尺寸形貌可控磁性纳米粒子的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性纳米材料是一种应用潜力巨大的磁记录材料,在生物医学领域也有广泛的用途,是纳米材料研究的热点之一。本文主要综述了FePt纳米材料的研究最新进展,并利用XRD、TEM、VSM等手段对所制FePt/Fe_3O_4纳米颗粒进行表征。主要内容如下:
     1.选择Fe(acac)_3和H_2PtCl_6 6H_2O作为制备FePt纳米颗粒的前驱体,分别利用NaBH_4一步还原;NaBH_4和Vc多重还原;1,2十二烷二醇多元醇还原法制备出了单分散FePt纳米颗粒。考查了表面活性剂对FePt纳米颗粒尺寸形貌以及磁性能的影响。
     2.利用NaBH_4一步还原法制备单分散的FePt纳米颗粒。考查该体系下表面活性剂对FePt纳米颗粒尺寸形貌以及磁性能的影响。结果显示:表面活性剂PVP的用量对所制备FePt纳米颗粒的尺寸无明显作用,但却影响FePt纳米颗粒相变:PVP对FePt纳米颗粒的相变起“催化”作用,适量的PVP诱导纳米颗粒的相变。当调节表面活性剂PVP单体与FePt前驱体的摩尔比(PVP/FePt)为7时,所制得的FePt纳米颗粒经过500℃保温30min热处理后,矫顽力高达5.2KOe;
     3.选择CTAB作为表面活性剂,在NaBH_4一步还原体系下,制备出了蠕虫状FePt纳米颗粒。颗粒的尺寸与CTAB的浓度有关,随着CTAB浓度的增加而变大。CTAB双层微胶束结构的形成对于各向异性纳米结构的生长起到关键作用。我们推测CTAB自发形成了蠕虫状的纳米胶束,为FePt纳米颗粒的形貌控制提供软模板,同时也使得磁性能也大不相同。
     4.选用十二烷基苯磺酸钠(SDBS)作为表面活性剂,利用NaBH_4一步还原法,通过控制表面活性剂与前驱体的摩尔比(SDBS/FePt),成功制备出球形、不规则片状和树枝状纳米结构。当SDBS/FePt为9:1时显示磁能积相对最大,这与FePt纳米颗粒的形貌有关。
     5.选用聚乙二醇作为表面活性剂,室温下制备出了花状自组装的FePt纳米颗粒。颗粒形貌主要由平均粒径分别为19.2 nm和4.9 nm的梭形和球形颗粒组成。这些梭形的“花瓣”和球形的“花蕊”自组装形成大小不等的花状结构。我们推测,纳米颗粒的花状自组装主要是表面活性剂集合的结果。VSM显示饱和磁化强度Ms是相同条件下PVP作为表面活性剂时的18倍。
     6.选择复配型表面活性剂柠檬酸和聚乙二醇(PEG)、油酸和油胺,以及单一型表面活性剂十二烷基苯磺酸钠(SDBS)对FePt纳米颗粒进行修饰,比较了三者在FePt纳米颗粒形貌及磁性能上的作用区别。复配型表面活性剂有利于诱导生成各向异性纳米结构,聚合物表面活性剂PEG和柠檬酸复配诱导生成了棒状和米粒状纳米结构;室温下颗粒的饱和磁化强度Ms差别很大,球形颗粒Ms相对最大,而棒状颗粒Ms相对较小。
     7.以多元醇1,2-十二烷二醇为还原剂,在表面活性剂油酸和油胺及二苄醚的环境中,成功制备出单分散的FePt纳米颗粒。通过改变油酸油胺的体积比,制备出2.3-8.8nm的FePt纳米颗粒,随油酸/油胺体积比的增加,颗粒粒径逐渐减小,四边形颗粒的数目也随着减小。
     8.用NaBH_4和抗坏血酸Vc多重还原法制备FePt纳米颗粒,考查了热处理温度对FePt纳米颗粒磁性能的影响。随着热处理温度的升高矫顽力变大,600℃时可达3kOe,但是在高温区(550℃及以上)矫顽力的变化并不明显,这主要是由高温退火过程中纳米颗粒的团聚导致的。
     9.在表面活性剂油酸和油胺,液相环境二苄醚体系中,采用多元醇还原法,利用1,2-十二烷二醇还原前驱体乙酰丙酮铁Fe(acac)_3,通过表面活性剂和金属前驱体以及液相环境的共同作用,制备出了单分散六边形Fe_3O_4纳米颗粒,考查了表面活性剂油酸油胺的浓度对纳米颗粒尺寸形貌的影响。结果显示:与未使用表面活性剂相比,油酸油胺的使用抑制了颗粒的生长,颗粒尺寸明显变小;适量浓度的表面活性剂使颗粒的尺寸和形貌更均匀。
Magnetic nanoparticle is an important class of recording media with huge potential application in the biomedicine fields which has become one of the hot points for nanotechnology research. This paper reviews recent advances in FePt nanoparticles research progress and chose XRD, TEM, VSM techniques to characterize the as‐synthesized FePt/Fe3O4nanoparticles. The main contents are following:
     1. Using Fe(acac)_3 and H2_PtCl_6 6H_2O as precursors, via NaBH_4 one‐step reduction combine with Vc two‐step reduction as well as polyol reduction process to synthesis FePt nanoparticles. We study the effect of surfactant on the size, morphology and magnetic properties of the as‐synthesized FePt nanoparticle.
     2. A method of one‐step reduction by NaBH_4 in the presence of surfactant poly(N‐vinyl‐2‐pyrrolidone) (PVP) was employed to produce monodisperse FePt nanocrystals. The results confirm that the PVP contents have an effect on the transition degree while no significant effect on the particles size. We consume the PVP most probably plays the role of the“catalyst”, proper amount of PVP induces the easier transformation of the nanocrystals. The highest coercivity of 5.2 KOe was obtained with the adjusted PVP / FePt molar ratio of 7 when annealed at 500℃for 30 min.
     3. A convenient surfactant CTAB was chose to assist synthesis of worm‐like FePt nanoparticles. The shape and size evolution ranging from worm‐like to spherical and from 4 to 8 nm were observed, respectively. Growth of worm‐like nanoparticles was monitored by nano‐micelles formed by surfactant CTAB. Further magnetic analysis also revealed the modification of Ms arise from anisotropic shape of nanoparticles
     4. FePt nanoparticles with different morphologies were successfully prepared in the presence of surfactant sodium dodecyl benzene sulfonate (SDBS) with the addition of different molar ratio of surfactant SDBS to precursors FePt (SDBS/FePt) by a one‐step NaBH_4 reduction approach. And the morphologies show spherical, irregular schistose and dendritic structure when changing the molar ratio of SDBS/FePt. And the magnetic energy product show the largest at SDBS/FePt = 9:1. We deduce this is the result of differences in nanoparticle morphology.
     5. FePt nanoparticles with flower‐like assembly are synthesized at room temperature when chose PEG as the surfactant. The shapes are composed of fusiform and spherical with the mean sizes of 19.2 nm and 4.9 nm respectively. These fusiform“petals”and spherical“stamens”were found to assemble into flower‐like structures. We suggest the formation of flower‐like assemble of FePt nanoparticles is result from the surfactant assemblage. VSM indicates that Ms nearly eighteen‐fold increase when compared to nanoparticles synthesized under identical conditions except for using PVP as surfactant.
     6. The complex surfactants oleic acid and oleylamine; citric acid and polyethylene glycol ( PEG) as well as single surfactant sodium dodecyl benzene sulfonate( SDBS)were chose to stabilize the FePt nanoparticles. The characterizations indicate that the complex surfactants induced to produce anisotropic morphologies, and the complex surfactants PEG and citric acid lead to rice‐shape and rod‐shape nanostructure. VSM results show that the spherical particles have the largest Ms while the rod‐shape nanoparticles possess the smallest Ms.
     7. FePt nanoparticles are synthesized at room temperature by polyol 1, 2‐dodecanediol reduction in the presence of oleic acid, oleylamine and dibenzyl ether. The particles size were tuned from 2.3‐8.8nm by varying the volume ratio of oleic acid / oleylamine, the size and number of quadrilateral particles increase with the amount of oleylamine.
     8. Multi‐step NaBH_4 combine with ascorbic acid reduction process was chose to synthesis FePt nanoparticles. The effects of annealing temperatures on the magnetic properties of FePt have been investigated. The results confirmed that The annealing treatment caused an increase of coercivity as high as 3KOe at 600℃. However the increscent of coercivity was slight at high temperatures of 550℃which may be caused by the agglomeration of nanoparticles during the annealing treatment.
     9. Based on the cooperation of surfactants, metal precuesor and liquid environment, monodisperse magnetite (Fe_3O_4) nanoparticles have been prepared by 1, 2‐dodecanediol reduction of iron acetylacetonate (Fe(acac)_3) in the presence of oleic acid, oleylamine and dibenzyl ether. The effect of surfactants concentration on the particles size and morphology were examined. Compared with particles synthesized without surfactants, the use of oleic acid and oleylamine suppressed the growth of magnetite nanoparticles and gave rise to smaller particle size. In addition, suitable concentration of surfactants makes for the uniformity of particles size and shape.
引文
[1]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.第1版.北京:化学工业出版社, 2002, 1‐3
    [2]张鑫,李鑫钢,姜斌.四氧化三铁纳米粒子合成及表征.化学工业与工程, 2006, 1(1): 46‐48
    [3] K. J.克莱邦德.纳米材料化学.陈建峰,邵磊,刘晓林等译.第1版.北京:化学工业出版社, 2004, 1‐3
    [4] HongweiGu, KemingXu, ChenjieXu, etal. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem.Commun., 2006, 941‐949
    [5]刘吉平,廖莉玲.无机纳米材料.第1版.北京:科学出版社, 2003, 1‐3
    [6]倪星元,沈军,张志华等.纳米材料的理化特性与应用.第1版.北京:化学工业出版社, 2006, 1‐3
    [7]陈敬中,刘剑洪.纳米材料科学导论.第1版.北京:高等教育出版社, 2006, 5‐7
    [8]李凤生,杨毅.纳米/微米复合技术及应用.第1版.北京:国防工业出版社, 2002, 3‐5
    [9]蒋伯颉,利用化学还原法制备生医应用的FePt纳米粒子.私立东海大学化学工程研究所硕士论文, 2006, 7
    [10]连昭晴,铁/金核壳型磁性复合纳米粒子之制备与应用,国立成功大学,硕士论文, 2004, 2‐7
    [11]奥汉德利著;周永洽等译.现代磁性材料原理和应用[美] R. C.北京:化学工业出版社, 2002. 1-25
    [12] DiandraL.Leslie-Pelecky, Reuben D. Rieke. Magnetic Properties of Nanostructured Materials. Chem. Mater. 1996, 8: 1770-1783
    [13]彭印,降低自组装FePt薄膜有序化温度的研究,首都师范大学硕士学位论文, 2008, 12
    [14]林琬蓉, FePt合金粒子制备与性质研究.国立成功大学硕士论文, 2007, 11
    [15]田民波,磁性材料,北京:清华大学出版社, 2001
    [16]都有为,罗河烈,磁记录原理,北京:电子工业出版社, 1992
    [17] Shouheng Sun. Recent Advances in Chemical Synthesis, Self‐Assembly, and Applications of FePt Nanoparticles. Adv. Mater. 2006, 18: 393‐403 [18同[14] p13
    [19]侯仰龙.磁性纳米材料的化学合成、功能化及其生物医学应用.大学化学. 2010, 25(2): 1‐11
    [20]刘丽丽, FePt纳米颗粒薄膜的制备及其退火工艺对其磁性能影响的研究.首都师范大学硕士论文, 2008, 3
    [21] Shouheng Sun. Recent Advances in Chemical Synthesis, Self‐Assembly, and Applications of FePt Nanoparticles. Adv. Mater. 2006, 18: 393‐403
    [22]M.TANASE, J.G. ZHU, C. LIU, etal. Structure Optimization of FePt Nanoparticles of Various Sizes for Magnetic Data Storage. METALLURGICAL AND MATERIALS TRANSACTIONS A. 2007, 38(A): 798‐810
    [23] Nisha Shukla , Chao Liu , A. G. Roy. Oriented self-assembly of cubic FePt nanoparticles. Materials Letters 2006, 60: 995-998
    [24] C. Verdes, R. W. Chantrell, A. Satoh, etal. Self-organisation, orientation and magnetic properties of FePt nanoparticle arrays. Journal of Magnetism and Magnetic Materials, 2006, 304(1): 27-31
    [25] E. Y. L. Yiu, D. T. S. Fang, F. C. S. Chu, etal. Corrosion resistance of iron-platinum magnet FePt. Journal of Dentistry 2004, 32: 423-429
    [26]Chao Liu, Timothy J. Klemmer, Nisha Shukla, etal. Oxidation of FePt nanoparticles. Journal of Magnetism and Magnetic Materials 2003, 266: 96-101
    [27]Jin-sil Choi, Young-wook Jun, Soo-In Yeon, etal. Biocompatible Heterostructured Nanoparticles for Multimodal Biological Detection. J. AM. CHEM. SOC. 2006, 128: 15982-15983
    [28] ZVONIMIRZ. BANDIC, RANDALLH. VICTORA. Advances in Magnetic Data Storage Technologies. Proceedings of the IEEE, 2008, 96(11): 1749-1753
    [29]蒋伯颉,利用化学还原法制备生医应用的FePt纳米粒子.私立东海大学化学工程研究所硕士论文,2006, 21
    [30]林琬蓉, FePt合金粒子制备与性质研究.国立成功大学硕士论文, 2007, 42
    [31]同[29] p43
    [32] HongweiGu, KemingXu, ChenjieXu, etal. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem.Commun., 2006, 941‐949
    [33]Y. Ofir, B. Samanta, P. Arumugam, etal. Controlled Fluorination of FePt Nanoparticles: Hydrophobic to Superhydrophobic Surfaces. Adv. Mater. 2007, 19(22): 4075-4079
    [34]Rui Hong, Nicholas O. Fischer, Todd Emrick, etal. Surface PEGylation and Ligand Exchange Chemistry of FePt Nanoparticles for Biological Applications. Chem. Mater. 2005, 17: 4617-4621
    [35] Yasushi Tanaka, Shinya Maenosono. Amine-terminated water-dispersible FePt nanoparticles. Journal of Magnetism and Magnetic Materials. 2008, 320: L121-L124
    [36]Oscar Bomati Miguel, Maria P. Morales, Pedro Tartaj, etal. Fe based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging. Biomaterials. 2005, 26: 5695-5703
    [37] G. F. Goya, V. Grazu, M. R. and Ibarra. Magnetic Nanoparticles for Cancer Therapy. Current Nanoscience, 2008, 4: 1-16
    [38]Chenjie Xu, Keming Xu, Hongwei Gu, etal. Nitrilotriacetic Acid-Modified Magnetic Nanoparticles as a General Agent to Bind Histidine-Tagged Proteins. J.AM.CHEM.SOC. 2004, 126: 3392-3393
    [39] Jian Yang, Jonathan Gunn, Shivang R. Dave, etal. Ultrasensitive detection and molecular imaging with magnetic nanoparticles. Analyst, 2008, 133: 154-160
    [40]Min Chen, David E. Nikles, Huaqin Yin, etal. Patterning self-assembled FePt nanoparticles. Journal of Magnetism and Magnetic Materials. 2003, 266: 8-11
    [41]Hongwei Gu, Pak-Leung Ho, Kenneth WT Tsang, etal. Using biofunctional magnetic nanoparticles to capture Gram-negative bacteria at an ultra-low concentration. Chem. Commun., 2003, 1966-1967
    [42] Paulus P. M., Pnnemann H. B., van der Kraan A.M., etal. J. Eur. Phys. J. D. 1999, 9: 501‐506
    [43] Dumestre F., Chaudret B., Amiens C., etal. Angew. Chem. 2003, 115: 5371‐5374.
    [44]Jin-silChoi, Young-wookJun, Soo-InYeon etal. Biocompatible Heterostructured Nanoparticles for Multimodal Biological Detection. J. AM. CHEM. SOC. 2006, 128: 15982-15983
    [45]Hongwei Gu, Keming Xu, Chenjie Xu, etal. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun., 2006, 941-949
    [46]N. Revaprasadu and S. N. Mlondo. Use of metal complexes to synthesize semiconductor nanoparticles. Pure Appl. Chem., 2006, 78(9): 1691‐1702
    [47] Yadong Yin and A. Paul Alivisatos. Colloidal nanocrystal synthesis and the Organic-inorganic interface. NATURE. 2005, 437(29): 664-670
    [48]蒋伯颉,利用化学还原法制备生医应用的FePt纳米粒子.私立东海大学化学工程研究所硕士论文, 2006, 24
    [49] Cushing B L, Kolesnichenko V L, O Connor C. J. Chem Rev, 2004, 104: 3893
    [50] Taeghwan Hyeon. Chemical synthesis of magnetic nanoparticles. CHEM. COMMUN., 2003, 927‐934
    [51]JONGNAM PARK, KWANGJIN AN, YOSUN HWANG, etal. Ultra‐large‐scale syntheses of monodisperse nanocrystals. Nature materials. 2004, 3: 891‐895
    [52]连昭晴,Fe/Au核壳型磁性复合纳米粒子的制备与应用.国立成功大学硕士论文, 2004, 37
    [53]William W. Yu, Joshua C. Falkner, Cafer T. Yavuz, etal. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem. Commun., 2004, 2306-2307
    [54]Shouheng Sun, C. B. Murray, Dieter Weller, etal. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. SCIENCE, 2000, 287: 1989-1992
    [55]JONGNAM PARK , KWANGJIN AN , YOSUN HWANG etal. Ultra‐large‐scale syntheses of monodisperse nanocrystals. Nature materials, 2004, 3: 891‐895
    [56]同[29], p67
    [57]Kevin E. Elkins, Tejaswi S. Vedantam, J. P. Liu, etal. Ultrafine FePt Nanoparticles Prepared by the Chemical Reduction Method. Nano Lett., 2003, 3(12): 1647-1649
    [58]Chao Liu, Xiaowei Wu, Timothy Klemmer,etal. Reduction of Sintering during Annealing of FePt Nanoparticles Coated with Iron Oxide. Chem. Mater. 2005, 17: 620-625
    [59]Chao Liu, Xiaowei Wu, Timothy Klemmer, etal. Polyol Process Synthesis of Monodispersed FePt Nanoparticles. J. Phys. Chem. B, 2004, 108(20): 6121-6123
    [60]Shouheng Sun, Simone Anders, Thomas Thomson. Controlled Synthesis and Assembly of FePt Nanoparticles. J. Phys. Chem. B, 2003, 107: 5419-5425
    [61]R. Justin Joseyphus, K. Shinoda, Y. Sato, etal. Composition controlled synthesis of FCC-FePt nanoparticles using a modified polyol process. J. Mater. Sci., 2008, 43:2402-2406
    [62]Rumiko Minami, Yoshitaka Kitamoto, Tsukasa Chikata, etal. Direct synthesis of L10 type FePt nanoparticles using microwave-polyol method. Electrochimica Acta, 2005, 51: 864-866
    [63]同[52] p22
    [64]QingyuYan, ArupPurkayastha, TaegyunKim, etal. Synthesis and Assembly of Monodisperse High‐Coercivity Silica Capped FePt Nanomagnets of Tunable Size, Composition, and Thermal Stability from Microemulsions. Adv. Mater. 2006, 18: 2569‐2573
    [65]Jinwoo Lee, Youjin Lee, JongKyu Youn, etal. Simple Synthesis of Functionalized Superparamagnetic Magnetite /Silica Core/Shell Nanoparticles and their Application as Magnetically Separable High-Performance Biocatalysts. small 2008, 4(1): 143-152
    [66]M.Arturo Lopez Quintela. Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Current Opinion in Colloid and Interface Science, 2003, 8: 137-144
    [67]Koay Mei Hyie, Iskandar Idris Yaacob. Preparation of iron‐platinum nanoparticles in water/triton/cyclohexane microemulsions. Journal of Materials Processing Technology, 2007, 191: 48‐50
    [68]Takashi Iwamoto, Kinya Matsumoto, Yoshitaka Kitamoto, etal. Direct synthesis of FCT-structured FePt nanoparticles at low temperature with assistance of poly(N-vinyl-2-pyrrolidone), Journal of Colloid and Interface Science, 2007, 308: 564-567
    [69]Min Chen, J. P. Liu, and Shouheng Sun. One-Step Synthesis of FePt Nanoparticles with Tunable Size. J. AM. CHEM. SOC., 2004, 126: 8394-8395
    [70]Nick C aiulo, Chih Hao Yu, Kai Man K. Yu, etal. Carbon-decorated FePt Nanoparticles. Adv.Funct.Mater., 2007, 17: 1392-1396
    [71]C. H. Yu, N. Caiulo, C. C. H. Lo, etal. Synthesis and Fabrication of a Thin Film Containing Silica-Encapsulated Face-Centered Tetragonal FePt Nanoparticles. Adv. Mater., 2006, 18(17): 2312-2314
    [72]V. K. Tzitzios, D. Petridis, I. Zafiropoulou, etal. Synthesis and characterization of L10 FePt nanoparticles from Pt‐Fe3O4 core‐shell nanoparticles. Journal of Magnetism and Magnetic Materials, 2005, 294: e95‐e98
    [73]Jordi Sort, Santiago Surinach, Maria Dolors Baro, etal. Direct Synthesis of Isolated L10 FePt Nanoparticles in a Robust TiO2 Matrix via a Combined Sol-Gel/Pyrolysis Route. Adv. Mater. 2006, 18: 466-470
    [74]Emanuel Kockrick, Piotr Krawiec, Walter Schnelle, etal. Space-Confined Formation of FePt Nanoparticles in Ordered Mesoporous Silica SBA-15. Adv. Mater. 2007, 19: 3021-3026
    [75]Vassilios Tzitzios, Dimitrios Niorchos, George Hadjipanayis, etal. Synthesis and characterization of L10 FePt nanoparticles from Pt(Au,Ag)/γFe2O3 core-shell nanoparticles. Adv. Mater. 2005, 17: 2188-2192
    [76]Shinpei Yamamoto, Yasumasa Morimoto, Teruo Ono, etal. Magnetically superior and easy to handle L10-FePt nanocrystals. APPLIED PHYSICS LETTERS, 2005, 87:032503-3
    [77]Vikas Nandwana, Kevin E. Elkins, Narayan Poudyal, etal. Size and Shape Control of Monodisperse FePt Nanoparticles. J. Phys. Chem. C., 2007, 111: 4185-4189
    [78]Narayan Poudyal, Girija S. Chaubey, Chuan-bing Rong, etal. Shape control of FePt nanocrystals. JOURNAL OF APPLIED PHYSICS, 2009, 105: 07A749
    [79]Min Chen, Timothy Pica, Ying-Bing Jiang, etal. Synthesis and Self-Assembly of FCC Phase FePt Nanorods. J. AM. CHEM. SOC. 2007, 129(20): 6348-6349
    [80]Elena Shevchenko, Dmitri Talapin, Andreas Kornowski, etal. Colloidal crystals of monodisperse FePt nanoparticles grown by a three-layer technique of controlled oversaturation. Adv. Mater. 2002, 14(4): 287-290
    [81]Shouheng Sun, C. B. Murray, Dieter Weller, etal. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science, 2000, 287(5460): 1989-1992
    [82]Levent Colak and George C Hadjipanayis. Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition. Nanotechnology, 2009, 20: 485602-7
    [83]Shouheng Sun, Eric E. Fullerton, Dieter Weller, and C. B. Murray. Compositionally Controlled FePt Nanoparticle Materials. IEEE TRANSACTIONS ON MAGNETICS, 2001, 37(4): 1239‐1243
    [84]Shouheng Sun, Simone Anders, Thomas Thomson, etal. Controlled Synthesis and Assembly of FePt Nanoparticles. J. Phys. Chem. B., 2003, 107: 5419-5425
    [85]M. Farahmandjou and S. A. Sebt. The Effect of NaCl Prepared by Ultra-sonic Vibration on the Sintering of Annealed FePt Nanoparticles. CHINESE JOURNAL OF PHYSICS 2009, 47(4): 540-546
    [86]Kevin E. Elkins, Tejaswi S. Vedantam, J. P. Liu, etal. Ultrafine FePt Nanoparticles Prepared by the Chemical Reduction Method. Nano Lett., 2003, 3(12): 1647-1649
    [87]Kevin E. Elkins, Girija S. Chaubey, Vikas Nandwana, etal. A novel approach to synthesis of FePt magnetic nanoparticles. Journal of Nano Rasearch, 2008, (1): 23-30
    [88]Laudemir Carlos Varanda and Miguel Jafelicci Jr. Self-Assembled FePt Nanocrystals with Large Coercivity: Reduction of the FCC-to-L10 Ordering Temperature. J. AM. CHEM. SOC. 2006, 128: 11062-11066
    [89]Yasushi Tanaka, Shinya Maenosono. Amine-terminated water-dispersible FePt nanoparticles. Journal of Magnetism and Magnetic Materials, 2008, 320: L121-L124
    [90]S. Saita and S. Maenosono. Equiatomic FePt nanoparticles synthesized via pyrolysis of iron(III) ethoxide and platinum(II) acetylacetonate. phys. stat. sol. (a), 2006, 203(6): 1206‐1210
    [91]Chao Liu, Xiaowei Wu, Timothy Klemmer, etal. Polyol Process Synthesis of Monodispersed FePt Nanoparticles. J. Phys. Chem. B, 2004, 108(20): 6121-6123
    [92]P. Gibot, E. Tronc, C. Chaneac, etal. (Co、Fe)Pt nanoparticles by aqueous route: self assembling thermal and magnetic properties. Journal of Magnetism and Magnetic Materials, 2005, 290-291 part 1: 555-558
    [93]Koay Mei Hyie, Iskandar Idris Yaacob. Preparation of iron-platinum nanoparticles in water/triton/cyclohexane microemulsions. Journal of Materials Processing Technology. 2007, 191: 48-50
    [94]Oliver Gutfleisch, Julia Lyubina, Karl Hartmut Muller, etal. FePt hard magnets. ADVANCED ENGINEERING MATERIALS 2005, 7(4): 208-212
    [95]蒋伯颉,利用化学还原法制备生医应用的FePt纳米粒子.私立东海大学化学工程研究所硕士论文, 2006, 35
    [96] Jiao‐Ming Qiu and Jian‐Ping Wang. Tuning the Crystal Structure and Magnetic Properties of FePt Nanomagnets. Adv. Mater. 2007, 19: 1703‐1706
    [97] S. A. Majetich and Y. Jin. Magnetization Directions of Individual Nanoparticles. Science. 1999, 284: 470-473
    [98] Diandra L. Leslie-Pelecky, Reuben D. Rieke, etal. Magnetic Properties of Nanostructured Materials. Chem. Mater. 1996, 8: 1770-1783
    [99] Bo Yang, Mark Asta, O. N. Mryasov, etal. The nature of A1-L10 ordering transitions in alloy nanoparticles: A Monte Carlo study. Acta Materialia. 2006, 54: 4201-4211
    [100] M. Kozlowski, R. Kozubski, V. Pierron-Bohnes, etal. L10 ordering kinetics in FePt nano-layers Monte Carlo simulation. Computational Materials Science. 2005, 33: 287-295。
    [101]T. Schre, G. Hrkac, D. Suess, etal. Coercivity and remanence in self-assembled FePt nanoparticle arrays. J. Appl. Phys., 2003, 93(10) Parts 2 and 3: 7041-7043
    [102] J. Zhou, R. Skomski, K. D. Sorge, etal. Magnetization reversal in particulate L10 nanostructures. Scripta Materialia. 2005, 53: 453‐456
    [103] Chih‐Huang Lai, C. C. Chiang, and C. H. Yang. Low‐temperature ordering of FePt by formation of silicides in underlayers. JOURNAL OF APPLIED PHYSICS. 2005, 97: 10H310‐3
    [104]Yoshihiko Hirotsu and Kazuhisa Sato. Growth and atomic ordering of hard magnetic L10 -FePt, FePd and CoPt alloy nanoparticles studied by transmission electron microscopy: alloy system and particle size dependence. Journal of Ceramic Processing Research. 2005, 6(3): 236-244
    [105]Bo Bian, David E. Laughlin, Kazuhisa Sato, etal. Synthesis and Structure of Isolated L10 FePt Particles. IEEE TRANSACTIONS ON MAGNETICS, 2000, 36(5): 3021-3023
    [106]Laudemir Carlos Varanda and Miguel Jafelicci Jr. Self-Assembled FePt Nanocrystals with Large Coercivity: Reduction of the FCC-to-L10 Ordering Temperature. J. AM. CHEM. SOC. 2006, 128: 11062-11066
    [107]V. A. TSURIN, A. E. ERXAKOV, Yv. G. LEBEDE, etal. A Miissbauer Study of the Structural Characteristics of Equiatomic FePd and FePt Alloys. phys. stat. sol (a), 1976, 33(1): 325-332
    [108]C. Verdes, R. W. Chantrell, A. Satoh, etal. Self-organisation, orientation and magnetic properties of FePt nanoparticle arrays. Journal of Magnetism and Magnetic Materials. 2006, 304: 27-31
    [109] Y. K. Takahashi, T. Koyama, M. Ohnuma, etal. Size dependence of ordering in FePt nanoparticles. J. Appl. Phys., 2004, 95(5): 2690-2696
    [110]Aphrodite Tomou, Ioannis Panagiotopoulos, and Dimitrios Gournis. L10 ordering and magnetic interactions in FePt nanoparticles embedded in MgO and SiO2 shell matrices. JOURNAL OF APPLIED PHYSICS. 2007, 102: 023910-5
    [111]Hao Zeng and Shouheng Sun. Exchange-coupled FePt nanoparticle assembly. Appl. Phys. Lett., 2002, 80(14): 2583-2585
    [112]Hao Zeng, Jing Li, Zhong L. Wang, etal. Interparticle Interactions in Annealed FePt Nanoparticle Assemblies. IEEE TRANSACTIONS ON MAGNETICS, 2002, 38(5): 2598-2600
    [113]T.Thomson, M.F.Toney, S.Raoux, etal. Structural and magnetic model of self-assembled FePt nanoparticle arrays. J. Appl. Phys., 2004, 96(2): 1197-1201
    [114] Michael Delalande, Pierre R. Marcoux, PeterReiss, etal. Core-shell structure of chemically synthesized FePt nanoparticles: a comparative study. J. Mater. Chem., 2007, 17: 1579-1588
    [115] T. Thomson and B. D. Terris. Silicide formation and particle size growth in high-temperature-annealed, self-assembled FePt nanoparticles. J. Appl. Phys., 2004, 95(11), Part2: 6738-6740
    [116]Z. R. Dai, Shouheng Sun, and Z. L. Wang. Phase Transformation, Coalescence, and Twinning of Monodisperse FePt Nanocrystals. Nano Lett., 2001, 1(8): 443-447
    [117]T. Thomson, S. L. Lee, M. F. Toney, etal. Agglomeration and sintering in annealed FePt nanoparticle assemblies studied by small angle neutron scattering and x-ray diffraction. PHYSICAL REVIEW B. 2005, 72: 064441-7
    [118] Y. Tamada, Y. Morimoto, S. Yamamoto, etal. Effects of annealing time on structural and magnetic properties of L10 FePt nanoparticles synthesized by the SiO2 nanoreactor method. Journal of Magnetism and Magnetic Materials. 2007, 310: 2381-2383
    [119] T. S. Vedantam and J. P. Liu. Thermal stability of self-assembled FePt nanoparticles. J. Appl. Phys., 2003, 93(10) Parts 2 and 3: 7184-7186
    [120] H. L. Wang, Y. Huang, Y. Zhang, etal. Effects of annealing on the magnetic and structural properties of FePt nanoparticles prepared by chemical synthesis. Journal of Magnetism and Magnetic Materials. 2007, 310: 22-27
    [121]H. L. Wang , Y. Huang , Y. Zhang, etal. Effects of annealing on the magnetic and structural properties of FePt nanoparticles prepared by chemical synthesis. Journal of Magnetism and Magnetic Materials. 2007, 310: 22-27
    [122]Kazuaki Yano, Vikas Nandwana, Narayan Poudyal, etal. Rapid thermal annealing of FePt nanoparticles. J. Appl. Phys. 2008, 104: 013918-4
    [123]H. Zeng, Shouheng Sun, R.L.Sandstrom, etal. Chemical ordering of FePt nanoparticle self-assemblies by rapid thermal annealing. Journal of Magnetism and Magnetic Materials. 2003, 266: 227-232
    [124] J. P. Liu, K. Elkins, D. Li, etal. Phase Transformation of FePt Nanoparticles. IEEE TRANSACTIONS ON MAGNETICS, 2006, 42(10): 3036-3041
    [125] Chao Liu, Xiaowei Wu, Timothy Klemmer, etal. Reduction of Sintering during Annealing of FePt Nanoparticles Coated with Iron Oxide. Chem. Mater. 2005, 17: 620- 625
    [126] Kevin Elkins, Daren Li, Narayan Poudyal, etal. Monodisperse face-centred tetragonal FePt nanoparticles with giant coercivity. J. Phys. D: Appl. Phys. 2005, 38: 2306-2309
    [127] J. P. Liu, K. Elkins, D. Li, etal. Phase Transformation of FePt Nanoparticles. IEEE TRANSACTIONS ON MAGNETICS. 2006, 42(10): 3036-3041
    [128]Daren Li, Narayan Poudyal, Vikas Nandwana, etal. Hard magnetic FePt nanoparticles by salt-matrix annealing. JOURNAL OF APPLIED PHYSICS. 2006, 99: 08E911
    [129]Kevin Elkins, Daren Li, Narayan Poudyal, etal. Monodisperse face-centred tetragonal FePt nanoparticles with giant coercivity. J. Phys. D: Appl. Phys. 2005, 38: 2306-2309
    [130] Ferry Iskandar , Hye Moon Lee , Toshiyuki Toda, etal. Fabrication of L10 FePtAg nanoparticles and a study of the effect of Ag during the annealing process. Journal of Magnetism and Magnetic Materials. 2006, 305: 514-519
    [131] Yun-Mo Sung, Myung-Ki Lee, Ki-Eun Kim, etal. The origin of enhanced L10 chemical ordering in Ag-doped FePt nanoparticles. Chemical Physics Letters. 2007, 443: 319-322
    [132] Ferry Iskandar , Hye Moon Lee , Toshiyuki Toda, etal. Fabrication of L10 FePtAg nanoparticles and a study of the effect of Ag during the annealing process. Journal of Magnetism and Magnetic Materials. 2006, 305: 514-519
    [133] I. Zaropoulou, V. Tzitzios, N. Boukos, etal. Ordering kinetics of chemically synthesized FePt nanoparticles. Journal of Magnetism and Magnetic Materials . 2007, 316: e169-e172
    [134] J. W. Harrell, D. E. Nikles, S. S. Kang, etal. Effect of metal additives on L10 ordering of chemically synthesized FePt nanoparticles. Scripta Materialia. 2005, 53: 411-416
    [135]Qingyu Yan, Taegyun Kim, Arup Purkayastha, etal. Enhanced chemical ordering and coercivity in FePt alloy nanoparticles by Sb doping. Adv. Mater. 2005, 17: 2233-2237
    [136]Y. Ding, S. A. Majetich, J. Kim, etal. Sintering prevention and phase transformation of FePt nanoparticles. Journal of Magnetism and Magnetic Materials. 2004, 284: 336-341
    [137]F. C. S. da Silva and J. P. Nibarger. Thermal stability of exchange-coupled magnetic grains. PHYSICAL REVIEW B. 2003, 68: 012414-4
    [138]Chuan-bing Rong, Hong-wei Zhang ,Xiao-bo Du,etal. Investigation of hard magnetic properties of nanocomposite Fe-Pt magnets by micromagnetic simulation. J. Appl. Phys. 2004, 96(7): 3921-3924
    [139]N. T. Gorham, R. C. Woodward, T. G. St Pierre, etal. Apparent magnetic energy barrier distribution in FePt nanoparticles. Journal of Magnetism and Magnetic Materials . 2005, 295: 174-176
    [140]T. J. Klemmer, C. Liu, N. Shukla, etal. Combined reactions associated with L10 ordering. Journal of magnetism and magnetic materials. 2003, 266: 79-87
    [141]N. Lummen and T. Kraska. Homogeneous nucleation and growth in iron-platinum vapour investigated by molecular dynamics simulation. Eur. Phys. J. D. 2007, 41: 247-260
    [142]Chuan-bing Rong, Daren Li, Vikas Nandwana, etal. Size-Dependent Chemical and Magnetic Ordering in L10–FePt Nanoparticles. Adv. Mater. 2006, 18: 2984-2988
    [143]Chuan-Bing Rong, Yang Li, and J. Ping Liu. Curie temperatures of annealed FePt nanoparticle systems. J. Appl. Phys. 2007, 101: 09K505-3
    [144]R. Justin Joseyphus, K. Shinoda, Y. Sato, etal. Composition controlled synthesis of FCC-FePt nanoparticles using a modified polyol process. J. Mater. Sci. 2008, 43: 2402-2406
    [145]Shouheng Sun, EricE. Fullerton, Dieter Weller,etal. Compositionally Controlled FePt Nanoparticle Materials. IEEE TRANSACTIONS ON MAGNETICS, 2001, 37(4): 1239-1243
    [146]L. vekas, DoinO bica, Oana Marinica.Magnetic nanofluids stabilized with various chain length surfactants. Romanian Reports in Physics, 2006, 58(3): 257-267
    [147]Yadong Yin and A. Paul Alivisatos. Colloidal nanocrystal synthesis and the organic-inorganic interface. NATURE. 2005, 437(29): 664-670
    [148]Arup Purkayastha,Qingyu Yan, Makala S. Raghuveer, etal. Surfactant-Directed Synthesis of Branched Bismuth Telluride/Sulfide Core/Shell Nanorods. Adv. Mater. 2008, 9999: 1-5
    [149]Y .L. Zhang, Y. Yang, J. H. Zhao, etal. Preparation of ZnO nanoparticles by a surfactant-assisted complex sol-gel method using zinc nitrate. Journal of Sol-Gel Science and Technology. 2009, 51(2): 198-203
    [150]Victor F. Puntes, Kannan M. Krishnan, A. Paul Alivisatos. Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt. SCIENCE. 2001, 291(16): 2115-2117
    [151]SeungI. Cha, Chan B. Mo, Kyung T. Kim, etal. Ferromagnetic cobalt nanodots,nanorices,nanowires and Nanoflowers by polyol process. J. Mater. Res., 2005, 20(8): 2148-2153
    [152]Kirsten Ahrenstorf,Ole Albrecht,Hauke Heller, etal. Colloidal Synthesis of Nix Pt1-x Nanoparticles with Tuneable Composition and Size. Small, 2007, 3(2): 271-274
    [153]Jingyi Chen,Yujie Xiong,Yadong Yin, etal. Pt Nanoparticles Surfactant-Directed Assembled into Colloidal Spheres and used As Substrates in Forming Pt Nanorods and Nanowires. small 2006, 2 (11): 1340-1343
    [154]Hyunjoo Lee, Susan E.Habas, Sasha Kweskin, etal. Morphological Control of Catalytically Active Platinum Nanocrystals. Angew.Chem.Int.Ed. 2006, 45: 7824-7828
    [155]Xiaowei Teng and Hong Yang. Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles. J. Mater. Chem., 2004, 14 : 774-779
    [156]SeungI. Cha, Chan B. Mo, Kyung T. Kim, etal. Ferromagnetic cobalt nanodots, nanorices, nanowires and Nanoflowers by polyol process. J. Mater. Res., 2005, 20(8): 2148-2153
    [157]P. Davide Cozzoli, Etienne Snoeck, Miguel Angel Garcia, etal. Colloidal Synthesis and Characterization of Tetrapod-Shaped Magnetic Nanocrystals. Nano Lett., 2006, 6 (9): 1966–1972
    [158]Kirsten Ahrenstorf, Ole Albrecht, Hauke Heller, etal. Colloidal Synthesis of Nix Pt1-x Nanoparticles with Tuneable Composition and Size. small 2007, 3(2) : 271-274
    [159]Nikhil R. Jana, Latha Gearheart and Catherine J. Murphy. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun., 2001, 617-618
    [160]Jingyi Chen, Yujie Xiong, Yadong Yin, etal. Pt Nanoparticles Surfactant-Directed Assembled into Colloidal Spheres and used as Substrates in Forming Pt Nanorods and Nanowires. small 2006, 2 (11): 1340-1343
    [161]Hyunjoo Lee, Susan E. Habas, Sasha Kweskin, etal. Morphological Control of Catalytically Active Platinum Nanocrystals. Angew. Chem. Int. Ed. 2006, 45: 7824-7828
    [162]Yuval Ofir, Bappaditya Samanta, Palaniappan Arumugam etal. Controlled Fluorination of FePt Nanoparticles:Hydrophobic to Superhydrophobic Surfaces. Adv. Mater. 2007, 19: 4075-4079
    [163]Yasushi Tanaka, and Shinya Maenosono. Amine‐terminated water‐dispersible FePt nanoparticles. Journal of Magnetism and Magnetic Materials, 2008, 320(19): L121‐L124
    [164]ChaoWang, YanglongHou, JaeminKim etal. A General Strategy for Synthesizing FePt Nanowires and Nanorods . Angew. Chem. Int. Ed. 2007, 46: 6333‐6335
    [165]V ikas Nandwana, Kevin E. Elkins, Narayan Poudyal, etal. Size and Shape Control of Monodisperse FePt Nanoparticles. J. Phys. Chem. C 2007, 111: 4185‐4189
    [166]Babak Nikoobakht and Mostafa A. El-Sayed. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater., 2003, 15 (10): 1957–1962
    [167]Narayan Poudyal, Girija S. Chaubey, Chuan‐bing Rong, etal. Shape control of FePt nanocrystals. Journal of Applied Physics, 2009, 105(7):07A749‐07A749‐3
    [168]Min Chen, Jaemin Kim, J. P. Liu, etal. Synthesis of FePt Nanocubes and Their Oriented Self-Assembly/// J. AM. CHEM. SOC. 2006, 128: 7132-7133
    [169]Yanglong Hou, Hiroshi Kondoh, Renchao Che, etal. Ferromagnetic FePt Nanowires: Solvothermal Reduction Synthesis and Characterization. Small, 2006, 2(2): 235‐238
    [170]Xin Gao, Kin Tam Dr., Kai Man Kerry Yu etal. Synthesis and Characterization of Thiol-Capped FePt Nanomagnetic Porous Particles. Small, 2005, 1(10): 949-952
    [171]Min Chen, T imothy Pica, Ying‐Bing Jiang, etal. Synthesis and Self‐Assembly of FCC Phase FePt Nanorods. J. AM. CHEM. SOC.2007, 129: 6348‐6349
    [172]Chih Wei Lai, Yu Hsiu Wang, Cheng Hsuan Lai, etal. Iridium-Complex-Functionalized Fe3O4/SiO2 Core/Shell Nanoparticles: A Facile Three-in-One System in Magnetic Resonance Imaging, Luminescence Imaging, and Photodynamic Therapy. small 2008, 4(2):218-224
    [173]El-Boubbou K, Gruden C, Huang X . Magnetic Glyco-nanoparticles: A Unique Tool for Rapid Pathogen Detection, Decontamination, and Strain Differentiation. J. Am. Chem. Soc. 2007, 129(44):13392-13393
    [174]DANIEL L. J. THOREK, ANTONY K. CHEN, JULIE CZUPRYNA, etal. Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging. Annals of Biomedical Engineering, 2006, 34(1): 23-38.
    [175]Juliano Toniolo, Antonio S. Takimi, Monica J. Andrade, etal. Synthesis by the solution combustion process and magnetic properties of ironoxide (Fe3O4 and a-Fe2O3) particles. J. Mater. Sci. 2007, 42: 4785-4791
    [176]Seoyoun Shin and Jyongsik Jang. Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions. Chem. Commun., 2007, 4230-4232
    [177]Meghann A. White, Jeremiah A. Johnson, Jeffrey T. Koberstein, etal. Toward the Syntheses of Universal Ligands for Metal Oxide Surfaces: Controlling Surface Functionality through Click Chemistry. J. AM. CHEM. SOC. 2006,128: 11356-11357
    [178]王永亮,李保强,周玉.超顺磁性Fe3O4纳米颗粒的合成及应用.材料科学与工艺, 2009, 17( 3): 402-409
    [179]季俊红,季生福,杨伟等.磁性Fe3O4纳米晶制备及应用.化学进展, 2010, 22( 8) : 1566-1574
    [180]Yan Li, Jinsong Wu, Dawei Qi, etal. Novel approach for the synthesis of Fe3O4@TiO2 core-shell microspheres and their application to thehighly specific capture of phosphopeptides for MALDI-TOF MS analysis. Chem. Commun., 2008, 564-566
    [181]Jianding Qiu, Huaping Peng, and Ruping Lang. Ferrocene-modied Fe3O4@SiO2 magnetic nanoparticles as building blocks for construction of reagentless enzyme-based biosensors. Electrochemistry Communications, 2007, 9(11): 2734-2738
    [182]Yan Li, Xiuqing Xu, Dawei Qi, etal. Novel Fe3O4@TiO2 Core-Shell Microspheres for Selective Enrichment of Phosphopeptides in Phosphoproteome Analysis. Journal of Proteome Research 2008, 7(6): 2526-2538
    [183]陈亭汝,孙瑾. Fe3O4磁性纳米粒子的共沉淀法制备研究.应用化工, 2009, 38( 2) : 26-232
    [184]郑志刚,钟喜春,余红雅等. Fe3O4磁性纳米颗粒的制备及性能表征.电子元件与材料, 2010, 29( 7) : 27-39
    [185]李文章,李洁,丘克强等.超顺磁性Fe3O4纳米颗粒的制备及修饰.功能材料, 2007,38( 8) : 1279-1286
    [186]郑举功,陈泉水,杨婷.磁性Fe3O4纳米粒子的合成及表征.磁性材料及器件, 2008, 39( 6) : 36-39
    [187]刘献明,刘晶,吉保明. Fe3O4纳米棒的水热法制备及其磁性能研究.电子元件与材料, 2008, 27( 12) : 47-50
    [188]Vuthichai Ervithayasuporn,Yusuke Kawakami. Synthesis and characterization of core shell type Fe3O4 nanoparticles in poly(organosilsesquioxane). Journal of Colloid and Interface Science 2009, 332: 389‐393
    [189]Jin Xie, Sheng Peng, Nathan Brower, etal. One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications. Pure Appl. Chem., 2006, 78(5): 1003-1014
    [190]同[9] p52
    [191]Suk Fun Chin, K. Swaminathan Iyer, and Colin L. Raston. Facile and Green Approach To Fabricate Gold and Silver Coated Superparamagnetic Nanoparticles. Cryst. Growth Des., 2009, 9 (6): 2685–2689
    [192]Lingyan Wang, Hye‐Young Park, Stephanie I‐Im Lim, etal. Core@shell nanomaterials: gold‐coated magnetic oxide nanoparticles. J. Mater. Chem., 2008, 18: 2629‐2635
    [193]Vuthichai Ervithayasuporn,Yusuke Kawakami. Synthesis and characterization of core‐shell type Fe3O4 nanoparticles in poly(organosilsesquioxane). Journal of Colloid and Interface Science 2009, 332: 389‐393
    [194]M. Aslam, L. Fu, S. Li, etal. Silica encapsulation and magnetic properties of FePt nanoparticles. Journal of Colloid and Interface Science 2005, 290: 444-449
    [195]Masih Darbandi, Weigang Lu, Jiye Fang, etal. Silica Encapsulation of Hydrophobically Ligated PbSe Nanocrystals. Langmuir 2006, 22:4371-4375
    [196]Jinwoo Lee, Youjin Lee, Jong Kyu Youn, etal. Simple Synthesis of Functionalized Superparamagnetic Magnetite/Silica Core/Shell Nanoparticles and their Application as Magnetically Separable High-Performance Biocatalysts. small 2008,4(1):143-152
    [197]Dong Kee Yi, Su Seong Lee, Georgia C. etal. Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem. Mater. 2006, 18: 614-619
    [198]Tae Jong Yoon, Kyeong Nam Yu, Eunha Kim, etal. Specific Targeting, Cell Sorting, and Bioimaging with Smart Magnetic Silica Core-Shell Nanomaterials. small 2006, 2(2) : 209-215
    [199]Qingyu Yan, Arup Purkayastha, Taegyun Kim. Synthesis and Assembly of Monodisperse High-Coercivity Silica- Capped FePt Nanomagnets of Tunable Size, Composition, and Thermal Stability from Microemulsions. Adv. Mater. 2006, 18: 2569-2573
    [200]ShaoLong Tie, HyeonCheol Lee, YounSang Bae, etal. MonodisperseFe3O4/Fe@SiO2 core/shell nanoparticles with enhanced magnetic property. Colloids and Surfaces A: Physicochem. Eng. Aspects 2007,293 :278-285
    [201]F. H. Chen, Q. Gao and J. Z. Ni. The grafting and release behavior of doxorubincin from Fe3O4@SiO2 core-shell structure nanoparticles via a acid cleaving amide bond: the potential for magnetic targeting drug delivery. Nanotechnology 2008, 19(165103): 1-9
    [202]LijunZ hao,Hua Yang, Yuming Cui, etal. Study of preparation and magnetic properties of silica-coated cobalt ferrite nanocomposites. J. Mater. Sci. 2007, 42: 4110-4114
    [203]Cuiling Ren, Jinhua Li, Qian Liu, etal. Synthesis of Organic Dye-Impregnated Silica Shell-Coated Iron Oxide Nanoparticles by a New Method. Nanoscale Res Lett 2008, 3: 496-501
    [204]Yong-Hui Deng, Chang-Chun Wang, Jian-Hua Hu, etal. Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach. Colloids and Surfaces A: Physicochem. Eng. Aspects 2005, 262: 87-93
    [205]Chunqiang Yang, Gang Wang, Ziyang Lu, etal. Effect of ultrasonic treatment on dispersibility of Fe3O4 nanoparticles and synthesis of multi-core Fe3O4/SiO2 core/shell nanoparticles. J. Mater. Chem., 2005, 15: 4252-4257
    [206]Yonghui Deng, Dawei Qi, Chunhui Deng, etal. Superparamagnetic High‐Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. J. Am. Chem. Soc., 2008, 130 (1): 28–29
    [207]Z iyang Lu, Gang Wang, Jiaqi Zhuang, etal. Effects of the concentration of tetramethylammonium hydroxide Peptizer on the synthesis of Fe3O4 @SiO2 core/shell nanoparticles. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 278: 140‐143
    [208] K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, etal. Ultrafine FePt nanoparticles prepared by the chemical reduction method.Nano Lett. 3(12) (2003) 1647-1649.
    [209] M. Nakaya, Y. Tsuchiya, K. Ito, Y. Oumi, T. Sano, etal. Novel synthesis of FePt nanoparticles and magnetic properties of their self-assembled superlattices. Chem. Lett. 33 (2)(2004), 130-131.
    [210]C. Liu, X. Wu, T. Klemmer, N. Shukla, etal.Polyol process synthesis of monodispersed FePt nanoparticles. J. Phys. Chem. B 108 (20) (2004) 6121-6123.
    [211]S. Momose, H. Kodama, T. Uzumaki,etal. Magnetic properties of magnetically isolated L10-FePt nanoparticles J. Appl. Phys. Part1 44 (2005) 1147-1149.
    [212]C. Rong, D. Li,V. Nandwana, N. Poudyal, etal.Size‐Dependent Chemical and Magnetic Ordering in L10‐ FePt Nanoparticles,Adv.Mater. 18 (2006) 2984-2988.
    [213]U. Lee, J. Choi, N. Myung, H. Kim, etal. Chem .Soc. 29 (2008) 689.
    [214] W. Zhang, Y. Liu, R. Cao, Z. Li, etal.Synergy between Crystal Strain and Surface Energy in Morphological Evolution of Five-Fold-Twinned Silver Crystals J. Am. Chem. Soc. 2008,130:15581-15588.
    [215]S. Zhu, S. Tang, X. Meng, Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method CHIN.PHYS.LETT. 2009, 26 (7):078101-1-078101-4.
    [216]T. Iwamoto, K. Matsumoto, Y. Kitamoto, etal. Direct synthesis of FCT-structured FePt nanoparticles at low temperature with assistance of poly (N-vinyl-2-pyrrolidone) J. Colloid Interface Sci. 2007, 308:564-567.
    [217]X. Du, M. Inokuchi, N. Toshima, Preparation and characterization of Co-Pt bimetallic magnetic nanoparticles. J. Magn. Magn. Mater.2006, 299:21-28.
    [218]S. Yamamoto, Y. Morimoto, T. Ono, etal.Magnetically supe- rior and easy to handle L10–FePt nanocrystals. Appl. Phys. Lett. 2005, 87: 032503-1-3.
    [219]Y. Takahashi, T. Koyama, M. Ohnuma, etal. Size dependence of ordering in FePt nanoparticles. J. Appl. Phys.2004, 95 (5): 2690-2696.
    [220]S. Sun, Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 2006, 18: 393-403.
    [221]S. Ham, K. Paeng, J. Park, N. Myung, S. Kim, K. Rajeshwar, J. Appl. Electrochem. 2004, 38: 203-205.
    [222] J. W. Harrell, D. E. Nikles, S. S. Kang, etal.Effect of metal additives on L10 ordering of chemically synthesized FePt nanoparticles.Scripta Materialia 2005, 53: 411-416.
    [223]I. Zaropoulou, V. Tzitzios, N. Boukos, etal. J. Magn. Magn. Mater. 2007,316: e169-e172.
    [224]M. Aslam, L. Fu, S. Li, Vinayak P. Dravid, Silica encapsulation and magnetic properties of FePt nanoparticlesJ. Colloid Interface Sci. 2005, 290: 444-449.
    [225]Christodoulides J,Zhang Y,,Hadjipanayis G etal. CoPt and FePt Nanoparticles for High Density Recording Media [J]. IEEE Trans Magn, 2000,36(5): 2333‐2335
    [226]Iwaki T, Kakihara Y, Toda T et al. Preparation of high coercivity magnetic FePt nanoparticles by liquid process [J].Appl.Phys., 2003, 94(10): 6807‐6811
    [227]Huang Y, Zhang Y, Hadjipanayis G et al. Fabrication and characterization of ordered FePt nanoparticles [J].Appl Phys 2003, 93(10): 7172‐7174
    [228]Sun S, Murray C, Weller D et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287(5460): 1989‐1992
    [229]Liu C, Wu X, T imothy K et al.Polyol Process Synthesis of Monodispersed FePt Nanoparticles[J]. Phys.Chem.B,2004,108( 20):6121‐6123
    [230]Sun S. Recent Advances in Chemical Synthesis, Self‐Assembly, and Applications of FePt Nanoparticles [J]. Adv. Mater 2006, 18(4): 393‐403
    [231]Kevin E. Elkins, Tejaswi S. Vedantam, J. P. Liu et al. Ultrafine FePt Nanoparticles Prepared by the Chemical Reduction Method. [J]. Nano Lett.2003, 3(12):1647‐1649
    [232]Shukla N, Liu Chao, Roy A. Oriented self‐assembly of cubic FePt nanoparticles[J]. Materials Letters 2006, 60(8):995‐998
    [233]Jeyadevan B., Hobo A., Urakawa K. etal. Towards direct synthesis of FCT‐FePt nanoparticles by chemical route [J]. Appl Phys, 2003, 93( 10): 7574‐7576
    [234]Jeyadevan B., Urakawa K. Hobo A. et al. Direct Synthesis of FCT‐FePt Nanoparticles by Chemical Route[J].Jpn. Appl Phys,2003, 42(4A): L350‐ L352
    [235]Chao Liu, Xiaowei Wu, Timothy Klemmer. etal. Polyol Process Synthesis of Monodispersed FePt Nanoparticles [J]. Phys. Chem. B [J], 2004, 108(20): 6121-6123
    [236]Chen Chiang, Dong-Hwang,Synthesis of monodisperse FeAu nanoparticles with tunable magnetic and optical properties. Chen Adv. Funct. Mater. 2007, 17:1311-1316
    [237]Chao Wang, Yanglong Hou, Jaemin Kim, etal.A general strategy for synthesizing FePt nanowires and nanorods . Angew. Chem. Int. Ed. 2007, 46: 6333-6335
    [238]Shouheng Sun.Recent Advances in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles. Adv. Mater. 2006, 18:393-403
    [239]Chuan-bing Rong, Daren Li, Vikas Nandwana,etal.Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles . Adv. Mater. 2006, 18:2984-2988
    [240]Yanglong Hou, Hiroshi Kondoh, Toshiaki Ohta, etal. Size-controlled synthesis and magnetic studies of monodisperse FePd nanoparticles. Nanotechnol.2009, 9(1): 202-208
    [241]Seung I. Cha, Chan B. Mo, Kyung T. K im, etal. Mechanism for controlling the shape of Cu nanocrystals prepared by the polyol process.J. Mater. Res., 2006, 21(9): 2371‐2378
    [242]Shishou Kang, Zhiyong Jia, DavidE. Nikles,etal.Synthesis, Self‐Assembly, and Magnetic Properties Of [FePt]1‐xAux. Nanoparticles.IEEETRANS ACTIONS ON MAGNETICS, 2003, 39(5):2753‐2757 [243]Min Chen, J. P. Liu,Shouheng Sun.One‐Step Synthesis of FePt Nanoparticles with Tunable Size. J.AM. CHEM.SOC.2004, 126: 8394‐8395
    [244]H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. Sun, Exchanged-coupled nanocomposite magnets via nanoparticle self-assembly. Nature London 2002, 420(395): 2741‐2744
    [245]G. V. Kurlyandskaya, M. L. Sanchez, B. Hernando, V. M. Prida, P. Gorria, etal. Giant-magnetoimpedance-basedsensitiveelementasamodel Forbiosensors. Appl. Phys. Lett. 2003,82(3053):833-835
    [246]F. Scherer, M. Anton, U. Schillinger, J. Henke, Magnetofection: Enhancing and targeting gene delivery by magnetic force. Gene Ther. 2002, 9(102): 79‐80
    [247]Shouheng Sun, C. B. Murray, Dieter Weller, etal.Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Andreas Moser SCIENCE 2000, 287(17):1989-1992
    [248]Yanglong Hou, Hiroshi Kondoh, Renchao Che, etal.Ferromagnetic FePt Nanowires: Solvothermal Reduction Synthesis and characterization. small 2006, 2: 235‐238
    [249]V ikas Nandwana, Kevin E. Elkins, Narayan Poudyal, etal.Size and Shape Control of Monodisperse FePt Nanoparticles.J. Phys. Chem. C 2007,111, 4185‐4189
    [250]Min Chen, Jaemin Kim, J. P. Liu, etal.Synthesis of FePt Nanocubes and Their Oriented Self-Assembly.J. AM. CHEM. SOC. 2006, 128: 7132-7133
    [251]WANG GuoZhi, ZHANG Lei, DENG JiGuang,etal.Synthesis and characterization of wormhole-like mesoporous Ce0.6 Zr0.35Y0.05 O2 solid solutions.Chinese Science Bulletin, 2007 52(2): 175-180
    [252]Sasha Kweskin, Derek Butcher, Gabor A. etal.Morphological Control of Catalytically Active Platinum Nanocrystals. Chem. Int. Ed. 2006, 45: 7824-7828
    [253]B. Veisz, Z. Kiraly,.Size‐selective synthesis of cubooctahedral palladium particles mediated by metallomicelles Langmuir 2003, 19, 4817‐4819
    [254]HaoMing Chen, RuShi Liu.Controlling Length and Monitoring Growth of Gold Nanorods.Journal of the Chinese Chemical Society, 2006, 53: 1343-1348
    [255]Franklin Kim, Kwonnam Sohn, Jinsong Wu,etal.Chemical Synthesis of Gold Nanowires in Acidic Solutions.J. AM. CHEM. SOC. 2008, 130, 14442-14443
    [256]张为灿,李干佐,牟建海,等。十六烷基三甲基溴化铵蠕虫状胶束的形成及其性质。2006,06: 1138-1141
    [257]Huynh W U, Dittmer J J, Alivisatos A P.Hybrid nanorod‐polymer solar cells [J]. Science, 2002, 295: 2425‐2427
    [258]Gudiksen M S, Lauhon L J, Wang J, et al. [J].Growth of nanowire superlattice structures for nanoscale photonics and electronics .Nature, 2002, 415: 617‐620
    [259]刘冰,王德平,黄文.[J].功能材料,2007 7(38):1074‐1077
    [260]Chen C, Wang L, Jiang G H, et al.Chemical preparation of special‐shaped metal nanomaterials through encapsulation or inducement in soft solution [J]. Rev. Adv. Mater. Sci., 2006, 11:1‐18
    [261]Puntes V F, Krishnan K M, Alivisatos A P. Structural diversity in binary nanoparticles superlattices [J].Science, 2001, 291:2115‐2117
    [262]Zhang J, Dai Z H, Bao J C, et al.Artificial Neural Network Modeling for Sorption of Cadmium from Aqueous System by Shelled Moringa Oleifera Seed Powder as an Agricultural Waste [J]. Journal of Colloid and Interface Science, 2007, 305: 339‐344
    [263]Peng Z A, Peng X G. Mechanisms of the shape evolution of CdSe nanocrystals [J].J. Am. Chem. Soc., 2001, 123:1389‐1395
    [264]Nikoobakht B and El‐Sayed M A . Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed‐Mediated Growth Method. [J]. Chem Mater, 2003, 15: 1957‐1962
    [265]Gautam U K, and Mukherjee B. A simple synthesis and characterization of CuS nanocrystals [J].Bull.Mater.Sci.,2006, 29 (1):1‐5
    [266]Ahrenstorf K, Albrecht O, Heller H, et al.Colloidal Synthesis of NixPt1 x Nanoparticles with Tuneable Composition and Size [J].small, 2007, 3(2): 271‐274
    [267]K im F, Sohn K, Wu J S, et al.Chemical Synthesis of Gold Nanowires in Acidic Solutions [J]. J. Am. Chem. Soc., 2008, 130: 14442‐14443
    [268]Sun Y G, Xia Y N. Large‐Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self‐seeding, Polyol Process [J]. Adv. Mater., 2002, 14(11): 833‐837
    [269]Kovalenko M V, Bodnarchuk M I, Lechner R T, et al.Fatty Acid Salts as Stabilizers in Size‐and Shape‐Controlled Nanocrystal Synthesis: The Case of Inverse Spinel Iron Oxide [J]. J. Am. Chem. Soc., 2007, 129: 6352‐6353
    [270]Zeng H, Rice P M, Wang S X, et al. Shape‐controlled synthesis and shape‐induced texture of MnFe2O4 nanoparticles [J]. J. Am. Chem. Soc., 2004, 126: 11458‐11459
    [271]Chen M, Kim J, Liu J P, et al.Synthesis of FePt nanocubes and their oriented self‐assembly [J]. J. Am. Chem. Soc., 2006, 128: 7132‐7133
    [272]Chen M, Liu J P, Sun S H. One‐step synthesis of FePt nanoparticles with tunable size [J]. J. Am. Chem. Soc., 2004, 126: 8394‐8395
    [273]Nandwana V, Elkins K E, Poudyal N, et al. Size and shape control of monodisperse FePt nanoparticles [J]. J. Phys. Chem. C., 2007, 111: 4185‐4189
    [274]Hou Y L, Kondoh H, Che R, et al. Ferromagnetic FePt nanowires: solvothermal reduction synthesis and characterization [J].small, 2006, 2(2): 235‐238
    [275]Chen M, Pica T, Jiang Y B, et al. Synthesis and self‐assembly of FCC phase FePt nanorods [J].J. Am. Chem. Soc., 2007, 129: 6348‐6349
    [276]Wang C, Hou Y L, Kim J, et al.A General Strategy for Synthesizing FePt Nanowires and Nanorods [J]. Angew. Chem. Int. Ed., 2007, 46: 6333‐6335
    [277]Nandwana V, Elkins K E, Poudyal N, et al.ize and Shape Control of Monodisperse FePt Nanoparticles [J]. J. Phys. Chem. C., 2007, 111: 4185‐4189
    [278]Elkins K E, Chaubey G S, Nandwana V, et al.A novel approach to synthesis of FePt magnetic nanoparticles [J]. Journal of Nano Research, 2008, 1: 23‐29
    [279]杜雪岩,李芳,马应霞,等.热处理对FePt磁性能的影响[J].稀有金属材料与工程, 2009, 38(12): 2163‐2166
    [280]S. Sun, Murray C, Weller D et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science[J], 2000, 287(5460): 1989‐1992
    [281]H. Zeng, J. Li, J. P. Liu et al. Exchange‐coupled nanocomposite magnets by nanoparticle self‐assembly. Nature (London) [J], 2002, 420: 395‐398
    [282]S. Kang, J. W. Harrell, and D. E. Nikles, Reduction of the FCC to L10 ordering temperature for self‐assembled FePt nanoparticles containing Ag .Nano Lett [J],2002, 2(10): 1033‐1034
    [283]G. V. Kurlyandskaya, M. L. Sanchez, B. Hernando et al. Giant‐magnetoimpedance‐based sensitive element as a model for biosensors.Appl. Phys. Lett [J], 2003, 82: 3053‐3055
    [284]D. K. K im, M. Mikhaylova, Y. Zhang et al. Chem. Mater [J], 2003, 15: 1617‐1627
    [285]F. Scherer, M. Anton, U. Schillinger et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther [J], 2002, 9: 102‐109
    [286]Chao Liu, Xiaowei Wu, T imothy Klemmer et al. Polyol process synthesis of monodispersed FePt nanoparticles. Phys Chem B [J], 2004, 108 (20): 6121‐6123
    [287]S. Sun, Recent advances in chemical synthesis, self‐assembly, and applications of FePt nanoparticles. Adv Mater [J], 2006, 18, 395
    [288]Kevin E. Elkins, Tejaswi S. Vedantam, J. P. Liu et al. Nano Lett [J], 2003, 3:1647
    [289]Zhu Yun(竺云), Cai Jianwang(蔡建旺), Formation of L10‐FePt nanoparticles with the precursor of [(Fe/Pt/Fe)/Ag] n multilayer at lowered annealing temperature . Acta Physica Sinica (物理学报) [J], 2005, 54(1): 393.
    [290] Li Xiaoli(李小丽), Xue Xiaohong(许小红), Wu Haishun(武海顺), Structure and Magnetic Properties of FePt/C Multilayer Film Rare Metal Materials and Engineering (稀有金属材料与工程) [J], 2005, 34(9): 1509.[291] Wang Hao(王浩), Yang Fujun(杨辅军), Xue Shuangxi薛双喜等, Acta Physica Sinica(物理学报) [J], 2005, 54(3): 1415
    [292] Feng Chun(冯春), Li Baohe(李宝河), Han Gang(韩刚)等, Acta Physica Sinica(物理学报) [J], 2006, 55(12): 6656
    [293] Wang Fang(王芳), Xue Xiaohong(许小红), Wu Haishun武海顺, Rare Metal Materials and Engineering(稀有金属材料与工程) [J], 2005, 34(10): 1578
    [294] Zhan Xiaoyuan(展晓元), Zhang Yue(张跃), Gu Yousong(顾有松), Journal of Functional Materials(功能材料) [J], 2006, 37(9): 1436
    [295] Zhan Xiaoyuan(展晓元), Zhang Yue(张跃), Qi Junjie(齐俊杰)等, Acta Physica Sinica(物理学报) [J], 2007, 56(3): 1725
    [296]Kevin Elkins, Daren Li, Narayan Poudyal et al. Monodisperse face‐centred tetragonal FePt nanoparticles with giant coercivityPhys D: Appl Phys [J], 2005,38:2306
    [297]Chuan‐Bing Rong, Yang Li, and J. Ping Liu, Appl Phys [J], 2007,101, 09K505‐3
    [298]Chuan‐bing Rong, Daren Li, V ikas Nandwana, et al. Adv Mater [J], 2006, 18, 2984
    [299]T. J. Klemmer, N. Shukla, C. Liu, et al. Applied Physics Letters [J], 2002, 81, (12)
    [300]Girija S. Chaubey, V ikas Nandwana, Narayan Poudyal et al. Chem Mater [J], 2008, 20, 475
    [301]Narayan Poudyal, Girija S. Chaubey, Chuan‐bingRong et al. Applied Physics [J], 2009, 105(7), 07A749
    [302]Kirsten Ahrenstorf, Ole Albrecht, Hauke Heller, small [J], 2007, 3, No. 2, 271
    [303]Shouheng Sun, Eric E. Fullerton, Dieter Weller, et al. IEEE Trans Magn [J], 2001, 37, No. 4, 1239‐1243
    [304]Shouheng Sun, Hao Zeng, David B. Robinson, et al. J Am. Chem. Soc. [J], 2004, 126, 273
    [305]Kylee Korte, National Nanotechnology Infrastructure Network page 28‐29
    [306]Weijia Zhang, Ping Chen, Qingsheng Gao, et al. Chem Mater [J], 2008, 20, 1699‐1704
    [307]Franklin K im, Stephen Connor, Hyunjoon Song et al. Angew Chem Int Ed [J], 2004, 43, 3673‐3677
    [308]Yugang Sun and Younan Xia, Adv Mater [J], 2002, 14(11): 833
    [309]Cuncheng Li, Weiping Cai, Bingqiang Cao et al. Adv Funct Mater[J], 2006, 16, 83‐90
    [310]Jennifer Y. Wang, Jeremy E. Barton, Christopher L. Stender Nanoscape [J], 2005, 2(1) 57
    [311]Du Xueyan, Li Fang, Ma Yingxia, Rare Metal Materials and Engineering [J], 2009, 38(12): 2163
    [312]Shouheng Sun, C. B. Murray, Dieter Weller, Liesl Folks, Andreas Moser. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices [J].Science, 287(5460):1989‐1992 (2000).
    [313]T. Thomson, S. L. Lee, M. F. Toney, C. D. Dewhurst, F. Y. Ogrin, C. J. Oates, and S. Sun. Agglomeration and sintering in annealed FePt nanoparticle assemblies studied by small angle neutron scattering and x‐ray diffraction [J].Physical Review B, 2005, 72: 064441‐7.
    [314]Kevin Elkins, Daren Li, Narayan Poudyal, V ikas Nandwana, Zhiqiang Jin, Kanghua Chen and J Ping Liu . Monodisperse face‐centred tetragonal FePt nanoparticles with giant coercivity[J]. J. Phys. D: Appl. Phys., 2005, 38: 2306‐2309.
    [315]Chuan‐Bing Rong, Yang Li, and J. Ping Liu. Curie temperatures of annealed FePt nanoparticle systems[J].Journal of Applied Physics,2007, 101: 09K505‐3.
    [316]Rong C B, Li D, V ikas N. Size‐Dependent Chemical and Magnetic Ordering in L10‐FePt Nanoparticles[J].Adv. Mater.2006, 18:2984‐2988
    [317]竺云,蔡建旺.[(Fe/Pt/Fe)/Ag]n多层膜低温合成分离的L10相FePt纳米颗粒[J]物理学报, 2005, 54(1): 393‐396
    [318]李小丽,许小红,武海顺.[FePt/C]n多层膜的结构和磁学性能[J].稀有金属材料与工程2005, 34(9): 1509‐1512
    [319]Sun S H. Recent Advances in Chemical Synthesis, Self‐Assembly, and Applications of FePt Nanoparticles[J]. Adv. Mater., 2006, 18(4):393‐403
    [320]Kevin E. Elkins, Tejaswi S. Vedantam, J. P. Liu, Hao Zeng, Shouheng Sun, Y. Ding, and Z. L. Wang. Ultrafine FePt Nanoparticles Prepared by the Chemical Reduction Method [J].Nano Lett. 2003, 3(12):1647‐1649
    [321]Min Chen, T imothy Pica, Ying‐Bing Jiang, Peng Li, Kazuaki Yano, J. Ping Liu, Abhaya K. Datye, and Hongyou Fan. Synthesis and Self‐Assembly of FCC Phase FePt Nanorods[J].J. AM. CHEM. SOC.2007, 129: 6348‐6349
    [322]Min Chen, Jaemin Kim, J. P. Liu, Hongyou Fan, and Shouheng Sun. Synthesis of FePt Nanocubes and Their Oriented Self‐Assembly [J]. J. AM. CHEM. SOC. 2006, 128:7132‐7133
    [323]V ikas Nandwana, Kevin E. Elkins, Narayan Poudyal, Girija S. Chaubey, Kazuaki Yano, and J. Ping Liu. Size and Shape Control of Monodisperse FePt Nanoparticles[J]. J. Phys. Chem. C 2007, 111: 4185‐4189
    [324]Chen M, Liu J P, and Sun S H. One‐Step Synthesis of FePt Nanoparticles with Tunable Size [J]. J.AM.CHEM.SOC.2004,126: 8394‐8395
    [325]Ming Wen, Haiquan Q , Wengang Zhao, Juan Chen, Lujiang Li and Qingsheng Wu. Phase transfer catalysis: Synthesis of monodispersed FePt nanoparticles and its electrocatalytic activity [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 312:73‐78
    [326]Chao Wang, Yanglong Hou, Jaemin Kim, and Shouheng Sun. A General Strategy for Synthesizing FePt Nanowires and Nanorods[J].Angew. Chem. Int. Ed. 207,46: 6333‐6335
    [327]刘冰,王德平,黄文.柠檬酸在磁性纳米粒子上的吸附及性能表征[J].功能材料2007, 38(7): 1074‐1077
    [328]Jennifer Y. Wang, Teri W. Odom, Jeremy E. Barton, Christopher L. Stender. Growth of Cu2O Nanocubes from Seeds in Microwells[J].Nanoscape 2005,2(1): 57‐65
    [329]Maksym V. Kovalenko, Maryna I. Bodnarchuk, Rainer T. Lechner, Günter Hesser, Friedrich Schaffler, and Wolfgang Heiss. Fatty Acid Salts as Stabilizers in Size‐and Shape‐Controlled Nanocrystal Synthesis: The Case of Inverse Spinel Iron Oxide [J]. J. AM. CHEM. SOC. 2007, 129(20): 6352‐6353
    [330]Youngwook Jun,JaeHyun Lee, Jinsil Choi, and Jinwoo Cheon. Symmetry‐controlled colloidal nanocrystals: Nonhydrolytic chemical synthesis and shape determining parameters [J]. J. Phys. Chem. B., 2005,109 (31): 14795–14806
    [331]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. K im, H. Yan. One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications, [J]. Adv. Mater., 2003, 15(5):353‐389
    [332]Levent Colak, George C Hadjipanayis, Chemically synthesized FePt anoparticles with controlled particle size, shape and composition. Nanotechnology 2009, 20, 485602‐7
    [333]T.Shima, T.Moriguchi,S.Mitani et al. Perpendicular magnetic anisotropy and domain structure of L10‐ordered FePt films fabricated by monatomic layer control. IEEE Tran. Magn.2002, 38: 2791‐2793

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700