低阻抗型非接触式电导检测器的响应理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电导检测是一种简单通用型的检测技术,作为一种色谱检测器主要应用于无机离子及某些其它检测手段难以检测的有机离子的分析。电导检测中的电极有两种放置方式,一种是把两电极放置于溶液当中(接触式电导检测),另一种是电极与溶液被绝缘材料隔离(非接触式电导检测)。接触式电导检测器在毛细管电泳的应用中遇到了困难,如在毛细管壁上打孔置入电极需要较高的制备工艺,检测电极容易被污染,电极的清洗和更换不便,分离电压干扰严重等。
     电容耦合非接触式电导检测(C_4D)是近几年发展起来的一种用于毛细管电泳和微流控芯片的新型检测技术。这种检测池具有池体积小,结构简单、制备方便,彻底解决了接触电导检测存在的检测电极易污染、受被测系统高场强电压干扰等问题,是一种应用前景良好的检测器。与C_4D的应用范围正在不断扩大相比,有关C_4D的理论研究报道较少,虽然文献中也提出了一些等效电路模型分析其响应特性,但大多停留在对实验规律的简单定性描述,未涉及各参数的取值及其计算方法,因此相关的理论研究目前依然是薄弱环节。在毛细管电泳的实验条件下,源自非接触电极与管壁之间的电阻抗很高,并成为制约C_4D的检测灵敏度的关键因素之一。针对这两个问题,本论文讨论在不同条件下各参数的取值规律,进而模拟分析C_4D的响应特性,并在此基础上开展了一种低阻抗型电容耦合非接触电导检测器(LIC_4D)的响应理论与应用研究。主要工作如下:
     一、非接触式电导检测器的等效电路模拟与分析
     基于C_4D的等效电路模型,设计了接触式并排电极、平面双并排电极、接触式圆管电极、非接触式并排电极、非接触式圆管电极等简化的电极系统,模拟C_4D的阻抗行为,通过阻抗测定与分析,讨论在不同条件下各等效电路参数的取值规律,为模拟分析C_4D的响应特性、优化该检测器的参数提供有价值的技术参数。
     二、低阻抗型非接触式电导检测器响应研究与应用
     为降低C_4D检测池体积,设计了对电极式的C_4D,但该装置阻抗虚部的绝对值是远远大于实部的绝对值,限制了检测溶液电导率变化的灵敏度。为提高对电极式C_4D的响应灵敏度,采用阻抗湮灭原理,将压电石英晶体与C_4D串联组合,在其谐振频率下,检测回路中阻抗的虚部为零,有效地降低了其管壁电容的高阻抗对C_4D检测灵敏度的制约,通过理论模拟与实际验证,其检测灵敏度接近于接触式电导检测。
     三、基于纵波响应的液体密度压电传感器
     石英晶体微天平是一种高灵敏的质量传感器,在界面传质过程监测中有广泛的应用,当压电传感器在液相谐振时,除产生厚度剪切波外,通常伴随纵波,纵波可能对厚度剪切波产生干扰,在极端情况下还会造成压电传感器在液相中的谐振峰分裂。本章系统研究了这种谐振峰分裂现象,对其产生的机理进行了理论分析,并讨论了溶液密度的影响,在此基础上研制了基于纵波效应的液体密度压电传感器,通过纵波反射器与消除器的切换,结合阻抗分析法,可用压电传感器同时测定电极表面质量、液体的密度、粘度的变化。
Conductivity detection is a simple and universal detection technique for inorganic and in some cases even organic ions in ionic chromatographic and electrophoretic systems, which are often not readily detected by other techniques. For conductivity detection, the metal electrodes can be in direct contact with liquid (galvanic detection) or separated from liquid with an insulating film (contactless detection). The contact conductivity detector has encountered the difficulty in the application of capillary electrophoresis. To design of the micro-conductivity cell in capillary, drills on the capillarity wall and implant electrodes need a high technical process. In addition, the detection electrodes are easily contaminated and inconverental for cleaning and replacement. The separation voltage affects the performance of the detector.
     Capacitively coupled contactless conductivity detection (C4D) is a new detection technique, which has been developed in recent years and used mainly in capillary and microchip electrophoresis. The C4D offers the advantage in simplicity in detection cell design, smaller volume, and it completely overcame the disadvantages of electrodes fouling and interference of separation voltage on measurement signal. Compared with the application range of the C4D, the related C4D fundamental research report is few. Although some of the equivalent circuit model is proposed to analyze the response characteristics, they mainly make some qualitative description to experiment rules. The computational method is still a weak link in the fundamental research at present. Under the capillary electrophoresis conditions, the high impedance between the contact electrodes and the liquid is one of the factors for the low sensitivity of C4D detector. This thesis discusses the various parameters under different conditions, and simulates the response characteristics of C4D, and on this basis, a low impedance capacitively coupled contactless conductivity detector (LIC4D) is proposed. The main contents of this thesis are listed below:
     1、Equivalent circuit simulation and analysis for contactless conductivity detector
     Based on the equivalent circuit model of the C4D, simulated detectors including contact parallel plate electrodes, contact double parallel plate electrodes, contact parallel column electrodes, contactless parallel plate electrodes, and contact parallel column electrodes were designed to analyze the electric behavior of the C4D. The impedance data were measured and analyzed. The changes in the equilivalent circuit parameters were discussed. This analysis is helpful to simulate the response of the C4D and the optimization in detector parameters.
     2、Fundamental research and application of low impedance contactless conductometric detector
     To reduce the C4D detection cell volume, a C4D with two opposite contactless electrode was designed. Howerver, the sensitivity of this detector to the changes of solution conductivity is poor due to the fact that the absolute value of imaginary part. In order to improve the response of the sensitivity of this C4D, we adopt the principle of impedance annihilation. A quartz crystal resonator was added in series combination of the C4D. Under the resonance frequency of the combination, the imaginary of the impedance is close to zero. The influence of the wall capacitor impedance on the sensitivity of the C4D is reduced effectively. It was shown that sensitivity of the low impedance C4D is closes to that of a contact conductivity detector.
     3、Piezoelectric quartz crystal liquid density sensor based on longitudinal wave response
     Quartz crystal microbalance is a sensor with high sensitivity to the change in surface mass change. It has found wide applications in monitoring the mass changes in insurface processes. When a piezoelectric quartz resonantor is operated in liquid phase in thickness shear model, a longitudinal wave is usually occurred. The longitudinal wave is a potential error source for the measurement of thickness shear model. Under some extreme cases, the renant peak of the resonator is split to a group of small peaks. In this chapter we studied the resonance peak cleavage by an impedance analysis method. The interaction between the thickness shear wave and longitudinal wave was investigated. The influence of liquid density was discuused. By the comdination of a longtudianl wave reflector and longtudianl wave eliminator, the changes in surface mass, liuid density, and liquid viscosity were imultaneously determined by a piezoelectric sensor in impedance analysis method.
引文
[1]吴谋成主编.仪器分析.北京,科学出版社. 2003.
    [2]陈义.毛细管电泳技术及应用.北京,化学工业出版社. 2005.
    [3] Frost N W, Jing M, Bowser M T. Capillary Electrophoresis. Anal. Chem. 2010, 82, 4682-4698.
    [4] Kostal V, Katzenmeyer J, Arriaga E A. Capillary Electrophoresis in Bioanalysis. Anal. Chem. 2008, 80, 4533-4550.
    [5] Dahlen J, von Eckardstein S. Development of a capillary zone electrophoresis method including a factorial design and simplex optimisation for analysis of amphetamine, amphetamine analogues, cocaine and heroin. Forensic. Sci. Int. 2006, 157, 93-105.
    [6] Anderson G J, Cipolla C M, Kennedy R T. Western blotting using capillary electrophoresis. Anal. Chem. 2011, 83, 1350-1355.
    [7] Hjerten S. Free zone electrophoresis. J. Chromatogr. Rev. 1967, 9, 122-219.
    [8] Everaerts F M, Verheggen Th P E M. Isotachophoresis: Electrophoretic analysis in capillaries. J. Chromatogr., A. 1970, 53, 315-328.
    [9] Mikkers F E P, Everaerts F M, Vertexes Th P E M. High-performance zone electrophoresis. J. Chromatogr., A. 1979, 169, 11-20.
    [10] Jorgenson W, Lukacs K D. Zone electrophoresis in open tubular class capillaries. Anal. Chem. 1981, 53, 1298-1302.
    [11] Hjerten S. High-performance electrophoresis: the electrophoretic counterpart of high-performance liquid chromatography. J. Chromatogr., A. 1983, 270, l-6.
    [12] Hjerten S, Zhu M D. Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing. J. Chromatogr., A. 1985, 346, 265-270.
    [13] Terabe S, Otsuka K, Ichikawa K, Tsuchiya A. Electro kinetic separations with micellar solutions and open tubular capillaries. Anal. Chem. 1984, 56, 111-113.
    [14] Lauer H H, Mcmanigill D. Capillary zone electrophoresis of proteins in untreated fused silica tubing. Anal. Chem. 1986, 58, 166-170.
    [15] Vandaveer I V, Walter R, Pasas S A. Recent developments in electrochemical detection for microchip capillary electrophoresis. Electrophoresis. 2004, 25, 3528-3549.
    [16] Vandaveer I V, Walter R, Pasas S A, Martin R S. Recent developments in amperometric detection for microchip capillary electrophoresis. Electrophoresis. 2002, 23, 3667-3677.
    [17] Baldwin R P. Recent advances in electrochemical detection in capillary electrophoresis. Electrophoresis. 2000, 21, 4017-4028.
    [18] Zemann A J. Coactively coupled contactless conductivity detection in capillary electrophoresis. Electrophoresis. 2003, 24, 2125-2137.
    [19] Kaniansky D, Masar M, Marak J. Capillary electrophoresis of inorganic anions. J. Chromatogr., A. 1999, 834, 173-178.
    [20] Wang J, Pumera M, Chatrathi M P. Thick-film electrochemical detectors for poly(dimethylsiloxane)-based microchip capillary electrophoresis. Electroanalysis. 2002, 14, 1251-1255.
    [21]周伟红,吴明嘉,汪尔康.高效毛细管电泳安培检测的进展.分析化学. 1995, 23, 343-348.
    [22]李凤屏,莫金垣,谢天尧.毛细管电泳安培及电导检测最新进展.分析科学学报. 2004, 20, 87-92.
    [23]吴友谊,林金明.芯片毛细管电泳电化学检测.化学通报. 2004, 3, 170-177.
    [24] Kappes T, Galliker B, Schwarz M A, Hauser P C. Portable capillary electrophoresis instrument with amperometric, potentiometric and conductometric detection. TrAC Trends in Anal. Chem. 2001, 20, 133-139.
    [25] Scampicchio M, Wang J, Mannino S. Microchipcapillary electrophoresis with amperometric detection for rapid separation and detection of phenolic acids. J. Chromatogr., A. 2004, 1049, 189-194.
    [26] Matysik F M. Advances in amperometric and conductometric detection in capillary and chip-based electrophoresis. Microchim. Acta. 2008, 160, 1-14.
    [27] Sun Y, Liang L Y, Zhao X Y. Determination of aromatic amines in water samplesby capillary electrophoresis with amperometric detection. Water Res. 2009, 43, 41-46.
    [28] Holland L A, Leigh A M. Amperometric and voltammetric detection for capillary electrophoresis. Electrophoresis. 2002, 23, 3649-3658.
    [29] Hebert N E, Snyder B, McCreery R L. Performance of Pyrolyzed Photoresist Carbon Films in a Microchip Capillary Electrophoresis Device with Sinusoidal Voltammetric Detection. Anal. Chem. 2003, 75, 4265-4271.
    [30] Haber C, Silvestri I, Roosli S. Potentiometric detector for capillary zone electrophoresis. Chimia. 1991, 45, 117-121.
    [31] Kuban P, Kuban V. Simultaneous determination of inorganic and organic anions, alkali, alkaline earth and transition metal cations by capillary electrophoresis with contactless conductometric detection. Electrophoresis. 2002, 23, 3725-3734.
    [32] Zamann A J. Conductivity detection in capillary electrophoresis. TrAC Trends in Anal. Chem. 2001, 20, 346-354.
    [33] Vacik J, Zuska J, Muselasova I. Improvement of the performance of a high- frequency contactless conductivity detector for isotachophoresis. J. Chromatogr., A. 1985, 320, 233-240.
    [34] Gas B, Zuska J, Vacik J. Measurement of limiting mobilities by capillary isotachophoresis with a constant temperature at the site of detection. J. Chromatogr., A. 1989, 470, 69-78.
    [35] Kaniansky D, Zelenska V, Masar M. Contactless conductivity detection in capillary zone electrophoresis. J. Chromatogr., A. 1999, 844, 349-359.
    [36] Masar M, Bodor R, Kaniansky D. Separations of inorganic anions based on their complications withα-cyclodextrin by capillary zone electrophoresis with contactless conductivity detection. J. Chromatogr., A. 1999, 834, 179-188.
    [37] Zemann A J, Schnell E, Volgger D. Contactless conductivity detection for capillary electrophoresis. Anal. Chem. 1998, 70, 563-567.
    [38] Fracassi Dasilva J A, Do Lago C F. An oscillometric detector for capillary electrophoresis. Anal. Chem. 1998, 70, 4339-4343.
    [39] Tanyanyiwa J, Galliker B, Schwarz M A. Improved capacitively coupled conductivity detector for capillary electrophoresis. Analyst. 2002, 127, 214-218.
    [40] Tanyanyiwa J, Hauser P C. High-voltage contactless conductivity detection of metal ions in capillary electrophoresis. Electrophoresis. 2002, 23, 3781-3786.
    [41] Tanyanyiwa J, Leuthardt S, Hauser P C. Electrophoretic separations with polyether ether ketone capillaries and capacitively coupled contactless conductivity detection. J. Chromatogr., A. 2002, 978, 205-211.
    [42] Weber G, Johnck M, Siepe D. Capillary electrophoresis with direct and contactless conductivity detection on a polymer microchip. Micro Tota. Anal. Syst. 2000, Proc.Μ-TAS Symp, 4th, 383-386. Kluwer Academic Publishers, Dordrecht, Neth. (English) 2000.
    [43] Pumera M, Wang J, Opekar F, Jelinek I, Lowe H, Hardt S. Contactless conductivity detector for microchip capillary electrophoresi. Anal Chem. 2002, 74, 1968-1971.
    [44] Tanyanyiwa J, Hauser P C. High-voltage capacitively coupled contactless conductivity detection for microchip capillary electrophoresis. Anal. Chem. 2002, 74, 6378-6382.
    [45] Laugere F, Lubking G W, Bastemeijer J, Vellekoop M J. Design of an electronic interface for capacitively coupled four-electrode conductivity detection in capillary electrophoresis microchip. Sens. Actuator, B. 2002, 83, 104-108.
    [46] Kuban P, Muri M A, Hauser P C. Application of a contactless conductivity detector to the determination of inorganic ions in ion chromatography. Analyst. 2004, 129, 82-86.
    [47]王立新,傅崇岗.新型毛细管电泳非接触电导检测器的设计.传感器技术. 2005, 24, 38-40.
    [48] Wang J, Chen G, Chatrathi M P, Wang M. Robert Rinehart Screen-Printed Contactless Conductivity Detector for Microchip Capillary Electrophoresis. Electroanalysis 20. 2008, 22, 2416-2421.
    [49] Chvojka T, Jelinek I, Opekar F. A dual photometric-contactless conductivitydetector for capillary electrophoresis. Anal. Chim. Acta. 2001, 433, 13-21.
    [50] Tuma P, Opekar F, Jelinek I. A Contactless Conductometric Detector with Easily Exchangeable Capillary for Capillary Electrophoresis. Electroanalysis. 2001, 13, 989-992.
    [51] Feng Tan, Bingcheng Yang, Yafeng Guan. Simultaneous light emitting diode-induced fluorescence and contactless conductivity detection for capillary electrophoresis. Anal. Sci. 2005, 21, 583-585.
    [52] Yang B C, Tan F, Guan Y F. A collinear light-emitting diode-induced fluorescence detector for capillary electrophoresis. Talanta. 2005, 65, 1303-1306.
    [53] Yang B Y, Pan J Z, Zhang T. A low-cost light-emitting diode induced fluorescence detector for capillary electrophoresis based on an orthogonal optical arrangement. Talanta. 2009, 79, 1155-1158.
    [54] Johnston S E, Fadgen K E, Jorgenson J W. Development of a conductivity-based photothermal absorbance detector for capillary separations. Anal. Chem. 2006, 78, 5309-5315.
    [55] Kuban P, Nguyen H T, Macka M. New fully portable instrument for the versatile determination of cations and anions by capillary electrophoresis with contactless conductivity detection. Electroanalysis. 2007, 19, 2059-2065.
    [56] Hutchinson J P, Johns C, Breadmore M C. Identification of Inorganic Ions in Post-Blast Explosive Residues Using Portable Capillary Electrophoresis Instrumentation and Capacitively-Coupled Contactless Conductivity Detection. Electrophoresis. 2008, 29, 4593-4602.
    [57] Seiman A, Jaanus M, Vaher M. A portable capillary electrophoresis equipped with a cross-sampler and a contactless conductivity detector for the detection of the degradation products of chemical warfare agents in soil extracts. Electrophoresis. 2009, 30, 507-514.
    [58] Kuban P, Muri M A, Hauser P C. Application of a contactless conductivity detector to the determination of inorganic ions in ion chromatography. Analyst. 2004, 129, 82-86.
    [59] Unterholzner V, Macka M, Haddad P R, Zemann A. Simultaneous separation of inorganic anions and cations using capillary electrophoresis with a movable contactless conductivity detector. Analyst. 2002, 127, 715-718.
    [60] Macka M, Hutchinson J, Zemann A, Zhang S S, Haddad P R. Miniaturized movable contactless conductivity detection cell for capillary Electrophoresis. Electrophoresis. 2003, 24, 2144-2149.
    [61] Kuban P, Kuban V. Simultaneous determination of inorganic and organicanions, alkali, alkaline earth and transition metal cations by capillary electrophoresis with contactless conductometric detection. Electrophoresis. 2002, 23, 3725-3734.
    [62] Kuban P, Kuban V. Flow injection-capillary electrophoresis system with contactless conductivity detection and hydrostatic pressure generated flow. Application to the quantitative analysis of inorganic anions in water samples. Electrophoresis. 2003, 24, 1935-1943.
    [64] Kuban P, Kuban V. Rapid speciation of Se(IV) and Se(VI) by flow injection-capillary electrophoresis system with contactless conductivity detection. Anal. Bioanal. Chem. 2004, 378, 378-382.
    [64] Vuorinen P S, Jusslia M, Siren H. Integration of a contactless conductivity detector into a commercial capillary cassette: Detection of inorganic cations and catecholamines. J. Chromatogr., A. 2003, 990, 45-52.
    [65] Carvalho A Z, Da Silva J A F, Do Lago C L. Determination of mono and disaccharides by capillary electrophoresis with contactless conductivity detection. Electrophoresis. 2003, 24, 2138-2143.
    [66] Macka M, Hutchinson J, Zemann A, Zhang S S, Haddad P R. Miniaturized movable contactless conductivity detection cell for capillary Electrophoresis. Electrophoresis. 2003, 24, 2144-2149.
    [67] Novotny M, Opekar F, Jel?nek I. Improved dual photometric-contactless conductometric detector for capillary electrophoresis. Anal. Chim. Acta. 2004, 525, 17-21.
    [68]陈昌国,范玉静,李雷光等.毛细管电泳离子色谱法快速检测碱金属和碱土金属离子.理化检验-化学分册. 2010, 46, 636-638.
    [69] Nussbaumer S, Fleury-Souveraina S, Bouchouda L. Determination of potassium, sodium, calcium and magnesium in total parenteral nutrition formulations by capillary electrophoresis with contactless conductivity detection. J. Pharm. Biomed. Anal. 2010, 53, 130-136.
    [70] Zhang S F, Wang L S, Dang Z. A Compact System of Capacitively Coupled Contactless Conductivity Detection Based on the Square Wave Excitation Signal for Capillary Electrophoresis. Chin. Chem. Lett. 2006, 17, 1229-1232.
    [71] Zhang S, Wang L, Dang Z, Li T. Compact Design for a Square Wave Excitation Contactless Conductivity Detector: Determination of Metal Cations in Environmental Water Samples. Instrum. Sci. Technol. 2007, 35, 275-294.
    [72] Wang L S, Zhang S F, Dang Z. Running buffers for determination of Cr(VI)/(III), Co(II) and Zn(II) in complex matrices by capillary electrophoresis with contactless conductivity detection. Talanta. 2007, 72, 1342-1347.
    [73] Nguyen H, Kuban P, Pham V H, Hauser P C. Study of the determination of inorganic arsenic species by CE with capacitively coupled contactless conductivity detection. Electrophoresis. 2007, 28, 3500-3506.
    [74] Kuban P, Hauser P C, Kuban V. A flow injection-capillary electrophoresis system with high-voltage contactless conductivity detection for automated dual opposite end injection. Electrophoresis. 2004, 25, 35-42.
    [75] Rainelli A, Hauser P C. Fast electrophoresis in conventional capillaries by employing a rapid injection device and contactless conductivity detection. Anal. Bioanal. Chem. 2005, 382, 789-794.
    [76] Tuma P, Opkear F. A contactless conductivity detector for capillary electrophoresis: Effects of the detection cell geometry on the detector performance. Electrophoresis. 2002, 23, 3718-3724.
    [77] Kuban P, Karlberg B. Application of a contactless conductometric detector for the simultaneous determination of small anions and cations by capillary electrophoresis with dual-opposite end injection. J. Chromatogr., A. 2002, 964,227-241.
    [78] Tanyanyiwa J, Leuthardt S, Hauser P C. Electrophoretic separations with polyether ether ketone capillaries and capacitively coupled contactless conductivity detection. J. Chromatogr., A. 2002, 978, 205-211.
    [79] Wan Q J, Kuban P. Determination of major inorganic ions in blood serum and urine by capillary electrophoresis with contactless conductivity detection. Anal. Chim. Acta. 2004, 525, 11-16.
    [80] Wang J, Chen G, Muck J A. Movable Contactless-Conductivity Detector for Microchip Capillary Electrophoresis. Anal. Chem. 2003, 75, 4475-4479.
    [81] Sereenonchai K, Teerasong S, Chan-Eam S. A low-cost method for determination of calcium carbonate in cement by membraneless vaporization with capacitively coupled contactless conductivity detection. Talanta. 2010, 81, 1040-1044.
    [82] Wang J, Pumera M, Collins G E. A chip-based capillary electrophoresis contactless conductivity microsystem for fast measurements of low-explosive ionic components. Analyst. 2002, 127, 719-723.
    [83] Wang J, Pumera M. Measurements of chemical warfare agent degradation products using an electrophoresis microchip with contactless conductivity detector. Anal. Chem. 2002, 74, 6121-6125.
    [84] Mayrhofer K, Zamann A J. Capillary electrophoresis and contactless conductivity detection of ions in narrow inner diameter capillaries. Anal. Chem. 1999, 71, 3828-3833.
    [85] Kuban P, Reinhardt M, Muller B, Hauser P C. On site simultaneous determination of anions and cations in drainage water using a flow injection-capillary electrophoresis system with contactless conductivity detection. J. Environ. Monit. 2004, 6, 169-174.
    [86] Guber A E, Heckele M, Herrmann D. Microfluidic lab-on-a-chip systems based on polymers-fabrication and application. Chem. Eng. J. 2004, 101, 447-453.
    [87] Rocha F R, Fracassi J A, Da Silva, Do Lago C L. Wet deposition and related atmospheric chemistry in the Sao Paulo metropolis, Brazil: Part 1. Majorinorganic ions in rainwater as evaluated by capillary electrophoresis with contactless conductivity detection. Atmos. Environ. 2003, 37, 105-115.
    [88] Oliveira M A L, Do Lago C L, Tavares M F M, Da Silva J A F. Analysis of fatty acids by capillary electrophoresis with contactless conductivity detection. Quim. Nova. 2003, 26, 821-824.
    [89] Surowiec I, Kaml I, Kenndler E. Analysis of drying oils used as binding media for objects of art by capillary electrophoresis with indirect UV and conductivity detection. J. Chromatogr., A. 2004, 1024, 245-254.
    [90] Lopez-Avila V, van de Goor T, Gas B, Coufal P. Separation of haloacetic acids in water by capillary zone electrophoresis with direct UV detection and contactless conductivity detection. J. Chromatogr., A. 2003, 993, 143-152.
    [91] El-Attug M N, Lutumba B, Hoogmartens J. Method development and validation for trifluoroacetic acid determination by capillary electrophoresis in combination with capacitively coupled contactless conductivity detection (CE-C4D). Talanta. 2010, 83, 400-403.
    [92] Wei R X, Li W H, Yang L R. Online preconcentration in capillary electrophoresis with contactless conductivity detection for sensitive determination of sorbic and benzoic acids in soy sauce. Talanta. 2011, 83, 1487-1490.
    [93] Tuma P, Samcova E, Stulik K. Determination of the spectrum of low molecular mass organic acids in urine by capillary electrophoresis with contactless conductivity and ultraviolet photometric detection-An efficient tool for monitoring of inborn metabolic disorders. Anal. Chim. Acta. 2011, 685, 84-90.
    [94]张辰凌,田婧,秦卫东.毛细管电泳-电容耦合非接触电导法检测牛奶中金属离子和三聚氰胺.分析化学. 2010, 10, 1497-1500.
    [95] Coufal P, Zuska J, van de Goor T. Separation of twenty underivatized essential amino acids by capillary zone electrophoresis with contactless conductivity detection. Electrophoresis. 2003, 24, 671-677.
    [96] Tanyanyiwa J, Schweizer K, Hauser P C. High-voltage contactless conductivity detection of underivatized amino acids in capillary electrophoresis.Electrophoresis. 2003, 24, 2119-2124.
    [97] Mai T D, Pham H V, Hauser P C. Capillary electrochromatography with contactless conductivity detection for the determination of some inorganic and organic cations using monolithic octadecylsilica columns. Anal. Chim. Acta. 2009, 653, 228-233.
    [98] Abad-Villar E M, Kuban P, Hauser P C. Evaluation of the detection of biomolecules in capillary electrophoresis by contactless conductivity measurement. J. Sep. Sci. 2006, 29, 1031-1037.
    [99]周琼,夏笔军.毛细管电泳高频电导法检测游离氨基酸的条件考察.第一军医大学分校学报. 2004, 6, 62-63.
    [100]翟海云,蔡沛祥等.毛细管电泳高频电导法快速分离检测混合氨基酸.高等学校化学学报. 2004, 6, 1037-1039.
    [101] Baltussen E, Guijt R M. Considerations on contactless conductivity detection in capillary electrophoresis. Electrophoresis. 2002, 23, 2888-2893.
    [102] Abad-Villar E M, Tanyanyiwa J. Detection of human immunoglobulin in microchip and conventional capillary electrophoresis with contactless conductivity measurements. Anal. Chem. 2004, 76, 1282-1288.
    [103] Carvalho A Z, da Silva J A F, do Lago C L. Determination of mono-and disaccharides by capillary electrophoresis with contactless conductivity detection. Electrophoresis. 2003, 24, 2138-2143.
    [104]徐健君,翟海云等.毛细管电泳高频电导法测定虫草中的有效成份.化学研究与应用. 2005, 5, 644-647.
    [105]徐健君,翟海云等.毛细管电泳高频电导法同时测定阿莫西林和克拉维酸钾含量.应用化学. 2005, 22, 581-585.
    [106] Muzikar J, van de Goor T, Gas B. Extension of the application range of UV-absorbing organic solvents in capillary electrophoresis by the use of a contactless conductivity detector. J. Chromatogr., A. 2001, 924, 147-154.
    [107] Oudhoff K A, Macka M, Haddad P R. Contactless conductivity detection of synthetic polymers in non-aqueous size-exclusion electrokinetic chromatography.J. Chromatogr., A. 2005, 1068, 183-187.
    [108] Gas B, Coufal P, Jaros M. Optimization of background electrolytes for capillary electrophoresis I. Mathematical and computational model. J. Chromatogr., A. 2001, 905, 269-279.
    [109] Stephen E, Johnston, Keith E. Expanded electrical model of a contactles conductivity detector: Development and verification. J. Chromatogr., A. 2005, 1094, 148-157.
    [110] Muzikar J, van de Goor T. Determination of electroosmotic flow mobility with a pressure-mediated dual-ion technique for capillary electrophoresis with conductivity detection using organic solvents. J. Chromatogr., A. 2002, 960, 199-208.
    [111] Vcelakova K, Zuskova I. Determination of cationic mobilities and pKa values of 22 amino acids by capillary zone electrophoresis. Electrophoresis. 2004, 25, 309-317.
    [112] Henchoz Y, Schappler J, Geiser L, Prat J. Rapid Determination of pKa Values of 20 Amino Acids by CZE with UV and Capacitively Coupled Contactless Conductivity Detections. Anal. Bioanal. Chem. 2007, 389, 1869-1878.
    [113] Lu Q, Wu P, Collins G E. Contactless conductivity detection of sodium monofluoroacetate in fruit juices on a CE microchip. Electrophoresis. 2007, 28, 3485-3491.
    [114] Quek N M, Law W S, Lau H F. Determination of pharmaceuticals classified as emerging pollutants using capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis. 2008, 29, 3701-3709.
    [115] Schuchert-Shi A, Hauser P C. Peptic and tryptic digestion of peptides and proteins monitored by capillary electrophoresis with contactless conductivity detection. Anal. Bioanal. Chem. 2009, 387, 202-207.
    [116]陈昌国,李雷光,尧玉芬.毛细管电泳非接触电导检测法研究电渗流峰的变化规率.分析科学学报. 2010, 1, 42-46.
    [117] Kang Q, Shen D Z, Li Q L. Reduction of the Impedance of a ContactlessDetector for Microchip Capillary Electrophoresis: Compensation of the Electrode Impedance by Addition of a Series Inductance from a Piezoelectric Quartz Crystal. Anal. Chem. 2008, 80, 7826-7832.
    [118] Shen D Z, Li D D, Yang X W. Application of a low impedance contactless conductometric detector for the determination of inorganic cations in capillary monolithic column chromatography. Talanta. 2011, 84, 42-48.
    [119] Baltussen E, Guijt R M, van der S G. Considerations on contactless conductivity detection in capillary electrophoresis. Electrophoresis. 2002, 23, 2888-2893.
    [120]王立新,傅崇岗.毛细管电泳无接触电导检测研究进展.分析测试学报. 2006, 25, 120-125.
    [121]陈缵光,莫金垣.毛细管电泳高频电导检测器的研制.高等学校化学学报. 2002, 23, 801-804.
    [122]谭峰.非接触电导检测器的研制及其在毛细管电泳中的应用研究.中国科学院大连化学物理研究所博士论文. 2005.
    [123] Chen C G, Li L G, Si Y J. AC impedance characteristics of capacitively coupled contactless conductivity detector cell in capillary electrophoresis. Electrochimica. Acta. 2009, 54, 6959-6962.
    [124]董建峰.新型非接触式电导检测器的研制及应用.山东师范大学硕士学位论文. 2010.
    [125] Lichtenberg J, de Rooij N F, Verpoorte E. A microchip electrophoresis system with integrated in-plane electrodes for contactless conductivity detection. Electrophoresis. 2002, 23, 3769-3780.
    [126]施维,张玉奎,陈农,张津,王磊,邹汉法.高效毛细管线性聚丙烯酸胺凝胶电泳柱的制备、柱性能表征及操作条件考察.分析化学. 1998, 26, 1-6.
    [127] Wang C C, Beale S C. Preparation of linear polyacrylamide gel step gradients for capillary electrophoresis. J. Chromatogr., A. 1996, 756, 245-253.
    [128]杨春,王双寿,常春燕,王洋,胡效亚.含不同基团的聚丙烯酰胺改性毛细管柱的制备及应用.分析化学. 2010, 38, 263-266.
    [129] Cohen A S, Karger B L. High-performance sodium dodecyl sulfatepolyacrylamide gel capillary electrophoresis of peptides and proteins. J. Chromatogr., A. 1987, 397, 409-417.
    [130] Norberg O, Deng L, Aastrup T. Photo-click immobilization on quartz crystal microbalance sensors for selective carbohydrate-protein interaction analyses. Anal. Chem. 2011, 83, 1000-1007.
    [131] Kunze A, Sjovall P, Kasemo B. In situ preparation and modification of supported lipid layers by lipid transfer from vesicles studied by QCM-D and TOF-SIMS. J. Am. Chem. Soc. 2009, 131, 2450-2451.
    [132] Levi M D, Levy N, Sigalov S. Electrochemical quartz crystal microbalance (EQCM)studies of ions and solvents insertion into highly porous activated carbons. J. Am. Chem. Soc. 2010, 132, 13220-13222.
    [133] Hillman A R, Bard A J and Stratmann M.“The Electrochemical Quartz Crystal Microbalance”in Encyclopedia of Electrochemistry. Wiley-Vch. Weinheim. 2003, 3, 230-289.
    [134] Xu D, Hodges C, Ding Y L. Adsorption kinetics of laponite and ludox silica nanoparticles onto a deposited poly(diallyldimethylammonium chloride) layer measured by a quartz crystal microbalance and optical reflectometry. Langmuir. 2010, 26, 18105-18112.
    [135] Quevedo I R, Tufenkji N. Influence of solution chemistry on the deposition and detachment kinetics of a CdTe quantum dot examined using a quartz crystal microbalance. Environ. Sci. Technol. 2009, 43, 3176-3182.
    [136] Takahashi S, Iida M, Furusawa H. Real-time monitoring of cell-free translation on a quartz-crystal microbalance. J. Am. Chem. Soc. 2009, 131, 9326-9332.
    [137] Ogi H, Nagai H, Fukunishi Y. Multichannel wireless electrodeless quartz crystal microbalance immunosensor. Anal. Chem. 2010, 82, 3957-3962.
    [138] Heitmann V, Wegener J. Monitoring cell adhesion by piezoresonators: Impact of increasing oscillation amplitudes. Anal. Chem. 2007, 79, 3392-3400.
    [139] Shen Z H, Huang M C, Xiao C D. Nonlabeled quartz crystal microbalance biosensor for bacterial detection using carbohydrate and lectin recognitions. Anal.Chem. 2007, 79, 2312-2319.
    [140] Nileback E, Westberg F, Deinum J, Svedhem S. Viscoelastic sensing of conformational changes in plasminogen induced upon binding of low molecular weight compounds. Anal. Chem. 2010, 82, 8374-8376.
    [141]姚守拙.化学与生物传感器.北京,化学工业出版社. 2006.
    [142] Sauerbrey G Z. The use of quartz oscillators for weighting thin layers and for microweighting. Physic. 1959, 155, 206-222.
    [143] Mecea V M. Is quartz crystal microbalance really a mass sensor? Sen. Actuators. A. 2006, 128, 270-277.
    [144] Shen D Z, Kang Q, Wang Y E, Hu Q, Du J G. New cut angle quartz crystal microbalance with low frequency-temperature coefficients in an aqueous phase. Talanta. 2008, 76, 803-808.
    [145] Yao S Z, Zhou T A. Dependence of the oscillation frequency of a piezoelectric crystal on the physical parameters of liquids. Anal. Chim. Acta. 1988, 212, 61-72.
    [146] Martin S J, Granstaff V E, Frye G C. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 1991, 63, 2272-2281.
    [147] Yang M, Thompson M. Multiple chemical information from the thickness mode acoustic wave sensor in the liquid phase. Anal. Chem. 1993, 65, 1158-1168.
    [148] Xie Q J, Wang J, Zhou A H, Zhang Y Y. A study of depletion layer effects on equivalent circuit parameters using an electrochemical quartz crystal impedance system. Anal. Chem. 1999, 71, 4649-4656.
    [149] Kanazawa K K, Gordon J G. The oscillation frequency of a quartz resonator in contact with a liquid. Anal. Chim. Acta. 1985, 117, 99-105.
    [150] Tessier L, Patat F, Schmitt N, Feuillard G, Thompson M. Effect of the generation of compressional waves on the response of the thickness-shear mode acoustic wave sensor in liquids. Anal. Chem. 1994, 66, 3569-3574.
    [151] Lin Z X, Ward M D. The role of longitudinal waves in quartz crystal microbalance applications in liquids. Anal. Chem. 1995, 67, 685-693.
    [152] Schneider T W, Martin S J. Influence of compressional wave generation on thickness-shear mode resonator response in a fluid. Anal. Chem. 1995, 67, 3324-3335.
    [153] Bund A, Schwitzgebel G. Signal oscillations of a piezoelectric quartz crystal in liquids caused by compressional waves. Anal. Chim. Acta. 1998, 364, 189-194.
    [154] Shen D Z, Kang Q, Li X Y, Cai H M, Wang Y D. Different experimental results for the influence of immersion angle on the resonant frequency of a quartz crystal microbalance in a liquid phase: With a comment. Anal. Chim. Acta. 2007, 593, 188-195.
    [155] Schon P, Michalek R, Walder L. Liquid density response of a quartz crystal microbalance modified with mesoporous titanium dioxide. Anal. Chem. 1999, 71, 3305-3310.
    [156] Muramatsu H, Tamiya E, Karube I. Computation of equivalent circuit parameters of quartz crystals in contact with liquids and study of liquid properties. Anal. Chem. 1998, 60, 2142-2146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700