牛乳铁蛋白衍生抗菌片段分子设计与构效关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳铁蛋白是一种天然非血红素铁结合糖蛋白,在哺乳动物非特异性免疫和获得性免疫反应中发挥重要作用。本研究针对连接区域(334-344)结构与功能特点,开展牛乳铁蛋白衍生抗菌片段BLfA、BLfB、BLfN和BLf的分子设计;比较分析了重组蛋白rBLfA、rBLfB、rBLfN和rBLf的Fe3+结合能力和抗菌功能,结果显示牛乳铁蛋白N-叶与C-叶之间α-螺旋连接区域能促进N-叶Fe3+结合结构及功能稳定性,并且为抗菌活性部位;对rBLfA毕赤酵母细胞高密度发酵和代谢工程研究进行了初步探索。主要结果如下:
     1.利用分子设计方法确定了目标分子BLfA (N-叶和连接区域)及对照组分子BLfB (不完整N-叶)、BLfN (N-叶)和BLf(N-叶、连接区域和C-叶)的一级序列。通过对牛乳铁蛋白分子基本性质的分析和预测,特别是N-叶与C-叶连接区域的结构与功能的分析确立了牛乳铁蛋白衍生抗菌片段的分子设计原则,确定了目标分子BLfA (1-344)及对照组分子BLfB (1-284)、BLfN (1-333)和BLf(1-689)的氨基酸残基序列;利用分子生物学软件对上述分子进行三维结构模拟和物理化学参数计算及对比,结果显示BLfA基本保持了其在天然牛乳铁蛋白中的原有结构,且BLfA分子表面阳离子特性强于BLfB、BLfN和BLf,具有较强的潜在抗菌活性。
     2.重组表达了牛乳铁蛋白衍生抗菌分子BLfA、BLfB、BLfN和BLf。SDS-PAGE和Western Blotting鉴定显示,BLfA、BLfB和BLf在大肠杆菌BL21(DE3)中以包涵体形式表达,摇瓶水平表达量分别为56 mg/L、41 mg/L和96 mg/L。BLfA、BLfB、BLfN和BLf均在毕赤酵母摇瓶水平得到分泌表达,分别在甲醇诱导30、48、72和72 h后达摇瓶水平最大表达量,依次为485 mg/L、56 mg/L、106 mg/L和88 mg/L。rBLfA、rBLfB、rBLfN和rBLf经Ni-NTA His-Bind树脂纯化后纯度分别为93.8%,92.0%,94.5%和91.2%。
     3.进行了重组蛋白Fe3+结合及依赖pH的Fe3+释放性质研究,结果表明乳铁蛋白连接区域对N-叶铁离子结合结构的稳定性具有促进作用。Fe3+结合能力nBLf (OD465 nm 0.482)﹥rBLf (0.431)﹥rBLfA (0.330)﹥rBLfN (0.322)﹥rBLfB (0.002),这表明N-叶与C-叶连接区域(334-344)的结构能稳定N-叶的Fe3+结合结构;rBLf与nBLf依赖pH的Fe3+释放性质基本一致,均可在pH 5.5-3.0范围内释放Fe3+,而rBLfA释放Fe3+的pH范围(pH 7.0-3.5)比rBLfN (pH 7.0-4.0)略宽,表明非刚性与刚性的乳铁蛋白连接区结构均可能起到稳定N-叶铁离子结合结构的作用。
     4.开展了重组蛋白抗金黄色葡萄球菌实验,结果表明牛乳铁蛋白N-叶与C-叶之间的连接区域对其抗菌功能具有促进作用。实验结果显示rBLfA、rBLfN和rBLf均具有抑制S. aureus生长的功能,MIC分别为6.5μmol/L、12. 5μmol/L和25μmol/L,rBLfA抑菌能力最强。rBLfA抑制S. aureus生长活性的增强可能由于其在分子结构上比rBLN多了连接区域α-螺旋,该区域富集的表面净正电荷可能与S. aureus细胞表面带负电荷的分子通过静电相互作用结合,引起细胞裂解,从而起到抑菌和杀菌的作用。
     5.rBLfA和rBLfN细胞高密度发酵水平的产量分别为499 mg/L和402 mg/L,利用透明颤菌血红蛋白VHb在宿主菌胞内与rBLfA共表达,使rBLfA发酵罐水平的表达量提高了23%,达613 mg/L。
Bovine lactoferrin (BLf) is a non-heme iron binding glycoprotein being considered as the first line defense protein involved in protection against microbial infection and prevention of systemic inflammation. The contribution of bovine lactoferrin (BLf) inter-lobe region to iron binding stability and antimicrobial activity against Staphylococcus aureus were addressed in this work.
     A recombinant bovine lactoferrin-derived antimicrobial protein (rBLfA) containing N-lobe (amino acid residues 1-333) and inter lobe region (residues 334-344) of bovine lactoferrin (BLf) was designed based on the structural and functional analysis of BLf. Recombinant full length BLf (rBLf), the N-lobe (rBLfN) without the inter lobe region and the N-lobe-derived peptide rBLfB (residues 1-284) were also designed following the same methords as control. The physical-chemical parameters of BLfA, BLfB, BLfN and BLf including amino acid residues, molecular weight, isoelectric point, net positive charge and instability index were computed and compared. The simulated tertiary structure and the calculated surface net charge showed that rBLfA maintained original structure and exhibited a higher cationic feature than BLfB, BLfN and BLf.
     The full length cDNA (2067 bp) of BLf and the coding gene of BLfA, BLfB and BLfN were cloned from the bovine mammary tissue. BLfA, BLfB and BLf were expressed in E. coli with the yields of 56, 41 and 96 mg/L, respectively. BLfA, BLfB, BLfN and BLf were all secretory expressed in the methylotrophic yeast Pichia pastoris. The yield of rBLfA in shaking flask culture was over 485 mg/L, which was 4.6, 8.7 and 5.5 times bigger than the yields of rBLfB, rBLfN and rBLf, respectively. Purified rBLfA, rBLfB, rBLfN and rBLf were obtained via Ni-IDA His-bind columns with the purity of 93.8%,92.0%,94.5% and 91.2%.
     The iron binding and antimicrobial activities comparison between rBLfA, rBLfN and rBLf demonstrates that the inter-lobe region of bovine lactoferrin contributes to iron binding stability and antimicrobial activity against S. aureus. The three proteins showed different iron binding stability and antimicrobial activity. rBLfA released iron in the pH range of 7.0-3.5, whereas rBLfN lost its iron over the pH range of 7.0-4.0 and iron release from rBLf occurred in the pH range of 5.5-3.0. However, the minimum inhibition concentration of rBLfA against S. aureus ATCC25923 was 6.5μmol/L, compared with 12.5μmol/L and 25μmol/L that of rBLfN and rBLf, respectively. These results revealed that S. aureus was more sensitive to rBLfA than rBLfN and rBLf. It appeared that the strong cationic character of inter-lobe region related positively to the higher anti-S. aureus activity.
     High density fermentation and Vitreoscilla hemoglobin (VHb) intracellular co-expression were employed to increase the in vitro expression yield of rBLfA. After 72 h methanol induction, the yield of rBLfA reached 613 mg/L by the high density fermentation of recombinant P. pastoris X-33(rBLfA-VHb).
引文
1. Actor J. K., Hwang S. A., Kruzel M. L. Lactoferrin as a natural immune modulator. Curr Pharm Des, 2009, 15(17): 1956-1973.
    2. Anderson B. F., Baker H. M., Norris G. E., Rice D. W., Baker E. N. Structure of human lactoferrin: Crystallographic structure analysis and refinement at 2.8 a resolution. J Mol Biol, 1989, 209(4): 711-734.
    3. Arnold R. R., Cole M. F., McGhee J. R. A bactericidal effect for human lactoferrin. Science, 1977, 197(4300): 263-265.
    4. Bai X., Teng D., Tian Z., Zhu Y., Yang Y., Wang J. Contribution of bovine lactoferrin inter-lobe region to iron binding stability and antimicrobial activity against staphylococcus aureus. Biometals, 2010, 23(3): 431-439.
    5. Baker E. N., Anderson B. F., Baker H. M., Day C. L., Haridas M., Norris G. E. et al. Three-dimensional structure of lactoferrin in various functional states. Adv Exp Med Biol, 1994, 3571-3612.
    6. Baker E. N., Baker H. M. A structural framework for understanding the multifunctional character of lactoferrin. Biochimie, 2009, 91(1): 3-10.
    7. Baker E. N., Baker H. M. Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol Life Sci, 2005, 62(22): 2531-2539.
    8. Baker E. N., Baker H. M., Kidd R. D. Lactoferrin and transferrin: Functional variations on a common structural framework. Biochem Cell Biol, 2002, 80(1): 27-34.
    9. Baker H. M., Baker E. N. Lactoferrin and iron: Structural and dynamic aspects of binding and release. Biometals, 2004, 17(3): 209-216.
    10. Bellamy W., Takase M., Wakabayashi H., Kawase K., Tomita M. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol, 1992, 73(6): 472-479.
    11. Bellamy W., Takase M., Yamauchi K., Wakabayashi H., Kawase K., Tomita M. Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta, 1992, 1121(1-2): 130-136.
    12. Berlov M. N., Korableva E. S., Andreeva Y. V., Ovchinnikova T. V., Kokryakov V. N. Lactoferrin from canine neutrophils: Isolation and physicochemical and antimicrobial properties. Biochemistry, 2007, 72(4): 445-451.
    13. Briggs R. C., Glass W. F., 2nd, Montiel M. M., Hnilica L. S. Lactoferrin: Nuclear localization in the human neutrophilic granulocyte? J Histochem Cytochem, 1981, 29(10): 1128-1136.
    14. Brock J. H. The physiology of lactoferrin. Biochem Cell Biol, 2002, 80(1): 1-6.
    15. Bullen J. J., Rogers H. J., Leigh L. Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Br Med J, 1972, 1(5792): 69-75.
    16. Caccavo D., Pellegrino N. M., Altamura M., Rigon A., Amati L., Amoroso A. et al. Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeuticapplication. J Endotoxin Res, 2002, 8(6): 403-417.
    17. Cecchini S., Caputo A. R. Seminal plasma of brown trout, salmo trutta fario (l.) contains a factor able to retain iron at acid pH, typical feature of lactoferrin. Fish Shellfish Immunol, 2010, 28(5-6): 927-930.
    18. Chen G. H., Yin L. J., Chiang I. H., Jiang S. T. Expression and purification of goat lactoferrin from Pichia pastoris expression system. J Food Sci, 2007, 72(2): M67-71.
    19. Chen H. L., Lai Y. W., Yen C. C., Lin Y. Y., Lu C. Y., Yang S. H. et al. Production of recombinant porcine lactoferrin exhibiting antibacterial activity in methylotrophic yeast, Pichia pastoris. J Mol Microbiol Biotechnol, 2004, 8(3): 141-149.
    20. Chen H. L., Wang L. C., Chang C. H., Yen C. C., Cheng W. T., Wu S. C. et al. Recombinant porcine lactoferrin expressed in the milk of transgenic mice protects neonatal mice from a lethal challenge with enterovirus type 71. Vaccine, 2008, 26(7): 891-898.
    21. Choi B. K., Actor J. K., Rios S., d'Anjou M., Stadheim T. A., Warburton S. et al. Recombinant human lactoferrin expressed in glycoengineered Pichia pastoris: Effect of terminal N-acetylneuraminic acid on in vitro secondary humoral immune response. Glycoconj J, 2008, 25(6): 581-593.
    22. Choi S. M., Lee O. S., Kwon S. Y., Kwak S. S., Yu D. Y., Lee H. S. High expression of a human lactoferrin in transgenic tobacco cell cultures. Biotechnol Lett, 2003, 25(3): 213-218.
    23. Chong D. K., Langridge W. H. Expression of full-length bioactive antimicrobial human lactoferrin in potato plants. Transgenic Res, 2000, 9(1): 71-78.
    24. Conesa C., Pocovi C., Perez M. D., Calvo M., Sanchez L. Recombinant human lactoferrin and iron transport across Caco-2 monolayers: Effect of heat treatment on the binding to cells. J Agric Food Chem, 2008, 56(8): 2831-2837.
    25. Conneely O. M. Antiinflammatory activities of lactoferrin. J Am Coll Nutr, 2001, 20(5 Suppl): 389S-395S; discussion 396S-397S.
    26. Davidson L. A., Lonnerdal B. Specific binding of lactoferrin to brush-border membrane: Ontogeny and effect of glycan chain. Am J Physiol, 1988, 254(4 Pt 1): G580-585.
    27. Dong Z. Y., Zhang Y. Z. Molecular cloning and expression of yak (Bos grunniens) lactoferrin cDNA in Pichia pastoris. Biotechnol Lett, 2006, 28(16): 1285-1292.
    28. Duetz W. A., van Beilen J. B., Witholt B. Using proteins in their natural environment: Potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol, 2001, 12(4): 419-425.
    29. Feng X. J., Wang J. H., Shan A. S., Teng D., Yang Y. L., Yao Y. et al. Fusion expression of bovine lactoferricin in Escherichia coli. Protein Expr Purif, 2006, 47(1): 110-117.
    30. Feng X. J., Wang J. H., Shan A. S., Teng D., Yang Y. L., Yao Y., Yang G. P., Shao Y. C., Liu S., Zhang F., 2006. Fusion expression of bovine lactoferricin in Escherichia coli. Protein Expr Purif, 47, 110–117.
    31. Forough R., Engleka K., Thompson J. A., Jackson A., Imamura T., Maciag T. Differentialexpression in Escherichia coli of the alpha and beta forms of heparin-binding acidic fibroblast growth factor-1: Potential role of RNA secondary structure. Biochim Biophys Acta, 1991, 1090(3): 293-298.
    32. Fujiyama K., Sakai Y., Misaki R., Yanagihara I., Honda T., Anzai H. et al. N-linked glycan structures of human lactoferrin produced by transgenic rice. Biosci Biotechnol Biochem, 2004, 68(12): 2565-2570.
    33. Gifford J. L., Hunter H. N., Vogel H. J. Lactoferricin: A lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci, 2005, 62(22): 2588-2598.
    34. Gonzalez-Chavez S. A., Arevalo-Gallegos S., Rascon-Cruz Q. Lactoferrin: Structure, function and applications. Int J Antimicrob Agents, 2009, 33(4): 301e1-8.
    35. Halbrooks P. J., Giannetti A. M., Klein J. S., Bjorkman P. J., Larouche J. R., Smith V. C. et al. Composition of pH-sensitive triad in C-lobe of human serum transferrin. Comparison to sequences of ovotransferrin and lactoferrin provides insight into functional differences in iron release. Biochemistry, 2005, 44(47): 15451-15460.
    36. Han Z. S., Li Q. W., Zhang Z. Y., Xiao B., Gao D. W., Wu S. Y. et al. High-level expression of human lactoferrin in the milk of goats by using replication-defective adenoviral vectors. Protein Expr Purif, 2007, 53(1): 225-231.
    37. Hanel A. M., Gelb M. H. Multiple enzymatic activities of the human cytosolic 85-kDa phospholipase A2: Hydrolytic reactions and acyl transfer to glycerol. Biochemistry, 1995, 34(24): 7807-7818.
    38. Haridas M., Anderson B. F., Baker E. N. Structure of human diferric lactoferrin refined at 2.2 A resolution. Acta Crystallogr D Biol Crystallogr, 1995, 51(Pt 5): 629-646.
    39. Haversen L., Kondori N., Baltzer L., Hanson L. A., Dolphin G. T., Duner K. et al. Structure-microbicidal activity relationship of synthetic fragments derived from the antibacterial alpha-helix of human lactoferrin. Antimicrob Agents Chemother, 2010, 54(1): 418-425.
    40. Hyvonen P., Suojala L., Orro T., Haaranen J., Simola O., Rontved C. et al. Transgenic cows that produce recombinant human lactoferrin in milk are not protected from experimental Escherichia coli intramammary infection. Infect Immun, 2006, 74(11): 6206-6212.
    41. Ikeda M., Nozaki A., Sugiyama K., Tanaka T., Naganuma A., Tanaka K., et al. Characterization of antiviral activity of lactoferrin against hepatitis C virus infection in human cultured cells. Virus Res, 2000, 66(1): 51-63.
    42. Iyer S., Lonnerdal B. Lactoferrin, lactoferrin receptors and iron metabolism. Eur J Clin Nutr, 1993, 47(4): 232-241.
    43. Jabeen T., Sharma S., Singh N., Bhushan A., Singh T. P. Structure of the zinc-saturated C-terminal lobe of bovine lactoferrin at 2.0 A resolution. Acta Crystallogr D Biol Crystallogr, 2005, 61(Pt 8): 1107-1115.
    44. Jacobsen L. C., Sorensen O. E., Cowland J. B., Borregaard N., Theilgaard-Monch K. Thesecretory leukocyte protease inhibitor (SLPI) and the secondary granule protein lactoferrin are synthesized in myelocytes, colocalize in subcellular fractions of neutrophils, and are coreleased by activated neutrophils. J Leukoc Biol, 2008, 83(5): 1155-1164.
    45. Jenssen H., Hancock R. E. Antimicrobial properties of lactoferrin. Biochimie, 2009, 91(1): 19-29.
    46. Kang J. F., Li X. L., Zhou R. Y., Li L. H., Feng F. J., Guo X. L. Bioinformatics analysis of lactoferrin gene for several species. Biochem Genet, 2008, 46(5-6): 312-322.
    47. Kanyshkova T. G., Babina S. E., Semenov D. V., Isaeva N., Vlassov A. V., Neustroev K. N., et al. Multiple enzymic activities of human milk lactoferrin. Eur J Biochem, 2003, 270(16): 3353-3361.
    48. Khan J. A., Kumar P., Paramasivam M., Yadav R. S., Sahani M. S., Sharma S., et al. Camel lactoferrin, a transferrin-cum-lactoferrin: Crystals structure of camel apolactoferrin at 2.6 A resolution and structural basis of its dual role. J Mol Biol, 2001, 309(3): 751-761.
    49. Khan J. A., Kumar P., Srinivasan A., Singh T. P. Protein intermediate trapped by the simultaneous crystallization process. Crystal structure of an iron-saturated intermediate in the Fe3+ binding pathway of camel lactoferrin at 2.7 A resolution. J Biol Chem, 2001, 276(39): 36817-36823.
    50. Kim W. S., Shimazaki K., Tamura T. Expression of bovine lactoferrin C-lobe in Rhodococcus erythropolis and its purification and characterization. Biosci Biotechnol Biochem, 2006, 70(11): 2641-2645.
    51. Kumar P., Khan J. A., Yadav S., Singh T. P. Crystal structure of equine apolactoferrin at 303 K providing further evidence of closed conformations of N and C lobes. Acta Crystallogr D Biol Crystallogr, 2002, 58(Pt 2): 225-232.
    52. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol, 1982, 157(1): 105-132.
    53. Lee D., Redfern O., Orengo C. Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol, 2007, 8(12): 995-1005.
    54. Legrand D., Mazurier J. A critical review of the roles of host lactoferrin in immunity. Biometals, 2010, 23(3): 365-376.
    55. Legrand D., Mazurier J., Colavizza D., Montreuil J., Spik G. Properties of the iron-binding site of the N-terminal lobe of human and bovine lactotransferrins. Importance of the glycan moiety and of the non-covalent interactions between the N- and C-terminal lobes in the stability of the iron-binding site. Biochem J, 1990, 266(2): 575-581.
    56. Legrand D., Salmon V., Coddeville B., Benaissa M., Plancke Y., Spik G. Structural determination of two N-linked glycans isolated from recombinant human lactoferrin expressed in BHK cells. FEBS Lett, 1995, 365(1): 57-60.
    57. Leid J. G., Kerr M., Selgado C., Johnson C., Moreno G., Smith A. et al. Flagellum-mediated biofilm defense mechanisms of Pseudomonas aeruginosa against host-derived lactoferrin. Infection and Immunity, 2009, 77(10): 4559-4566.
    58. Levay P. F., Viljoen M. Lactoferrin: a general review. Haematologica, 1995, 80(3): 252-267.
    59. Li Y., Geng Y., Song H., Zheng G., Huan L., Qiu B. Expression of a human lactoferrin N-lobe inNicotiana benthmiana with potato virus X-based agroinfection. Biotechnol Lett, 2004, 26(12): 953-957.
    60. Li Z., Xiong F., Lin Q., d'Anjou M., Daugulis A. J., Yang D. S., et al. Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expr Purif, 2001, 21(3): 438-445.
    61. Lin T. Y., Chu C., Chiu C. H. Lactoferrin inhibits enterovirus 71 infection of human embryonal rhabdomyosarcoma cells in vitro. J Infect Dis, 2002, 186(8): 1161-1164.
    62. Liu T., Zhang Y. Z., Wu X. F. High level expression of functionally active human lactoferrin in silkworm larvae. J Biotechnol, 2005, 118(3): 246-256.
    63. Liu T., Zhang Y. Z., Wu X. F. Recombinant functional human lactoferrin expressed in baculovirus system. Acta Biochim Biophys Sin, 2006, 38(3): 201-206.
    64. Liu Z., Zhao C., Fan B., Dai Y., Zhao Z., Wang L., et al. Variable expression of human lactoferrin gene in mice milk driven by its 90 KB upstream flanking sequences. Anim Biotechnol, 2004, 15(1): 21-31.
    65. Lonnerdal B. Nutritional roles of lactoferrin. Curr Opin Clin Nutr Metab Care, 2009, 12(3): 293-297.
    66. Lopez M., Coddeville B., Langridge J., Plancke Y., Sautiere P., Chaabihi H. et al. Microheterogeneity of the oligosaccharides carried by the recombinant bovine lactoferrin expressed in Mamestra brassicae cells. Glycobiology, 1997, 7(5): 635-651.
    67. Luo H., Chen S., Ren F., Guo H., Lin S., Xu W. In vitro reconstitution of antimicrobial pathogen activity by expressed recombinant bovine lactoferrin N-terminal peptide in Escherichia coli. J Dairy Res, 2007, 74(2): 233-238.
    68. Metz-Boutigue M. H., Jolles J., Mazurier J., Schoentgen F., Legrand D., Spik G. et al. Human lactotransferrin: Amino acid sequence and structural comparisons with other transferrins. Eur J Biochem, 1984, 145(3): 659-676.
    69. Mir R., Kumar R. P., Singh N., Vikram G. P., Sinha M., Bhushan A. et al. Specific interactions of C-terminal half (C-lobe) of lactoferrin protein with edible sugars: Binding and structural studies with implications on diabetes. Int J Biol Macromol, 2010.
    70. Mitoma M., Oho T., Shimazaki Y., Koga T. Inhibitory effect of bovine milk lactoferrin on the interaction between a streptococcal surface protein antigen and human salivary agglutinin. J Biol Chem, 2001, 276(21): 18060-18065.
    71. Mitra A., Zhang Z. Expression of a human lactoferrin cdna in tobacco cells produces antibacterial protein(s). Plant Physiol, 1994, 106(3): 977-981.
    72. Moore S. A., Anderson B. F., Groom C. R., Haridas M., Baker E. N. Three-dimensional structure of diferric bovine lactoferrin at 2.8 A resolution. J Mol Biol, 1997, 274(2): 222-236.
    73. Moriarty L. C., Joannou C. L., van den Berg J. J., Gorinsky B., Evans R. W. Factors contributing to the potency of antimicrobial cationic peptides from the N-terminal region of human lactoferrin. FEMS Microbiol Lett, 2004, 239(2): 295-299.
    74. Naidu A. S., Fowler R. S., Martinez C., Chen J., Tulpinski J. Activated lactoferrin and fluconazole synergism against Candida albicans and Candida glabrata vaginal isolates. J Reprod Med, 2004, 49(10): 800-807.
    75. Nakamura I., Watanabe A., Tsunemitsu H., Lee N. Y., Kumura H., Shimazaki K. I. et al. Production of recombinant bovine lactoferrin N-lobe in insect cells and its antimicrobial activity. Protein Expr Purif, 2001, 21(3): 424-431.
    76. Nandi S., Yalda D., Lu S., Nikolov Z., Misaki R., Fujiyama K. et al. Process development and economic evaluation of recombinant human lactoferrin expressed in rice grain. Transgenic Res, 2005, 14(3): 237-249.
    77. Nicholson H., Anderson B. F., Bland T., Shewry S. C., Tweedie J. W., Baker E. N. Mutagenesis of the histidine ligand in human lactoferrin: Iron binding properties and crystal structure of the histidine-253→methionine mutant. Biochemistry, 1997, 36(2): 341-346.
    78. Niyonsaba F., Nagaoka I., Ogawa H., Okumura K. Multifunctional antimicrobial proteins and peptides: Natural activators of immune systems. Current Pharmaceutical Design, 2009, 15(21): 2393-2413.
    79. Paramasivam M., Saravanan K., Uma K., Sharma S., Singh T. P., Srinivasan A. Expression, purification, and characterization of equine lactoferrin in Pichia pastoris. Protein Expr Purif, 2002, 26(1): 28-34.
    80. Park I., Schaeffer E., Sidoli A., Baralle F. E., Cohen G. N., Zakin M. M. Organization of the human transferrin gene: Direct evidence that it originated by gene duplication. Proc Natl Acad Sci, 1985, 82(10): 3149-3153.
    81. Peterson N. A., Anderson B. F., Jameson G. B., Tweedie J. W., Baker E. N. Crystal structure and iron-binding properties of the R210K mutant of the N-lobe of human lactoferrin: Implications for iron release from transferrins. Biochemistry, 2000, 39(22): 6625-33.
    82. Pierce A., Legrand D., Mazurier J. Lactoferrin: A multifunctional protein. M S-Medecine Sciences, 2009, 25(4): 361-369.
    83. Plaut A. G., Qiu J., Grundy F., Wright A. Growth of Haemophilus influenzae in human milk: synthesis, distribution, and activity of IgA protease as determined by study of IgA+ and mutant IgA- cells. J Infect Dis, 1992, 166(1): 43-52.
    84. Poirier Y., Erard N., MacDonald-Comber Petetot J. Synthesis of polyhydroxyalkanoate in the peroxisome of Pichia pastoris. FEMS Microbiol Lett, 2002, 207(1): 97-102.
    85. Pokoj S., Lauer I., Fotisch K., Himly M., Mari A., Enrique E. et al. Pichia pastoris is superior to E. coli for the production of recombinant allergenic non-specific lipid-transfer proteins. Protein Expr Purif, 2010, 69(1): 68-75.
    86. Polis B. D., Shmukler H. W. Crystalline lactoperoxidase. I. Isolation by displacement chromatography. II. Physicochemical and enzymatic properties. J Biol Chem, 1953, 201(1): 475-500.
    87. Puddu P., Valenti P., Gessani S. Immunomodulatory effects of lactoferrin on antigen presentingcells. Biochimie, 2009, 91(1): 11-18.
    88. Querinjean P., Masson P. L., Heremans J. F. Molecular weight, single-chain structure and amino acid composition of human lactoferrin. Eur J Biochem, 1971, 20(3): 420-425.
    89. Rodriguez-Franco D. A., Vazquez-Moreno L., Ramos-Clamont Montfort G. Antimicrobial mechanisms and potential clinical application of lactoferrin. Rev Latinoam Microbiol, 2005, 47(3-4): 102-111.
    90. Rogan M. P., Taggart C. C., Greene C. M., Murphy P. G., O'Neill S. J., McElvaney N. G. Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J Infect Dis, 2004, 190(7): 1245-1253.
    91. Rojiani M. V., Jakubowski H., Goldman E. Relationship between protein synthesis and concentrations of charged and uncharged tRNA Trp in Escherichia coli. Proc Natl Acad Sci, 1990, 87(4): 1511-1515.
    92. Romanos M., Scorer C., Sreekrishna K., Clare J. The generation of multicopy recombinant strains. Methods Mol Biol, 1998, 103: 55-72.
    93. Rose J. E., Meyer D. H., Fives-Taylor P. M. Aae, an autotransporter involved in adhesion of Actinobacillus actinomycetemcomitans to epithelial cells. Infect Immun, 2003, 71(5): 2384-2393.
    94. Rossi P., Giansanti F., Boffi A., Ajello M., Valenti P., Chiancone E., et al. Ca2+ binding to bovine lactoferrin enhances protein stability and influences the release of bacterial lipopolysaccharide. Biochem Cell Biol, 2002, 80(1): 41-48.
    95. Ruegg M., Moor U., Blanc B. Hydration and thermal denaturation of beta-lactoglobulin. A calorimetric study. Biochim Biophys Acta, 1975, 400(2): 334-342.
    96. Saarinen U. M., Siimes M. A. Iron absorption from infant milk formula and the optimal level of iron supplementation. Acta Paediatr Scand, 1977, 66(6): 719-722.
    97. Sagiya Y., Yamagata H., Udaka S. Direct high-level secretion into the culture medium of tuna growth hormone in biologically active form by Bacillus brevis. Appl Microbiol Biotechnol, 1994, 42(2-3): 358-363.
    98. Sakajiri T., Yamamura T., Kikuchi T., Yajima H. Computational structure models of apo and diferric transferrin-transferrin receptor complexes. Protein J, 2009, 28(9-10): 407-14.
    99. Samyn-Petit B., Gruber V., Flahaut C., Wajda-Dubos J. P., Farrer S., Pons A. et al. N-glycosylation potential of maize: The human lactoferrin used as a model. Glycoconj J, 2001, 18(7): 519-527.
    100. Sardessai Y. N., Bhosle S. Industrial potential of organic solvent tolerant bacteria. Biotechnol Prog, 2004, 20(3): 655-660.
    101. Schneider S., Wubbolts M. G., Oesterhelt G., Sanglard D., Witholt B. Controlled regioselectivity of fatty acid oxidation by whole cells producing cytochrome P450BM-3 monooxygenase under varied dissolved oxygen concentrations. Biotechnol Bioeng, 1999, 64(3): 333-341.
    102. Senkovich O., Cook W. J., Mirza S., Hollingshead S. K., Protasevich, II, Briles D. E. et al. Structure of a complex of human lactoferrin N-lobe with pneumococcal surface protein a provides insight into microbial defense mechanism. J Mol Biol, 2007, 370(4): 701-713.
    103. Sharma S., Jasti J., Kumar J., Mohanty A. K., Singh T. P. Crystal structure of a proteolytically generated functional monoferric C-lobe of bovine lactoferrin at 1.9 A resolution. J Mol Biol, 2003, 331(2): 485-496.
    104. Shimazaki K., Tanaka T., Kon H., Oota K., Kawaguchi A., Maki Y. et al. Separation and characterization of the C-terminal half molecule of bovine lactoferrin. J Dairy Sci, 1993, 76(4): 946-955.
    105. Slon J. I., Siemion I. Z., Zimecki M., Wieczorek Z. Influence of lys-residue deletion on the immunomodulatory activity of peptides related to immunosuppressive region of lactoferrin. Arch Immunol Ther Exp, 1995, 43(3-4): 211-216.
    106. Spik G., Coddeville B., Mazurier J., Bourne Y., Cambillaut C., Montreuil J. Primary and three-dimensional structure of lactotransferrin (lactoferrin) glycans. Adv Exp Med Biol, 1994, 35721-35732.
    107. Steijns J. M., van Hooijdonk A. C. Occurrence, structure, biochemical properties and technological characteristics of lactoferrin. Br J Nutr, 2000, 84 Suppl 1S11-1S17.
    108. Steinle A., Witthoff S., Krause J. P., Steinbuchel A. Establishment of cyanophycin biosynthesis in Pichia pastoris and optimization by use of engineered cyanophycin synthetases. Appl Environ Microbiol, 2009.
    109. Tanaka T., Nakamura I., Lee N. Y., Kumura H., Shimazaki K. Expression of bovine lactoferrin and lactoferrin N-lobe by recombinant baculovirus and its antimicrobial activity against Prototheca zopfii. Biochem Cell Biol, 2003, 81(5): 349-354.
    110. Teng C. T. Factors regulating lactoferrin gene expression. Biochem Cell Biol, 2006, 84(3): 263-277.
    111. Teng C. T. Lactoferrin gene expression and regulation: An overview. Biochem Cell Biol, 2002, 80(1): 7-16.
    112. Tian Z., Dong T., Yang Y., Teng D., Wang J. Expression of antimicrobial peptide LH multimers in Escherichia coli C43(DE3). Appl Microbiol Biotechnol, 2009, 83(1): 143-149.
    113. Tian Z., Teng D., Yang Y., Luo J., Feng X., Fan Y. et al. Multimerization and fusion expression of bovine lactoferricin derivative lfcinb15-W4,10 in Escherichia coli. Appl Microbiol Biotechnol, 2007, 75(1): 117-124.
    114. Tian Z., Teng D, Yang Y., Luo J., Feng X., Fan Y., Zhang F., Wang J., Multimerization and fusion expression of bovine lactoferricin derivative LfcinB15-W4,10 in Escherichia coli, Appl Microbiol Biotechnol. 2007, 75 (1): 117-124.
    115. Tomita M., Bellamy W., Takase M., Yamauchi K., Wakabayashi H., Kawase K. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci, 1991, 74(12): 4137-4142.
    116. Tomita M., Wakabayashi H., Shin K., Yamauchi K., Yaeshima T., Iwatsuki K. Twenty-five years of research on bovine lactoferrin applications. Biochimie, 2009, 91(1): 52-57.
    117. Tomita M., Wakabayashi H., Yamauchi K., Teraguchi S., Hayasawa H. Bovine lactoferrin andlactoferricin derived from milk: Production and applications. Biochem Cell Biol, 2002, 80(1): 109-112.
    118. Tsai P. S., Nageli M., Bailey J. E. Intracellular expression of Vitreoscilla hemoglobin modifies microaerobic Escherichia coli metabolism through elevated concentration and specific activity of cytochrome o. Biotechnol Bioeng, 2002, 79(5): 558-567.
    119. Tyree B., Webster D. A. Electron-accepting properties of cytochrome o purified from Vitreoscilla. J Biol Chem, 1978, 253(21): 7635-7637.
    120. Valenti P., Antonini G. Lactoferrin: An important host defence against microbial and viral attack. Cell Mol Life Sci, 2005, 62(22): 2576-2587.
    121. Valimaa H., Tenovuo J., Waris M., Hukkanen V. Human lactoferrin but not lysozyme neutralizes Hsv-1 and inhibits Hsv-1 replication and cell-to-cell spread. Virology Journal, 2009, 6.
    122. van Berkel P. H., van Veen H. A., Geerts M. E., de Boer H. A., Nuijens J. H. Heterogeneity in utilization of N-glycosylation sites Asn624 and Asn138 in human lactoferrin: A study with glycosylation-site mutants. Biochem J, 1996, 319 ( Pt 1)117-122.
    123. van Berkel P. H., Welling M. M., Geerts M., van Veen H. A., Ravensbergen B., Salaheddine M. et al. Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotechnol, 2002, 20(5): 484-487.
    124. van der Kraan M. I., Groenink J., Nazmi K., Veerman E. C., Bolscher J. G., Nieuw Amerongen A. V. Lactoferrampin: A novel antimicrobial peptide in the n1-domain of bovine lactoferrin. Peptides, 2004, 25(2): 177-183.
    125. van der Kraan M. I., Nazmi K., Teeken A., Groenink J., van 't Hof W., Veerman E. C. et al. Lactoferrampin, an antimicrobial peptide of bovine lactoferrin, exerts its candidacidal activity by a cluster of positively charged residues at the c-terminus in combination with a helix-facilitating N-terminal part. Biol Chem, 2005, 386(2): 137-142.
    126. van Veen H. A., Geerts M. E., van Berkel P. H., Nuijens J. H. The role of N-linked glycosylation in the protection of human and bovine lactoferrin against tryptic proteolysis. Eur J Biochem, 2004, 271(4): 678-684.
    127. Wakabayashi S., Matsubara H., Webster D. A. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature, 1986, 322(6078): 481-483.
    128. Wally J., Buchanan S. K. A structural comparison of human serum transferrin and human lactoferrin. Biometals, 2007, 20(3-4): 249-262.
    129. Wang J., Tian Z. Recent advances in lactoferrin research and development during the past two years (2007-2009): In lieu of a preface of the special issue lactoferrin. Biometals, 2010, 23(3): 355-357.
    130. Wang S. H., Yang T. S., Lin S. M., Tsai M. S., Wu S. C., Mao S. J. Expression, characterization, and purification of recombinant porcine lactoferrin in Pichia pastoris. Protein Expr Purif, 2002, 25(1): 41-49.
    131. Wang Y., Wu X., Liu G., Cao C., Huang H., Xu Z. et al. Expression of porcine lactoferrin by usingrecombinant baculovirus in silkworm, Bombyx mori L., and its purification and characterization. Appl Microbiol Biotechnol, 2005, 69(4): 385-389.
    132. Ward P. P., Chu H., Zhou X., Conneely O. M. Expression and characterization of recombinant murine lactoferrin. Gene, 1997, 204(1-2): 171-176.
    133. Ward P. P., May G. S., Headon D. R., Conneely O. M. An inducible expression system for the production of human lactoferrin in Aspergillus nidulans. Gene, 1992, 122(1): 219-223.
    134. Ward P. P., Mendoza-Meneses M., Cunningham G. A., Conneely O. M. Iron status in mice carrying a targeted disruption of lactoferrin. Mol Cell Biol, 2003, 23(1): 178-185.
    135. Ward P. P., Mendoza-Meneses M., Park P. W., Conneely O. M. Stimulus-dependent impairment of the neutrophil oxidative burst response in lactoferrin-deficient mice. Am J Pathol, 2008, 172(4): 1019-1029.
    136. Ward P. P., Paz E., Conneely O. M. Multifunctional roles of lactoferrin: A critical overview. Cell Mol Life Sci, 2005, 62(22): 2540-2548.
    137. Ward P. P., Piddington C. S., Cunningham G. A., Zhou X., Wyatt R. D., Conneely O. M. A system for production of commercial quantities of human lactoferrin: A broad spectrum natural antibiotic. Biotechnology, 1995, 13(5): 498-503.
    138. Ward P. P., Zhou X., Conneely O. M. Cooperative interactions between the amino- and carboxyl-terminal lobes contribute to the unique iron-binding stability of lactoferrin. J Biol Chem, 1996, 271(22): 12790-12794.
    139. Wei X. X., Chen G. Q. Applications of the vhb gene vgb for improved microbial fermentation processes. Methods Enzymol, 2008, 436273-436287.
    140. Wei Z., Nishimura T., Yoshida S. Presence of a glycan at a potential N-glycosylation site, Asn-281, of bovine lactoferrin. J Dairy Sci, 2000, 83(4): 683-689.
    141. Wu S. C., Chen H. L., Yen C. C., Kuo M. F., Yang T. S., Wang S. R. et al. Recombinant porcine lactoferrin expressed in the milk of transgenic mice enhances offspring growth performance. J Agric Food Chem, 2007, 55(12): 4670-4677.
    142. Xiong X., Xing J., Li X., Bai X., Li W., Li Y. et al. Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of Vitreoscilla hemoglobin. Appl Environ Microbiol, 2007, 73(7): 2394-2397.
    143. Yang Y., Luo L., Wang J., Teng D., Tian Z. et al. Expression and characterization of dextransucrase gene dsrx from leuconostoc mesenteroides in Escherichia coli. J Biotechnol, 2008, 133(4): 505-512.
    144. Yamauchi K., Wakabayashi H., Shin K., Takase M. Bovine lactoferrin: Benefits and mechanism of action against infections. Biochem Cell Biol, 2006, 84(3): 291-296.
    145. Yang P., Wang J., Gong G., Sun X., Zhang R., Du Z. et al. Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin. PLoS One, 2008, 3(10): e3453.
    146. Yang Y., Tian Z., Teng D., Zhang J., Wang J. High-level production of a candidacidal peptidelactoferrampin in Escherichia coli by fusion expression. J Biotechnol, 2009, 139(4): 326-331.
    147. Ye X. Y., Nishimura T., Yoshida S. Characterization of the protein and glycan moieties in different forms of bovine lactoferrin. Biosci Biotechnol Biochem, 1997, 61(5): 782-786.
    148. Zhang J., Li L., Cai Y., Xu X., Chen J., Wu Y. et al. Expression of active recombinant human lactoferrin in the milk of transgenic goats. Protein Expr Purif, 2008, 57(2): 127-135.
    149. Zhang S. P., Zubay G., Goldman E. Low-usage codons in Escherichia coli, yeast, fruit fly and primates. Gene, 1991, 105(1): 61-72.
    150. Zuccotti G. V., Vigano A., Borelli M., Saresella M., Giacomet V., Clerici M. Modulation of innate and adaptive immunity by lactoferrin in human immunodeficiency virus (HIV)-infected, antiretroviral therapy-naive children. Int J Antimicrob Agents, 2007, 29(3): 353-355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700