adsorption /preconcentration using a knotted reactor for total Hg determination in drinking water by flow injection CV-AAS, At. Spectrosc. 22 (2001) 398-404.
    [25] G. Tao, S. N. Willie, R. E. Sturgeon, Determination of total mercury in biological tissues by flow injection cold vapour generation atomic absorption spectrometry following tetramethylammonium hydroxide digestion, Analyst 123 (1998) 1215-1218.
    [26] W. R. Hatch, W. L. Ott, Determination of sub-microgram quantitives of mercury by atomic absorption spectrometry, Anal. Chem. 40 (1968) 2085-2090.
    [27] R. Ahmed, K. May, M. Stoeppler, Ultratrace analysis of mercury and methylmercury (MM) in rain water using cold vapour atomic absorption spectrometry, Fresenius J. Anal. Chem. 326(1987)510-516.
    [28] L. Ping, P. K. Dasgupta, Determination of total mercury in water and urine by a gold film sensor following fenton's reagent digestion, Anal. Chem. 61 (1989) 1230-1235.
    [29] D.C. Baxter, W. Frech, Critical comparison of two standard digestion procedures for the determination of total mercury in natural water samples by cold vapour atomic absorption spectrometry, Anal. Chim. Acta 236 (1990) 377-384.
    [30] C. P. Hanna, J. F. Tyson, S. Mclntosh, Determination of total mercury in waters and urine by flow injection atomic absorption spectrometry procedures involving on- and off-line oxidation of organomercury species, Anal. Chem. 65 (1993) 653-656.
    [31] J. Murphy, P. Jones, S. J. Hill, Determination of total mercury in environmental and biological samples by flow injection cold vapour atomic absorption spectrometry, Spectrochim. Acta Part B 51 (1996) 1867-1873.
    [32] T. Guo, J. Baasner, M. Gradl, A. Kistner, Determination of mercury in saliva with a flow-injection system, Anal. Chim. Acta 320 (1996) 171-176.
    [33] B. Welz, D. L. Tsalev, M. Sperling, On-line microwave sample preconcentration for the determination of mercury in water and urine by flow-injection cold-vapour atomic absorption spectrometry, Anal. Chim. Acta 261 (1992) 91-103.
    [34] X.-B. Yin, X.-P Yan, Y. Jiang, X.-W. He, On-line coupling of capillary electrophoresis to hydride generation atomic fluorescence spectrometry for arsenic speciation analysis, Anal. Chem. 74 (2002) 3720-3725.
    [1] I. Havezov, Atomic absorption spectrometry (AAS)—a versatile and selective detector for trace element speciation, Fresenius'J. Anal. Chem. 355 (1996) 452-456.
    [2] P. E. Gardiner, Chemical speciation in biology and medicine: the role of atomic spectrometric techniques, J. Anal. Atom. Spectrom. 3 (1988) 163-168.
    [3] E. B. Graeme, Trace element speciation: analytical methods and problems, CRC press, 1989, p. 1-24.
    [4] L.-P. Yu, X.-P. Yan, Factors affecting the stability of inorganic and methylmercury during sample storage. Trends. Anal. Chem. 22 (2003) 245-253.
    [5] R. Ahmed, M. Stoeppler, Decomposition and stability studies of methylmercury in water using cold vapour atomic absorption spectrometry, Analyst 111 (1986) 1371-1374.
    [6] G. E. M. Hall, J. C. Pelchat, P. Pelchat, J. E. Vaive, Sample collection, filtration and preservation protocols for the determination of 'total dissolved' mercury in waters, Analyst 127 (2002) 674-680.
    
    [7] A. I. C. Ortiz, Y. M. Albarran, C. C. Rica, Evaluation of different sample pre-treatment and extraction procedures for mercury speciation in fish samples, J. Anal. At. Spectrom. 17 (2002) 1595-1601.
    [8] J. Qvarnstrom, W. Frech, Mercury species transformations during sample pre-treatment of biological tissues studied by HPLC-ICP-MS, J. Anal. At. Spectrom. 17 (2002) 1486-1491.
    [9] J. Snell, J. Qian, M.Johansson, K. Smit, W. Frech, Stability and reactions of mercury in organic solution, Analyst 123 (1998) 905-909.
    [10] J. P. Snell, E. Bjorn, W. Freeh, Investigation of errors introduced by the species distribution of mercury in organic solutions on total mercury determination by electrothermal vaporisation-inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 15 (2000) 397-402.
    [11] H. Emteborg, J. Snell, J. Qian, W. Freeh, Sources of systematic errors in mercury speciation using grignard reagents and capillary gas chromatography coupled to atomic spectrometry, Chemosphere 39 (1999) 1137-1152.
    [12] R. Falter, H. Hintelmann, Ph. Quevauviller. Conclusion of the workshop on "sources of error in methylmercury determination during sample preparation, derivatisation and detection", Chemosphere 39 (1999) 1039-1049.
    [13] H. Hintelmann, Comparison of different extraction techniques used for methylmercury analysis with respect to accidental formation methylmercury during sample preparation, Chemosphere 39 (1999) 1093-1105.
    [14] H. Hintelmann, R. Falter, G. Ilgen, R. D. Evans, Determination of artifactual formation of monomethylmercury ( CH_3Hg~+) in environmental samples using stable Hg~(2+) isotopes with ICP-MS detection: calculation of contents applying specific isotope addition, Fresenius'J. Anal. Chem. 358 (1997) 363-370.
    
    [15] N. Demuth, K. G. Heumann, Validation of methylmercury determinations in aquatic systems by alkyl derivatization methods for GC analysis using ICP-MS, Anal. Chem. 73 (2001) 4020-4027.
    
    [16] H. Emteborg, E. Bjorklund, F. Odman, L. Karlsson, L. Mathiasson, W. Freeh, D. C. Baxter, Determination of methylmercury in sediments using supercritical fluid extraction and gas chromatography coupled with microwave-induced plasma atomic emission spectrometry, Analyst 121 (1996) 19-29.
    [17] L. Lambertsson, E. Lundberg, M. B. Nilsson, W. Frech, Applications of enriched stable isotope tracers in combination with isotope dilution GC-ICP-MS study mercury species transformation in sea sediments during in situ ethylation and determination, J. Anal. At. Spectrom. 16 (2001) 1296-1301.
    [18] Q. Tu, J. Qian, W. Frech, Rapid determination of methylmercury in biological materials by GC-MIP-AES or GC-ICP-MS following simultaneous ultrasonic-assisted in situ ethylation and solvent extraction, J. Anal. At. Spectrom. 15 (2000) 1583-1588.
    [19] R. D. Wilken, R. Falter, Determination of methylmercury by the species-specific isotope addition method using a newly developed UPLC-ICP-MS coupling technique with ultrasonic nebulization, Appl. Organomet. Chem. 12 (1998) 551-557.
    [20] N. S. Bloom, J. A. Colman, L. Barber, Artifact formation of methyl mercury during aqueous distillation and alternative techniques for the extraction of methyl mercury from environmental samples, Fresenius' J. Anal. Chem. 358 (1997) 371-377.
    [21] W. Holak, Determination of methylmercury in fish by high-performance liquid chromatography, Analyst 107 (1982)1457-1461.
    [22] D. S. E. Bushee, Speciation of mercury using liquid chromatography with detection by inductively coupled plasma mass spectrometry, Analyst 113 (1988) 1167-1170.
    [23] F. Palmisano, P. G. Zambonin, N. Cardellicchio, Speciation and simultaneous determination of mercury species in dolphin liver by liquid chromatography with on-line cold vapor atomic absorption spectrometry, Fresenius' J. Anal. Chem. 346 (1993) 648 -652.
    [24] R. Falter, H. F. Scholer, A new pyrrolidinedithiocarbamate screening method for the determination of methylmercury and inorganic mercury relation in hair samples by HPLC-UV-PCO-CVAAS, Fresenius'J. Anal. Chem. 354 (1995) 492-493.
    [25] W. Langseth, Determination of organic and inorganic mercury compounds by reversed-phase high-performance liquid chromatography after extraction of the compounds as their dithizonates, Anal. Chim. Acta 185 (1986) 249-258.
    [26] M. Hempel, H. Hintelmann, R. D. Wilken. Determination of organic mercury species in soils by high-performance liquid chromatography with ultraviolet detection, Analyst 117 (1992) 669-672.
    [27] M. Hovert, N. S. Bloom, L. Liang, Comparison of distillation with other current isolation methods for the determination of methylmercury compounds in low level environmental samples, Anal. Chim. Acta 281(1993) 135-152.
    [28] M. Horvat, A. R. Byrne, Preliminary study of the effect of some physical parameters on the stability of methylmercury in biological samples, Analyst 111 (1992) 665-668.
    [29] K. May, M. Stoeppler, Pretreatment studies with biological and environmental material IV. Complete wet digestion in partly and completely closed quartz vessels for subsequent trace and ultratrace mercury determination, Fresenius'Z. Anal. Chem. 317 (1984) 248-251.
    [30] K. J. M. Kramer, Ph. Quevauviller, W.S. Dorten, E. M. Van der Vlies, H. P. M. de Haan. Certification of total Hg in a seawater reference material, CRM579, Analyst 123 (1998) 959-963.
    [31] Ph. Quevauviller, M. B. de la Calle-Guntifias, E. A. Maier, C. Camara, A survey on stability of chemical species in solution during storage: the BCR experience, Microchim. Acta 118 (1995) 131-141.
    [32] I. Devai, R. D. Delaune, W. H. Patrick Jr., R. P. Gambrell. Changes in methylmercury concentration during storage: effect of temperature, Organ. Geochem. 32 (2001) 755-758.
    [33] N. S. Bloom, Workshop on sources of error in methylmercury determination during sample preparation: derivatisation and detection, Wiesbaden, Germany, 1998, p.27-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700