醋酸酯淀粉抗菌薄膜的制备及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗菌活性包装材料是近二十年发展起来的一种新型活性包装材料。将能抑制或杀灭微生物的抗菌剂加入到环境友好型基材中,制备抗菌活性包装材料应用于食品包装,可抑制食品中微生物的滋生,防止环境微生物对食品的干扰,提高食品的安全性并延长货架期,是一种具有发展潜力的活性包装材料。
     本论文在淀粉分子中引入疏水性乙酰基团,改性后得到醋酸酯淀粉,制备疏水性的淀粉薄膜;考察不同抗菌剂的抗菌活性,筛选出活性高的抗菌剂,加入到醋酸酯淀粉薄膜中,制备出淀粉抗菌薄膜材料;通过分析抗菌剂从薄膜中的溶出规律及抗菌材料的抗菌活性,得出了基材对抗菌剂溶出的影响规律,为淀粉基抗菌材料的应用和发展提供理论基础;此外还考察了抗菌材料的热性能和力学性能,为淀粉基抗菌薄膜实际应用于肉肠包装提供了理论依据。
     由于天然淀粉分子中含有大量亲水性羟基,使淀粉材料的防水性和耐湿性不能满足包装应用要求。本论文采用化学改性法在淀粉分子中引入了疏水性乙酰基团,合成了几种不同取代度的醋酸酯淀粉。接触角测试结果显示高取代度的醋酸酯淀粉的疏水性很强,取代度为2.9的醋酸酯淀粉的接触角为82.54°,但仍显微弱的吸湿性,为醋酸酯淀粉调控抗菌薄膜中抗菌剂的溶出提供了依据。XRD结果表明酯化后的淀粉结晶结构转变为V型,说明淀粉分子间的氢键被削弱,有序化结晶结构被破坏,趋于无序化。热性能及力学性能分析表明醋酸酯化淀粉具有较好的成膜性及可塑性。
     论文筛选出了三种强抗菌能力及耐热性的抗菌剂,分别为水不溶性壳聚糖A、水溶性壳聚糖C及壳寡糖E,且热处理对它们的抗菌活性影响不大。将筛选出的这三种抗菌剂分别添加到取代度为2.5的改性淀粉中,制备出几种醋酸酯淀粉抗菌薄膜,并对比它们的溶出及抗菌能力。30℃、30rpm下加速溶出144h结果显示,不溶性壳聚糖A膜基本不溶出,可溶性壳聚糖C膜及壳寡糖E膜溶出性较好,均在24h时溶出率近40%,之后缓慢溶出,144h时C膜及E膜的溶出率分别为45%及60%。三种膜的抗菌性能与之相吻合,A膜抗菌能力很差,基本上没有抗菌效果,C膜及E膜较显著,尤其E膜。说明醋酸酯淀粉抗菌膜中抗菌剂的溶出能力与抗菌能力相对应。膜中的抗菌剂越易迁移溶出,膜的抗菌能力越强。薄膜材料越亲水,薄膜中抗菌剂越易迁移溶出。然而,抗菌剂过快溶出,则维持不了薄膜材料的长效抗菌性,因此,控缓释溶出速率是决定抗菌薄膜材料抗菌时效性及长效性的关键。
     采用DMA、拉伸测试仪分析了影响醋酸酯淀粉抗菌薄膜热性能及力学性能的主要因素。结果显示增塑剂添加量对薄膜的玻璃化转变温度Tg影响很大,增塑剂添加量越高,Tg越低,40%添加量时,Tg接近室温。力学性能结果表明壳聚糖抗菌剂可提高淀粉基薄膜材料的力学性能。
     综上所述,本论文采用乙酰化反应塑化淀粉分子,制备了不同取代度及亲疏水性能的醋酸酯淀粉,并筛选出了对大肠杆菌及金黄色葡萄球菌抗菌率均在90%以上的几种抗菌剂,采用流涎法制备了高抗菌活性的醋酸酯淀粉抗菌薄膜。考察了影响薄膜中抗菌剂溶出及抗菌能力的主要因素。通过调节薄膜的厚度、增塑剂用量、改性淀粉取代度等,得到了模拟肉肠环境下强防腐抗菌能力的抗菌活性包装薄膜材料,为控缓释性抗菌活性材料应用于食品领域提供了工艺条件及理论依据。
Packing material of antimicrobial activity is a new pattern activity material which is developing in recent twenty years. If the packing material of antimicrobiol activity which is made by base material of environmental friendly with antibacterialagent is used in Food Packing, it would substitute some use of preservatives in food. Because the packing material of antimicrobiol activity is could not only avoid microbe disturbing food, but also improve the safety of food and prolong its shelf life. So it has been considered as a development potential activity packing material. As people’s life become better and better, the quantity demand of delicious sausages become more and more. While the sterilizing effection is not very satisfied and the additive of preservatives for sausages are always get out of line. Both of the problems are the hot spots recently and should be solved as soon as possible.
     In the thesis, firstly prepared the starch acetate by modifing starch with hydrophobicity acetyls. Secondly, according to characters of sausages as Water activity, pH value, and so on, built the imitating medium model of suasage. Thirdly, screened out antibacterialagents with strong ability of antibiotic. Then maked out antibiosis material of starch acetate for sausage packaging. As analyzing dissolving out rule for antibacterialagents coming out from film, and the relation with film’s antibiosis capacity, conclude that the base material could control and slow release of antibacterialagent coming out from film. What’s more, the aspects of thermal behavior, crystallize character, and other aspects have been researched in system, which provide theory basis for starch base film applied to sausage packaging.
     As natural starch molecules own lots of hydrophily hydroxies, so that the waterproofness and moisture-proof of starch material cann’t satisfy application requirements for sausage packaging. What’s else, natural starch’s melting temperature nears to its decomposition temperature, so it also doesn't have plasticity. In the thesis, the natural starch molecules have been modified by lipophilicity acetyl groups, and composed several acetate starches with different degrees. Results of Contact Angle Test show that hydrophobicity of starch acetate with high degree is strong. When the degree of starch acetate reaches to 2.9, the largest contact angle of it would be 82.54. While the material also apparents weak hygroscopic. Which could provide judging for dissolving out rule of antibacterialagents from antibiosis film by regulating and controlling. XRD result manifests that natural starch’s crystal structure has been changed to V. So hydrogen bonds of starch molecules have been weakened, and the structure’s ordering tends to disorder. Thermal and mechanical properties analysis show that starch acetate is good at becoming film and plasticity.
     In the research, three antimicrobials including non water-soluble chitosan A, water-soluble chitosan C, and oligochitosan E have been selected out, which not only are good at antibacterial activity and thermostability, but also their antibacterial activity doesn’t effect greatly by high degree of temperature. All of them have been mixed to modified starch with degree of 2.5, and maked antimicrobial film of acetate starch out. After that, compared their dissolving out regularity to their antibacterial ability. The conclusion of accelerate dissolution test by temperature of 30℃and rate of 30rpm showed that non water-soluble chitosan A basically couldn’t dissolve out. While water-soluble chitosan C and oligochitosan E could dissolve out better. Both of them could dissolve out from base material nearly 40% in 24 hours, and then dissolve out slowly that dissolving rate respectively are 45% and 60% for film C and E in 144 hours. The three kinds of film’s antimicrobial ability agree with their dissolving regularity. Film A is bad at antimicrobial effection, while film C and E are good at it, especially film E. So acetate starch antimicrobial film’s dissolving energy is corresponding to its antimicrobial ability. If antimicrobialagents came out easier from film, the film’s antimicrobial energy would be stronger. If the film was more hydrophily, the film’s antimicrobialagents would dissolve out easier. But if the rate of antimicrobialagents dissolved out was too fast, the film wouldn’t maintain its long-term antibacterial properties. So the rate of control and release dissolving is the key for deciding antibacterial film material’s antibacterial timeliness and long-lasting.
     DMA and Instron Tensile Tester were used to analysis the influence factors of acetate starch antimicrobial film’s thermal and mechanical properties. The results show that plasticizers’quantity influence glass transition temperature Tg of film greatly. The more quantity of plasticizers, the lower of film’s Tg. When the quantity reaches to 40%, Tg nears to room temperature. Mechanical property result showes that chitosan could increase mechanical properties of starch film.
     From the above, the thesis modifies natural starch with acetyl and makes out acetate starch with different degree and characters of hydrophibic and hydrophobic. Then screening out several antimicrobialagents which could reach antibacterial rates of Escherichia coli and Staphylococcus aureus above 90%. Using the method of Tape Casting maked out the high antibacterial activity film of acetate starch. The mainly factors which could effect antibacterialagents' dissolution and antibiosis energy have been investigated. Via accommodating film’s thickness, quantity of plasticizers, degree of modified starch, and other conditions, could gain antibacterial activity packaging film which own strong antibacterial activity at the condition of imitating sausage environment. So that could provide the conditions of processing technology and theoretical basis for antimicrobial activity material of control and release character which would apply in the food field.
引文
[1] Veronique C.. Bioactive packaging technologies for extended shelf life of meat-based products [J]. Meat Science, 2008, 78: 90-103.
    [2]李旷怡,伍国强,郭健童,等.急性亚硝酸盐中毒32例临床分析[J].国际医药卫生导报, 2006, 12(15): 23-25.
    [3] Cooksey K.. Effectiveness of antimicrobial food packaging materials[J]. Food Additives and Contaminants, 2005, 22(10): 980-987.
    [4] Cutter C. N.. Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods [J]. Meat Science. 2006, 74: 131-142.
    [5] Weber C. J., Haugaard V., Festersen R., et al. Production and applications of biobased packaging materials for the food industry [J]. Food Additives and Contaminants. 2002, 19: 172-177.
    [6] Borch E, Kant-Muermans M.L., Blixt Y.. Bacterial spoilage of meat and cured meat products [J]. International Journal of Microbiology, 1996, 33(1): 103-120.
    [7] Samelis J.. Managing microbial spoilage in the meat industry. In: Blackburn C.D.W., Food spoilage organisms [M]. Woodhead Publishing Limited, 2006, 213-286.
    [8]秦品章.关于修改食品添加剂硝酸盐、亚硝酸盐使用卫生标准的若干建议[J].中国预防医学杂志. 2005, 6(2): 150-151.
    [9]蔡惠平,陈黎敏.肉制品包装[M]. 2004,北京,中国:化学工业出版社. 5-6.
    [10]任艳丽.天然防腐剂在熟肉制品防腐中的应用[D].硕士学位论文.食品科学专业. 2007,西华大学:成都,中国.
    [11] Kaniou I., et al. Determination of biogenic amines in fresh and unpacked and vacuum-packed beef during storage at 4℃[J]. Food Chemistry, 2001, 74(4): 515-519.
    [12] European Commission Regulation. EC Regulation No. 853/2004. Laying down specific hygiene rules for food of animal origin. Official Journal of the European Union, 2004, 226: 22–82.
    [13] Sandra S., Jorgen J., Leisner, Derek V.B.. Sensory shelf life determination of a processed meat product‘rullepolse’and microbial metabolites as potential indicator [J]. MeatScience, 2009 , 83: 285-292.
    [14] Smiddy M., Papkovsky D.B., Kerry J.P.. Evaluation of oxygen content in commercial modified atmosphere packs (MAP) of processed cooked meats[J]. Food Research International, 2002, 35(6): 571-575.
    [15] Suppakul P., Miltz J., Sonneveld K., et al. Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and its Applications [J]. Journal of food science , 2003, 68(2): 408-420.
    [16]张向前,徐宝才,李海松,等.生物活性包装技术在肉制品保鲜中的应用.肉类工业, 2008. 8: 23-27.
    [17] Kerry J.P., O'Grady M.N., Hogan S.A.. Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review[J]. Meat Science, 2006. 74: 113-130.
    [18] Moy G.G. Healthy marketplaces: an approach for ensuring food safety and environmental health. Food Control, 2001,12: 499-504.
    [19] Quintavalla S., Vicini L.. Antimicrobial food packaging in meat industry[J]. Meat Science, 2002. 63: 373-380.
    [20] Vermeiren L., Devlieghere F., Beest M.V., et al. Developments in the active packaging of foods[J]. Trends in Food Science & Technology, 1999. 10: 77-86.
    [21] Oussalah M., Salmieri C., Salmieri S., et al. Antimicrobial and Antioxidant Effects of Milk Protein-Based Film Containing Essential Oils for the Preservation of Whole Beef Muscle [J]. Food Chemisty. 2004, 52: 5598-5605.
    [22] Hussain I., Mahmood M.S., Aktar M., et al. Prevalence of campylobacter species in meat, milk and other food commodities in Pakistan[J]. Food Microbiology, 2007, 24: 219-222.
    [23] Salleh E., Muhamad I., Khairuddin N.. Preparation, characterization and antimicrobial analysis of antimicrobial starch-based film incorporated with chitosan and lauric acid. Asian Chitin Journal, 2007, 3: 55-68.
    [24] Jeremiah L.E., Gibson L.L.. The influence of packaging and storage time on the retail properties and case life of retail-ready beef [J]. Food Research International, 2001, 34: 621-631.
    [25] Lanari M.C., Schaefer D.M., Scheller K.K.. Dietary Vitamin E supplementation anddiscoloration of pork bone and muscle following modified atmosphere packaging. Meat Science, 1995, 41(3): 237-250.
    [26] Coma V., Sebti I., Deschamps A., et al. Antimicrobial edible packaging based on cellulosic ethers, fatty acids and nisin incorporation to inhibit Listeria monocytogenes and Staphylococcus aureus. Journal of Food Protection, 2001, 64: 470-475.
    [27] Suppakul P., Miltz J., Sonneveld K., et al. Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and its Applications [J]. Journal of food science , 2003, 68(2): 408-420.
    [28]季君晖.国外用抗菌剂及抗菌塑料[J].国外塑料, 2004. 22(3): 39-42.
    [29] Michele A.W.W., Christine M.B., Barbara D. F.. Novel Piperidinyloxy Oxazolidinone Antibacterial Agents Diversification of the N-Substituent[J]. Bioorganic & Medicinal Chemistry, 2002, 10: 2345-2351.
    [30]章结兵,葛岭梅,周安宁.抗菌塑料研究进展[J].塑料科技, 2004, 2: 58-61.
    [31] Xiaofei L., Yunlin G., Zhiyang D., et al. Antibacterial Action of Chitosan and Carboxymethylated Chitosan. Journal of Applied Polymer Science, 2001, 79: 1324-1335..
    [32] Park S.. Antimicrobial activity of chitosan impregnated into packaging films and chitosan in solution. Master Dissertation, Clemson University, America ,2001.
    [33]赵亮,冯利平,侯绍刚.抗菌塑料的研究与应用[J].安阳工学院学报,2006, 22: 14-17.
    [34] Ouattara, B., et al., Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with Chitosan[J]. International Journal of Food Microbiology, 2000. 62: 139-148.
    [35] Dutta P.K., Tripathi S., Mehrotra G.K., et al. Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry[J]. 2009, 114: 1173-1182.
    [36] Baron, J.K., Summer S.S.. Antimicrobial containing edible films as an inhibitory system to control microbial growth on meat products[J]. Journal of Food Protection, 1993, 56: 916-918.
    [37] Natrajan N., Sheldon B.W.. Efficacy of nisin-coated polymer films to inactivate Salmonella typhimurium on fresh broiler skin[J]. Journal of Food Protection, 2000, 63:1189-1196.
    [38] Hoffman K.L., Han I.Y., Dawson P.L.. Antimicrobial effects of corn zein films impregnated withnisin, lauric acid and EDTA[J]. Journal of Food Protection, 2001, 64: 885-889.
    [39] Ha, J.U., Kim Y.M., Lee D.S.. Multilayered antimicrobial polyethylene films applied to the packaging of ground beef[J]. Packaging Technology and Science, 2001, 15: 55-62.
    [40] Padgett, T., Han I.Y., Dawson P.L.. Incorporation of food-grade antimicrobial compounds into biodegradable packaging films[J]. Journal of Food Protection, 1998, 61(10): 1330-1335.
    [41] Rabea E.I., Badawy M.E., Stevens C.V., et al. Chitosan as Antimicrobial Agent: Applications and Mode of Action[J]. Biomacromolecules, 2003. 4(6): 1457-1465.
    [42] Shipra T., Mehrotra G.K., Dutta P.K.. Chitosan based antimicrobial films for food packaging applications[J]. e-Polymers, 2008. 093: 1-7.
    [43] Allan C.R. Hadwiger L.A.. The fungicidal effect of chitosan on fungi of varying cell wall composition[J]. Experimental Mycology, 1979. 3: 285-287.
    [44] Darmdaji P., Izuminoto M.. Effects of chitosan in meat preservation[J]. Meat Science, 2004, 38:243-254.
    [45] Ouattara B., Simard R.E., Piette G., et al. Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan[J]. International Journal of Food Microbiology, 2000, 62:139-148.
    [46] Vargas M., Albors A., Chiralt A., et al. Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings[J]. Postharvest Biology and Technology, 2006, 41:164–171.
    [47] Zhaia M., Zhao L., Yoshii F., et al. Study on antibacterial starch/chitosan blend film formed under the action of irradiation[J]. Carbohydrate Polymers, 2004, 57: 83-88.
    [48] Liu H., Du Y., Wang X., et al. Chitosan kills bacteria through cell membrane damage[J]. International Journal of Food Microbiology, 2004, 95(2): 147-155.
    [49] Moller, H., S. Grelier, and P. Pardon, Antimicrobial and Physicochemical Properties of Chitosan-HPMC-Based Films. Agricultural and Food Chemistry, 2004. 52: 6585-6591.
    [50] Yang T.C., Chou C.C., Li C.F.. Antibacterial activity of N-alkylated disaccharide chitosanderivatives[J]. International Journal of Food Microbiology, 2005, 97: 37-245.
    [51] Dutta P.K., Shipra T., Mehrotra G.K., et al. Perspectives for chitosan based antimicrobial films in food applications[J]. Food Chemistry, 2009, 114: 1173-1182.
    [52] Prashanth, K.V.H., Tharanathan R.N.. Chitin/chitosan: modifications and their unlimited application potential-an overview[J]. Trends in Food Science & Technology, 2007, 18: 117-131.
    [53] Liu X.F., Guan Y.L., Yang D.Z., et al.. Antibacterial action of chitosan and carboxymethylated chitosan[J]. Journal of Applied Polymer Science, 2001, 79(7): 1324-1335.
    [54] Zheng, L.Y., Zhu J.F.. Study of antimicrobial activity of chitosan with different molecular weight[J]. Carbohydrate Polymers, 2003, 54(4): 527-530.
    [55] Chen T.. Product and nature biological medicine [M]. 1998, Beijing, China. 282.
    [56] Joerger D., Sabesan S., Visioli D., et al. Antimicrobial Activity of Chitosan Attached to Ethylene Copolymer Films[J]. Packaging Technology and Science. 2009, 22: 125–138.
    [57] Richelle L.B., Marlene E.J., et al. Edible chitosan films on ready-to-eat roast beef for the control of Listeria monocytogenes[J]. Food Microbiology. 2008, 25, 534–537.
    [58] Devlieghere F., Vermeulen A., Debevere J.. Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables[J]. Food Microbiology. 2004, 21, 703–714.
    [59] Fernandez S. P., Lagaron J. M., Ocio M. J.. Optimization of the Film-Forming and Storage Conditions of Chitosan as an Antimicrobial Agent. Food Chemistry[J]. 2009, 57, 3298–3307.
    [60]陈涛.热塑性淀粉塑料加工、结构和性质研究[D].四川成都:四川大学,2006.
    [61]徐晓凤,张光华.论包装用天然高分子膜.包装工程[J]. 2006, 27(1): 48-50.
    [62] Maizura M., Fazilah A., Norziah M.H., et al. Antibacterial Activity and Mechanical Properties of Partially Hydrolyzed Sago Starch–Alginate Edible Film Containing Lemongrass Oil. Journal of Food Chemistry[J]. 2007, 72(6): 324-330.
    [63] Margarita C., Jung H.H. Tauscher B.. Antimicrobial properties of grape seed extracts and their effectiveness after incorporation into pea starch films. International Journal of Food Science and Technology[J]. 2009, 44, 425–433.
    [64]张庆,周如金,乔艳辉,吴文浩.富马酸淀粉甲酯的合成及其抑菌活性研究.化学与生物工程[J]. 2008, 25(5): 27-30.
    [65]张庆,周如金,李春海,等.新型防腐剂富马酸淀粉甲酯的合成及抑菌活性研究[J].中国食品添加剂. 2008, 152-156.
    [66] Mathew S., Abraham T.E.. Characterisation of ferulic acid incorporated starch-chitosan blend films[J]. Food Hydrocolloids, 2008, 22: 826-835.
    [67] Chillo S., Flores S., Mastromatteo M., et al. Influence of glycerol and chitosan on tapioca starch-based edible film properties[J]. Journal of Food Engineering, 2008, 88: 159-168.
    [68] Maria B.V., Silvia K.F., Carmen A.C., et al. Antimicrobial activity and physical properties of chitosan-tapioca starch based edible films and coatings[J]. Food Research International, 2009, 42: 762-769.
    [69] Zhai M., Zhao L., Yoshii F., et al. Study on antibacterial starch/chitosan blend film formed under the action of irradiation[J]. Carbohydrate Polymers, 2004, 57: 83-88.
    [70] Xu Y.X., Kim K.M., Hanna M.A., et al.. Chitosan-starch composite film: preparation and characterization[J] Industrial Crops and Products, 2005, 21: 185-192.
    [71]钟秋平,夏文水.壳聚糖木薯淀粉明胶复合可食抗菌保鲜膜性能的研究[J].食品科学, 2006, 27(6): 59-64.
    [72]薛琼,向贤伟,黄曦平.碘化壳聚糖-淀粉复合膜对芒果保鲜效果的研究[J].包装工程, 2009, 30(2): 12-30.
    [73]聂柳慧,韩永生.壳聚糖-淀粉共混薄膜的制备与研究[J].包装工程, 2005, 26(6): 73-75.
    [74]岳晓华.可食性壳聚糖-淀粉复合膜的研究[J].食品科学, 2004, 25: 7-15.
    [75]田春美,钟秋平.木薯淀粉/壳聚糖可食性复合膜对鲜切菠萝蜜的保鲜研究[J].重庆工贸职业技术学院学报, 2008. 9(1): 48-51.
    [76]王群,杜予民,樊李红.壳聚糖-淀粉-苯甲酸钠三元共混膜的结构和性能[J].武汉大学学报, 2003, 49(6): 725-730.
    [77] Yu J.G., Liu Z.H.. Properties of the surface hydrophobicated thermoplastic starch[J]. China Plastics. 2002, 16, 35–38.
    [78]戴小敏,左秀锦,刘袖洞,等.醋酸酯淀粉的溶解性能、形貌与XRD结构分析.化学研究与应用. 2004, 16(1): 61-65.
    [79]李晓玺,陈玲,温其标,等.醋酸酯化对淀粉生物降解性能的影响[J].现代化工. 2002, 22: 139-142.
    [80] Zhang L.M., Xie W.G., Zhao X., et al. Study on the morphology crystalline structure and thermal properties of yellow ginger starch acetates with different degrees of substitution[J]. Thermochimica Acta. 2009, 495, 57–62.
    [81]戴小敏.醋酸醋型改性淀粉的表征及其膜性能研究[D].大连:中国科学院大连化学物理研究所.
    [82] Ambuj S.D., Edward M.W.. Properties of Fatty-acid Esters of Stareh[J]. Journal of Applied Science, 1995, 58: 1647-1650.
    [83] Bisws A., Shogren R.L., Selling G., et al. Rapid and environmentally friendly preparation of starch esters[J]. Carbohydrate Polymers, 2008, 74, 137-141.
    [84] Zhou J., Ren L.L., Tong J., et al. Surface esterification of corn starch films: Reaction with dodecenyl succinic anhydride[J]. Carbohydrate Polymers. 2009, 78, 888-893.
    [85] Tarvainena M., Peltonenb S., Mikkonen H., et al. Aqueous starch acetate dispersion as a novel coating material for controlled release products[J]. Journal of Controlled Release. 2004, 96(1): 179–191.
    [86] Tuovinena L., Peltonenb S., Kristiina J.. Drug release from starch-acetate films[J]. Journal of Controlled Release. 2003, 91, 345–354.
    [87]陈志民,陈加福,许群.淀粉的改性及其在可降解塑料和橡胶中的应用研究[J].世界科技研究与发展, 2007, 29(4): 16-22.
    [88] Parka S, Chungb M.G., Yooa B. Effect of Octenyl-succinylation on Rheological Properties of Corn Starch Pastes[J]. Starch/Strke, 2004, 56: 399-406.
    [89] Fang J.M, Fowler P.A, Tomkinson J., et al. The Preparation and Characterisation of a Series of ChemicallyModified Potato Starches[J]. Carbohydrate Polymer, 2002, 47: 245-252.
    [90] Liu H.S., Xie F.G., Yu L., et al. Thermal processing of starch-based polymers[J]. Progress in Polymer Science, 2009, 1-21.
    [91]胡飞,陈玲,温其标,等.淀粉微细化国内外研究概况与展望[J].郑州工程学院学报. 2001, 22(2): 74-77.
    [92]李金芝,蔡楚江,沈志刚.高流动性、强疏水性淀粉的制备及性能[J].中国粉体技术,2008, 14(6): 28-32.
    [93]许岗,杨觉明,陈平.疏水复合薄膜接触角的测定[J].西安工业学院学报.. 2004, 24(1): 65-69.
    [94]朱宜.扫描电镜图像的形成处理和显微镜分析[M].北京:北京大学出版社, 1991, 34-38.
    [95]黄峻榕. X射线衍射在测定淀粉颗粒结构中的应用[J].陕西科技大学学报. 2003, 21(4): 90-93.
    [96]朱成身.聚合物结构分析[M].北京:科学出版社, 2004, 501-550.
    [97]过梅丽.世界先进的动态机械热分析仪及其应用[J].现代科学仪器, 1996, 1: 55-58.
    [98]吕明哲,李普旺,黄茂芳,等.用动态热机械分析仪研究橡胶的低温动态力学性质[J].中国测试技术, 2007, 33(3): 27-29.
    [99]彭旭.醋酸酯淀粉微观结构表征与分析[D].广州:华南理工大学, 2009.
    [100]胡飞,陈玲,李琳.马铃薯淀粉颗粒在微细化过程中结晶结构的变化.精细化工[J]. 2002, 19(2): 114-117.
    [101]李晓玺,陈玲,邹芳建,等.微波改性高链玉米淀粉颗粒的抗消化性能与结晶结构的关系[J].粮食与饲料工业, 2007, 12: 12-13.
    [102]张坤玉,冉祥海,吴航.新型热塑性淀粉的制备和性能[J].高等学校化学学报, 2009, 30(8): 1662-1667.
    [103] Choi J.H., Choi W.Y., Cha D.S., et al. Diffusivity of potassium sorbate in k-carrageenan based antimicrobial film[J]. Food Science and Technology. 2005. 38(4): 417-423.
    [104] Fereidoon S., Janak.K.V.A., Jeon Y.J. Food applications of chitin and chitosans[J]. Trends in Food Science & Technology, 1999, 10: 37-51.
    [105] Kim K.W., Thomas R.L., Lee C, et al. Antimicrobial activity of native chitosan, degraded chitosan, and O-carboxymethylated chitosan[J]. Journal of Food Protection, 2003. 66(4): 1495-1498.
    [106] Sophie N., Steve H., Mario J., et al. Fractionation and characterization of chitosan by analytical SEC and H NMR after semi-preparative SEC[J]. Carbohydrate Polymers, 2009, 75: 636-645.
    [107] Nguyen S., Winnik F.M., Buschmann M.D.. Improved reproducibility in thedetermination of the molecular weight of chitosan by analytical size exclusion chromatography[J] Carbohydrate Polymers, 2009, 75: 528-533.
    [108]奚廷斐,仲黄.多角度激光光散射检测器和示差折光检测器联用测定壳聚糖分子量及分子量分布[J].药物分析杂志, 2006, 26(9): 1258-1260.
    [109] Liu X.X., Yu L., Liu H.S. et al., In situ thermal decomposition of starch with constant moisture[J]. Polymer Degradation and Stability, 2008, 93: 260-262.
    [110] Yoshihiko O., Mayumi S., Takahiro A., et al. Antimicrobial activity of chitosan with different degrees of acetylation and molecular weights[J]. Biocontrol Science, 2003, 8: 25-30.
    [111]陶海静.鸡大肠杆菌技术方法研究[J].安徽农业科学, 2007. 35(27): 8504-8506.
    [112] Patricia L.P, Cristina S., Ramon B., et al. Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms[J]. J. Agric. Food Chem., 2007, 55(11): 4348-4356.
    [113]张胜.肉制品包装概念[J].农业工程技术(农产品加工业). 2008, 3: 38-39.
    [114]郭辽朴,李洪军.肉制品包装研究进展[J].肉类工业, 2007, 10: 45-48.
    [115]陶志忠.肉类食品的包装[J].肉类研究, 2006, 1-5.
    [116] Richelle L. Beverly A., Marlene E., et al. Edible chitosan films on ready-to-eat roast beef for the control of Listeria monocytogenes [J]. Food Microbiology. 2008, 25: 534–537.
    [117] Mathew S., Abraham T.E..Characterisation of ferulic acid incorporated starch–chitosan blend films [J].Food Hydrocolloids, 2008, 22: 826–835.
    [118] Mathew S., Brahmakumar M., Abraham T.E.. Microstructural imaging and characterization of the mechanical, chemical, thermal and swelling properties of starch–chitosan blend films [J]. Biopolymers, 2006, 82: 176–187.
    [119] Wang X.P., Chen.L., Xiang H., et al., Influence of Anti-Washout Agents on the Rheological Properties and Injectability of a Calcium Phosphate Cement [J]. Journal of Biomedical Materials Research, 2006: 410-416.
    [120] Bourtoom T. and Chinna. M.S., Preparation and properties of rice starch-chitosan blendbiodegradable film [J]. LWT-Food Science and Technology, 2008,41: 1633-1641.
    [121] Liu F.J., Qin B., He L.H., et al. Novel starch/chitosan blending membrane: Antibacterial,permeable and mechanical properties[J]. Carbohydrate Polymers, 2009, 78: 146-150.
    [122] Devlieghere F., Vermeulen A., Debevere J.. Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables[J]. Food Microbiology, 2004, 21: 703–714.
    [123] Fernandez-Saiz P., Lagaron J.M., Ocio M.J.. Optimization of the biocide properties of chitosan for its application in the design of active films of interest in the food area [J]. Food Hydrocolloids, 2009, 23(3): 913-921.
    [124] Del Nobile M.A., Conte A., Incoronato A.L., et al. Antimicrobial efficacy and release kinetics of thymol from zein films[J]. Journal of Food Engineering, 2008, 89: 57–63.
    [125] Mathew, Abraham T.E.. Characterisation of ferulic acid incorporated starch-chitosan blend films[J]. Food Hydrocolloids, 2008, 22 (5): 826–835.
    [126] Maria B. Vasconez, S.K.F., Carmen A.C., et al., Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Research International, 2009. 42: 762-769.
    [127] Dutta P.K., Tripathi S, Mehrotra G.K., et al. Perspectives for chitosan based antimicrobial films in food applications[J]. Food Chemistry, 2009, 114: 1173–1182.
    [128] Suppakul P., Miltz J., Sonneveld K., et al. Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and its Applications [J]. Institute of Food Technologists. 2003, 408-420.
    [129] Kjellgren H., Gallstedt M., Engstrom G., et al. Barrier and surface properties of chitosan-coated grease proof paper [J]. Carbohydrate Polymers, 2006, 65: 453-460.
    [130] Guibal E.. Heterogeneous catalysis on chitosan-based materials: a review [J]. Progress in Polymer Science, 2005, 30: 71-109.
    [131]张昭,彭少方,刘昌栋.无机精细化工工艺学[M].北京:化学工业出版社, 2002.
    [132]陈默,王志伟,胡长鹰,等.酶标仪法快速评价香兰素的抑菌活性[J].食品与发酵工业, 2009. 35(5): 63-66.
    [133] Coma C., Martial-Gros A., Garreau S., et al. Edible Antimicrobial Films Based on Chitosan Matrix[J]. Institute of Food Technologists, 2002, 67: 1162-1169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700