科学数据库中基于内容图像检索技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学数据库的不断发展,其中将包含越来越多的多媒体信息:图像、音频、视频等,这些多媒体信息的对科学数据库的应用提出了巨大的挑战。如何在规模庞大的多媒体信息中获得相关信息,是许多科学数据库应用系统面临的首要问题。本文利用图像处理、模式识别、计算机视觉与数据库等技术,针对基于内容图像检索所涉及的关键问题展开研究。本文的研究目标一方面是提高基于内容图像检索系统的精度,研究的重点是适合于科学数据库图像检索的图像特征提取方法,检索方法、及索引方法;另一方面根据科学数据库图像检索系统的特殊应用环境讨论了分布式图像检索的模型,并针对分布式图像检索系统中所涉及的关键问题进行了深入的研究。取得的主要研究成果包括:
     1)提出一种通过提取相邻主色的相对位置和拓扑结构来表示彩色图像特征的方法。在检索时不仅可以有效的利用图像的颜色特征还可以利用色块之间空间分布关系的特征,可以有效的提高系统的查准率。提取主色及其空间拓扑关系的算法不涉及图像的复杂分割过程,算法简单有效。
     2)针对传统颜色直方图的缺点,提出一种彩色图像加权直方图颜色特征表示方法。,这种特征保留了传统颜色直方图特征简单高效、对视角变化不敏感的优点,同时可以将色彩的空间分布信息融入到直方图的表示中,能有效地提高查准率。作为一种基本的检索方法可以与其它检索方法集成。
     3)科学数据库中图像库规模一般都比较大,做相似图像检索时,快速地检索出一个大致符合要求的图像集合,往往比花费很长的时间检索出与检索要求完全相符合的图像集合更具有吸引力。根据这一点本文提出了一种运用LSH(Locality Sensitive Hashing)算法的图像特征索引算法,这种算法能够有效地对超大搜索空间的裁剪,降低相似搜索的时间复杂度。实验证明,在数据规模、维数增大时,该索引方法仍然具有很好的性能。与传统索引方法比较具有更好的规模可扩展性。
     4)科学数据库中,图像数据资源异构、分布的特点,需要分布式的图像信息检索体系结构。在本文中通过分析各种不同分布式体系结构的优缺点,确定使用基于对等网络的分布式体系结构。针对基于对等网络图像检索系统中所涉及的关键问题提出一种基于查询内容进行查询路由的方法,有效地提高了分布式图像检索系统的查询效率,并对基于XML图像检索协议进行了初步的讨论。
     5)实现了一个分布式图像检索原型系统PeerSeek。
With the development of scientific databases, more and more multimedia information are incorporated, which includes images, audio, video, etc. Scientific databases are facing big challenge on how to get relevant information from the vast multimedia information repository. By using the technologies of image processing, pattern recognition, computer vision and database, this dissertation studies some key problems in the field of image retrieval. This dissertation researches on new methods of image features extraction, image retrieval and feature vectors indexing under scientific database environment; on the other hand, due to the distributed nature of scientific database, we discussed several models of distributed image retrieval system, furthermore some issues related to distributed image retrieval are deeply studied. The contributions of the dissertation are as follows:
     1) A new color image feature extraction method is proposed, which can successfully extract neighboring main color and its topologies. This kind of feature not only uses the color feature but the spatial relationship between different main colors. In comparison, this feature extraction method do not involve complex image segmentation processes, it’s simple and useful.
     2) The classical color histogram has its drawbacks; it does not contain information about the spatial distributions of pixels in an image. This dissertation present a new weighted color histogram feature, it can integrate the pixels spatial distribution information into the color histogram. Thus retain the advantages of classical color histogram such as simple and invariant to viewpoint changes; at the same time, can substantially improve the recall ratio. As a fundamental retrieval method, it can easily be integrated with other methods.
     3) Typically, the scale of image databases in scientific database are very large, it is more attractive to quickly retrieve a rough result set than to spend a lot of time to get a precious result. According to this point of view, a vector indexing method called locality sensitive hashing is proposed. This method can effectively prune super large searching space; reduce time complexity of similar search process. The experiment results show that this method is still effective when the data scale is very large, and it has superior scalability than traditional tree-structured indexing methods.
     4) Under the scientific database environment, image data sources are heterogeneous and distributed, image retrieval system needs distributed architecture.
引文
[1] 李望平, 阎保平, 孙九林, 罗晓沛. 基于科学数据库科研环境建设的总体设想. 科学数据库及其信息技术论文集(第五集), 北京:科学出版社,2000.
    [2] Flickner, M., etc. Query by image and video content: The QBIC System. IEEE Computer, 1995, vol. 28, no. 9, pp23-32.
    [3] Carson, C., etc. Blobworld: A system for region-based image indexing and retrieval. In Proc. Int. Conf. On Visual Information Systems, June 1999.
    [4] 许建华 . 一种新型的多媒体检索技术—基于内容的检索.情报学报,2000, 19(4):411-416
    [5] John, P. E and Graham, M. E. Content-based image retrieval. Technical Report, University of North Umbria at Newcastle, Jan. 1999.
    [6] Rui, Y., Huang, S. T. and Chang, S. –F. Image retrieval: past, present, and future, In Proceedings of International Symposium on Multimedia Information Processing, 1997.
    [7] Guttman, A. R-trees: A dynamic index structure for spatial searching. Proceedings of the ACM SIGMOD International Conference on Management of Data, Boston, MA, 1984. 47~57.
    [8] Bentley, J. L. Multidimensional binary search trees used for associative searching. Communications of the ACM, 1975, 18(9): 509~517.
    [9] Robinson, J. T. The K-D-B-tree: A search structure for large multidimensional dynamic indexes. Proceedings of the ACM SIGMOD International Conference on Management of Data, Michigan, 1981. 10~18.
    [10] White, D. A., Jain, R. Similarity indexing with the SS-tree. Proceedings of the 12th International Conference on Data Engineering, New Orleans, LA, 1996. 516~523.
    [11] Katayama, N., Sotoh, S. The SR-tree: An index structure for high dimensional nearest neighbor queries. Proceedings of the ACM SIGMOD International Conference on Management of Data, Tucson, Arizona USA, 1997. 369~380.
    [12] Michael Swain and Dana Ballard. Color Indexing. International Journal of Computer Vision, 7(1), 1991.
    [13] Chang, N. S. and Fu, K. S. A relational database system for images. Technical Report TR-EE 79-28, Purdue University, May 1979.
    [14] Chang, N. S. and Fu, K. S. Query-by pictorial-example. IEEE Trans. on Software Engineering, 6(6), Nov. 1980
    [15] Chang, S. K. Pictorial database systems. IEEE Computer, Nov. 1981.
    [16] Chang, S. K., Yan, C. W., Dimitroff, D. C. and Arndt, T. An intelligent image database system. IEEE Trans. on Software Engineering, 14(5), May 1988.
    [17] C. S. McCamy, H. Marcus, and J. G. Davidson. A Color-rendition chart. Journal ofApplied Photographic Engineering, 2(3), Summer 1976.
    [18] Makoto Miyahara. Mathematical transform of (r,g,b) color data to munsell (h,s,v) color data. In SPIE Visual Communications and Image Processing, Volume 1001. 1998.
    [19] Jia Wang, Wen-Jann Yang, and Raj Acharya. Color clustering techniques for color-content-based image retrieval from image databases. In Proc. IEEE Conf. On Multimedia Computing and Systems, 1997.
    [20] Mikihiro Ioka. A method of defining the similarity of images on the basis of color information. Technical Report RT-0030, IBM Research, Tokyo Research Laboratory, November 1989.
    [21] W. Niblack, R. Barber, and et al. The QBIC project: Querying images by content using color, texture and shape. In Proc. SPIE Storage and Retrieval for Image and Video Databases, Feb 1994.
    [22] Markus Stricker and Markus Orengo. Similarity of color images. In Proc. SPIE Storage and Retrieval for Image and Video Databases, 1995.
    [23] John R. Smith and Shih-Fu Chang. Single color extraction and image query. In Proc. IEEE Int. Conf. On Image Proc., 1995.
    [24] John R. Smith and Shih-Fu Chang. Tools and techniques for color image retrieval. In IS&T/SPIE Proceedings Vol.2670, Storage and Retrieval for Image and Video Databases IV, 1995.
    [25] Robert M. Haralick, K. Shanmugam, and Its’hak Dinstein. Texture features for image classification. IEEE Trans. On Sys, Man, and Cyb., SMC-3(6), 1973.
    [26] Colvin C. Gotlieb and Herbert E. Kreyszig. Texture descriptors based on co-occurrence matrices. Computer Vision, Graphics, and Image Processing, 51, 1990.
    [27] Hideyuki Tamura, Shunji Mori, and Takashi Yamawaki. Texture features corresponding to visual perception. IEEE Trans. on Sys, Man, and Cyb, SMC-8(6), 1978.
    [28] Will Equitz and Wayne Niblack. Retrieving images from a database using texture-algorithms form the QBIC system. Technical Report RJ 9805, Computer Science, IBM Research Report, May 1994.
    [29] Thomas S. Huang, Sharad Mehrotra, and Kannan Ramchandran. Multimedia analysis and retrieval system (MARS) project. In Proc of 33rd Annual Clinic on Library Application of Data Processing-Digital Image Access and Retrieval, 1996.
    [30] Michael Ortega, Yong Rui, Kaushik Chakrabarti, Sharad Mehrotra, and Thomas S. Huang. Supporting similarity queries in MARS. In Proc. Of ACM Conf. on Multimedia, 1997.
    [31] John R. Smith and Shih-Fu Chang. Transform features for texture classification and discrimination in large image databases. In Proc. IEEE Int. Conf. on Image Proc., 1994.
    [32] Tianhorng Chang and C.-C. Jay Kuo. Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. Image Proc., 2(4):429-441, October1993.
    [33] Andrew Laine and Jian Fan. Texture classification by wavelet packet signatures. IEEE Trans. Patt. Recog. And Mach. Intell., 15(11):1186-1191, 1993.
    [34] M. H. Gross, R. Koch, L. Lippert, and A. Dreger. Multiscale image texture analysis in wavelet spaces. In Proc. IEEE Int. Conf. on Image Proc., 1994.
    [35] Amlan Kundu and Jia-Lin Chen. Texture classification using qmf bank-based subband decomposition. CVGIP:Graphical Models and Image Processing, 54(5):369-384, September 1992.
    [36] K. S. Thyagarajan, Tom Nauyen, and Charles Persons. A maximum likelihood approach to texture classification using wavelet transform. In Proc. IEEE Int. Conf. on Image Proc., 1994.
    [37] John R. Smith and Shih-Fu Chang. Automated binary texture feature sets for image retrieval. In Proc ICASSP-96, Atlanta, GA, 1996.
    [38] W. Y. Ma and B. S. Manjunath. A comparison of wavelet transform features for texture image annotation. In Proc. IEEE Int. Conf. on Image Proc., 1995.
    [39] C. T. Zahn and R. Z. Roskies. Fourier descriptors for plane closed curves. IEEE Trans. on Computers, 1972.
    [40] E. Persoon and K. S. Fu. Shape discrimination using fourier descriptors. IEEE Trans. Sys. Man. Cyb., 1997.
    [41] Yong Rui, Alfred C. She, and Thomas S. Huang. Modified fourier descriptors for shape representation- a practical approach. In Proc of First International Workshop on Image Databases and Multimedia Search, 1996.
    [42] M. K. Hu. Visual pattern recognition by moment invariants, computer methods in image analysis. IRE Transactions on Information Theory, 8, 1962.
    [43] A. Pentland, R. W. Picard, and S. Sclaroff. Photobook: Content-based manipulation of image databases. International Journal of Computer Vision, 1996.
    [44] Gene C.-H. Chuang and C.-C. Jay Kuo. Wavelet descriptor of planar curves: Theory and applications. IEEE Trans. Image Proc., 5(1):56-70, January 1996.
    [45] Bingcheng Li and Song De Ma. On the relation between region and contour representation. In Proc. IEEE Int. Conf. on Image Proc., 1995.
    [46] Bahu M. Mehtre, M. Kankanhalli, and Wing Foon Lee. Shape measures for content based image retrieval: A comparison. Information Processing & Management, 33(3), 1997.
    [47] Greg Pass, Ramin Zabih, and Justin Miller. Comparing images using color coherence Vectors. In Proc. ACM Conf. on Multimedia, 1996.
    [48] J. Huang, S. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih. Image indexing using color correlogram. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, 1997.
    [49] M. Lybanon, S. Lea, and S. Himes. Segmentation of diverse image types using opening and closing. In Proc. IEEE Int. Conf. on Image Proc., 1994.
    [50] Michael Hansen and William Higgins. Watershed-driven relaxation labeling for image segmentation. In Proc. IEEE Int. Conf. on Image Proc., 1994.
    [51] X. Q. Li, Z. W. Zhao, H. D. Cheng, C. M. Huang, and R. W. Harris. A fuzzy logic approach to image segmentation. In Proc. IEEE Int. Conf. on Image Proc., 1994.
    [52] T. Gevers and V. K. Kajcovski. Image segmentation by directed region subdivision. In Proc. IEEE Int. Conf. on Image Proc., 1994.
    [53] W. Y. Ma and B. S. Manjunath. Edge flow: a framework of boundary detection and image segmentation. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 1997.
    [54] Ramin Samadani and Cecilia Han. Computer-assisted extraction of boundaries from images. In Proc. SPIE Storage and Retrieval for Image and Video Databases, 1994.
    [55] Dirk Daneels, D. Campenhout, Wayne Niblack, Will Equitz, Ron Barber, Erwin Bellon, and Freddy Fierens. Interactive outlining: An improved approach using active contours. In Proc. SPIE Storage and Retrieval for Image and Video Databases, 1993.
    [56] Yong Rui, Alfred C. She, and Thomas S. Huang. Automated shape segmentation using attraction-based grouping in spatial-color-texture space. In Proc. IEEE Int. Conf. on Image Proc., 1996.
    [57] Cheng D., Pu Q., Cheng K. S., and Burkhardt H. Possibilistic Hopfield neural network on CT brain hemorrhage image segmentation. In Fourth Asian Conference on Computer Vision, Taipei, Taiwan, January 2000.
    [58] Deng Yining, Manjunath B. S. Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. Patt. Recog. And Mach. Intell., 23(8):800-810, 2001.
    [59] J. R. Smith. Integrated spatial and feature image systems: Retrieval, analysis and compression. Ph. D dissertation, Columbia University, 1997.
    [60] S. Santini and R. Jain. Similarity measures. IEEE Trans. Patt. Recog. And Mach. Intell., 21(9):871-883, 1999.
    [61] Scott Cohen, and Leonidas Guibas. The earth mover’s distance under transformation sets. Proceedings of the 7th IEEE International Conference on Computer Vision, September 1999.
    [62] Nuno Vasconcelos, and Andrew Lippman. A Unifying View of Image Similarity. Proceedings of the International Conference on Pattern Recognition, Barcelona, Spain, 2000
    [63] Chad Carson, Megan Thomas, Serge Belongie, Joseph M. Hellerstein, and Jitendra Malik. Blobworld: A system for region-based image indexing and retrieval. 3rd Int. Conf. on Visual Information Systems, June 1999.
    [64] ImageRover: A content-based image browser for the world wide web. In IEEEWorkshop on Content-based Access of Image and Video Libraries, San Juan, Puerto Rico, pp 2~9, June 1997.
    [65] Cox, I.J., Miller, M. L., Omohundro, S. M., Yianilos, P. N. Pichunter: Bayesian relevance feedback for image retrieval system. In Int. Conf. on Pattern Recognition, Vienna, Austria, August 1996.
    [66] Yueting Zhuang, Xiaoming Liu, and Yunhe Pan. Apply semantic template to support content-based image retrieval. In Proc. of IS&T and SPIE Storage and Retrieval for Media Databases, January 2000.
    [67] Kobus Barnard, and David Forsyth. Learning the semantics of words and pictures. In International Conference on Computer Vision (ICCV), pp408~415, 2001.
    [68] Rong Zhao, and W. I. Grosky. From features to semantics: Some preliminary Results. Proceedings of the IEEE International Conference on Multimedia & Expo, New York, 2000.
    [69] W. I. Grosky, and Rong Zhao. From feature maps to semantic landscapes: Negotiating the semantic gap. Pattern Recognition, 35(3), pp51-58, March 2002.
    [70] Jeffrey R. Bach, Charles Fuller, Amarnath Gupta, Arun Hampapur, Bradley Horowitz, Rich Humphrey, Ramesh Jain, and Chiao fe Shu. The Virage image search engine: An open framework for image management. In Proc. SPIE Storage and Retrieval for Image and Video Databases.
    [71] Amarnath Gupta and Ramesh Jain. Visual information retrieval. Communications of the ACM, 40(5), 1997.
    [72] R. W. Picard and T. P. Minka. Vision texture for annotation. Multimedia Systems: Special Issue on Content-based Retrieval.
    [73] T. P. Minka and R. W. Picard. Interactive learning using a “society of models”. In Proc. IEEE CVPR, 1996, pp.447-452.
    [74] Sharad Mehrotra, Kaushik Chakrabarti, Mike Ortega, Yong Rui, and Thomas S. Huang. Multimedia analysis and retrieval system. In Proc. of The 3rd Int. Workshop on Information Retrieval Systems, 1997.
    [75] Sharad Mehrotra, Yong Rui, Michael Ortega-B., and Thomas S. Huang. Supporting content-based queries over images in MARS. In Proc. of IEEE Int. Conf. on Multimedia Computing and Systems, 1997.
    [76] J. R. Smith and S.-F. Chang. Intelligent Multimedia Information Retrieval, edited by Mark T. Maybury, chapter Querying by Color Regions Using the VisualSEEK Content-Based Visual Query System. 1996.
    [77] J. R. Smith and S.-F. Chang. VisualSEEK: A fully automated content-based image query system. In Proc. ACM Multimedia 96, 1996.
    [78] Pass G and Zabih R. Histogram Refinement for Content Based Image Retrieval. IEEE Workshop on Applications of Computer Vision, 1996, 96-102.
    [79] Aibing Rao, Rohini K Srihari and Zhongfei Zhang. Spatial Color Histograms for Content-Based Image Retrieval. Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence, 1998.
    [80] O’Rourke, J. Computational Geometry in C, Cambridge University Press, Cambridge, England, 1994.
    [81] Alexander Dimai. Unsupervised extraction of salient region-descriptors for content based image retrieval. Proc. of the 10th International Conference on Image Analysis and Processing, September 1999.
    [82] Silverman B. W. Density Estimation for Statistics and Data Analysis. New York: Chapman and Hall, 1996
    [83] Weber, R., Schek, H. –J., Blott, S. A quantitative analysis and performance study for similarity search methods in high-dimensional spaces. Proceedings of the 24th VLDB Conference, New York, 1998. 194~205
    [84] Indyk, P., Motwani, R. Approximate nearest neighbor – towards removing the curse of dimensionality. Proceedings of the 30th Symposium on Theory of Computing, 1998.604~613
    [85] R. Orfali, D.Harkey, J. Edwads. The essential distributed objects survival guide. John Wiley & Sons, Inc. pp.289-290. 1996.
    [86] M. van Steen, P. Homburg, and A. Tanenbaum. Globe: A wide-area distributed system. IEEE Concurrency, 7(1):70-78, Jan. 1999.
    [87] M. van Steen, Franz J. Hauck, Philip Homburg and Andrew S. Tanenbaum. Locating objects in wide-area systems. IEEE Communications, Volume 36, Number 1, pages 104--109, January 1998.
    [88] I. Foster, C. Kesselman. Globus: A metacomputing infrastructure toolkit. Int. J. Supercomputer Applications, 11(2):115-128, 1997.
    [89] I. Foster, C. Kesselman. The grid: Blueprint for a new computing infrastructure. Morgan Kaufmann Publishers, Inc.1999.
    [90] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scalable content addressable network. In Proceedings of the ACM SIGCOMM '01 Conference, San Diego, California, August 2001.
    [91] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings of the ACM SIGCOMM '01 Conference, San Diego, California, August 2001.
    [92] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S.,Eaton, P., Geels, D., Gummadi, R., Rhea, R., Weatherspoon, H., Weimer, W., Wells, C., and Zhao, B. OceanStore: An architecture for global scale persistent storage. Proceedings of the Ninth International Conference on Architectural Support for Programming Languages and Operation Systems, Novermber 2000.
    [93] Clarke, I., Sandberg, O., Wiley, B., Hong, T. W. Freenet: A distributed anonymous information storage and retrieval system. Designing Privacy Enhancing Technologies: International Workshop on Design Issues in Anonymity and Unobservability, LNCS 2009, ed. By H. Federrath. Springer: New York.
    [94] Michael, K. Bergman. The deep web: Surfacing hidden value. BrightPlanet company LLC, July 2000.
    [95] Pratyusa Manadhata, Priyank Porwal. PtoP a peer to peer search engine. Bachelor thesis, Indian Institute of Technology, April 2001.
    [96] Antonio Carzaniga, David S. Rosenblum, Alexander L. Wolf. Content-based addressing and routing: A general model and its application. Technical Report CU-CS-902-00, Department of Computer Science, University of Colorado, January, 2000.
    [97] Mark A. Sheldon, Andrzej Duda, Ron Weiss, David K. Gifford. Discover: A resource discovery system based on content routing. In Proc. 3rd World Wide Web Conference, Elsevier, North Holland, April 1995.
    [98] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Shenker. A scalable content-addressable network. Proceedings of ACM SIGCOMM, 2001.
    [99] Francisco Matias Cuenca-Acuna, Christopher Peery, Richard P. Martin, Thu D. Nguyen. PlanetP: Using gossiping to build content addressable peer-to-peer information sharing communities. Technical Report DCS-TR-487, Department of Computer Science, Rutgers University, September, 2002.
    [100] Richard Gold, Dan Tidhar. Towards a content-based aggregation network. First International Conference on Peer-to-Peer Computing (P2P'01) August, 2001.
    [101] Atsushi Sugiura, Oren Etzioni. Query routing for web search engines: Architecture and experiments. Proc. 9th International World-Wide Web Conference, Foretec Seminars, Inc., 2000.
    [102] J. G. Campbell, C. Fraley, F. Murtagh, and A. E. Raftery. Linear flaw detection in woven textiles using model-based clustering. Pattern Recognition Letters, 18:1539-1548, December 1997.
    [103] G. Celeux and G. Govaert. Gaussian parsimonious clustering models. Pattern Recognition, 28:781-793, 1995.
    [104] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood for incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39:1-38, 1977.
    [105] G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley, 1996.
    [106] Rui, Y., Huang, T. S. and Chang, S. F. Image retrieval: current techniques, promising directions and open issues. Journal of Visual Communication and Image Representation, 10:39~62, 1999.
    [107] Smeulders, A. W., Worring, M., Santini, S., Gupta, A., and Jai, R. Content-based image retrieval atthe end of the early years. IEEE Transaction on Pattern Analysis and Machine Intelligence, 22(12):1349~1380, 2000.
    [108] 边肇祺,张学工,模式识别(第二版).清华大学出版社,1999
    [109] Nene, S. A., Nayar, S. K., Murase, H. Columbia object image library. Technical report, Department of Computer Science, Columbia University. 1996.
    [110] 赵平亚,余道蓉著. 多维系统辨识. 上海科学技术出版社, 1994
    [111] R. L. Kashyap and R. Chellappa. Estimation and choice of neighbors in spatial-interaction models of images. IEEE Trans. On Inf. Theory, 29:60~72, 1983.
    [112] A. C. Bovic, M. Clark, and W. S. Geisler. Multichannel texture analysis using localized spatial filters. IEEE Trans. Pattern Analysis and Machine Intelligence, 12(1):55~73, 1990.
    [113] B. S. Manjunath and R. Chellappa. A unified approach to boundary detection. IEEE Trans. Neural Networks, 4(1):96~108, 1993.
    [114] J. G. Daugman, Complete discrete 2D gabor transforms by neural networks for image analysis and compression. IEEE Trans. ASSP, 36:1169~1179, 1988.
    [115] M. Lades et al. Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Computers, 42(3):300~311, 1993.
    [116] F. Liu and R. W. Picard. Periodicity, directionality, and randomness: Wold features for image modeling and retrieval. MIT Media Lab Technical Report no. 320, Mar. 1995.
    [117] R. W. Picard, T. Kabir, and F. Liu. Real-time recognition with the entire brodatz texture database. Proc. IEEE Conf. CVPR ’93, 638~639, New York, June 1993.
    [118] ISO/MPEG N3545, Introduction to MPEG-7, v1.0, Jose M. Martinez, ed., MPEG Requirements Group, Beijing, July 2000.
    [119] 南凯, 阎保平. 科学数据库系统平台建设的设想. 科学数据库及其信息技术论文集(第六集), 北京:科学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700