多环芳烃在土壤中的老化和迁移行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文开展了以下三个方面的研究工作:(1)调查了福州市区周边农业土壤中多环芳烃(PAHs)的污染状况,并对其来源进行了解析;(2)研究了菲(Phe)和芘(Pyr)在土壤中的老化现象及其在土壤不同粒径组分中的分配特征:(3)通过土柱淋溶实验,研究了淹水状态下不同浓度的溶解性有机质(DOM)对土壤中Phe和Pyr迁移行为的影响。主要结果如下:
     (1)通过调查福州市农业表层土壤(0-10 cm)中美国环境保护署优控的16种PAHs含量,并对其来源和生态风险进行了分析。结果发现,供试土样中16种PAHs检出率达到100%,其总量范围为100.2~1 215.1μg·kg~(-1)。土壤中PAHs主要源于生物燃烧和石油。供试土样中PAHs的总Bap_(eq)值有50%超过荷兰规定的目标值,并且86%的超标土样是由于苯并[a]芘的Bap_(eq)值超过目标值所致。因此,福州市部分农业土壤存在一定的潜在的生态风险。
     (2)研究了Phe和Pyr在水稻土中的老化及其在土壤不同粒径组分(粘粒、细粉粒、粗粉粒、细砂粒和粗砂粒)中的分配特征。结果表明,随着时间的推移,土壤中Phe和Pyr相对提取率逐渐降低。老化90天时,土壤不同粒径组分中Phe和Pyr的量占整个土壤中Phe和Pyr总量百分比的大小顺序分别为细砂粒>粗粉粒>细粉粒>粗砂粒>粘粒和细粉粒>细砂粒>粗粉粒>粘粒>粗砂粒。
     (3)采用人工填装土柱淋溶实验研究了淹水状态下不同浓度的DOM溶液对Phe和Pyr在土壤中迁移行为的影响。实验结果表明,淹水状态下DOC浓度分别为0、17.2 mg·kg~(-1)、51.5 mg·kg~(-1)和694.8 mg·kg~(-1)的超纯水、DOM1、DOM2和DOM3溶液都能促进Phe和Pyr在土壤剖面中的迁移,并且DOC浓度越高,DOM对Phe和Pyr在土壤中迁移行为的影响越明显。此外,DOM对Phe在土壤中迁移的影响要明显高于Pvr。
In order to understand the fate and behavior of aging and transporting of PAHs in soil,several experiments were designed in this study.The pollution status and sources of PAHs in agricultural surface soils of Fuzhou City were investigated.Aging of spiked phenanthrene(Phe) and pyrene(Pyr) in paddy soil and the distributions of Phe and Pyr in different particle-size fractions of soil were studied.Vertical transport of Phe and Pyr under flooded conditions was investigated by simulations experiments in soil columns. The following are the main results in this study.
     (1) The contents of 16 USEPA priority PAHs in agricultural surface soils(0-10 cm) were studied,and the sources and ecological risks of PAHs were also analyzed.Results demonstrated that 16 PAHs were detected in all soil samples.The concentrations of the sum of 16 PAHs in agricultural soils ranged from 100.2μg·kg~(-1)to 1 215.1μg·kg~(-1).The main sources of PAHs in agricultural soils were from petroleum and biomass burning. Toxicity equivalency factor(TEF) was used to convert the toxicity value of individual PAHs to an equivalent toxicity value of benzo[a]pyrene(Bap_(eq)).Total Bap_(eq) values of the agricultural soils ranged from 2.50μg·kg~(-1) to 147.95μg·kg~(-1) and half of them were greater than Dutch target value(total Bap_(eq)=32.96μg·kg~(-1)).The results in this study demonstrated that,to some extent,some areas of agricultural soils in Fuzhou city had potentially ecological risks.
     (2) Aging of spiked Phe and Pyr in paddy soil and the distributions characteristics of Phe and Pyr in different particle-size fractions(clay,fine silt,coarse silt,fine sand and coarse sand) of soil were studied.The results showed that the relative extractability of Phe and Pyr were gradually reduced with aging time.After 90-day aging,the percentage of the amount of Phe in different particle-size separate to the total amount of Phe in bulk soils decreased in the order of fine sand>coarse sand>fine silt>coarse silt>clay.The percentage of the amount of Pyr in different particle-size separates to the total amount of Pyr in bulk soils decreased in the order of fine silt>fine sand>coarse silt>clay>coarse sand.
     (3) Vertical transport of Phe and Pyr under flooded conditions was investigated by simulations experiments.The results showed that ultrapure water(DOC,0mg·kg~(-1)), DOM1(DOC,17.2mg·kg~(-1)),DOM2(DOC,51.5mg·kg~(-1)) and DOM3(DOC,694.8 mg·kg~(-1)) may increase transport of phenanthrene and pyrene in flooded soil columns,and the transport of phenanthrene and pyrene was deeper with increased concentration of DOC,and the transport of phenanthrene was shown to be more facilitated than pyrene.
引文
[1] Ahmad R,R S Kokana,A M Alston,et al.The nature of organic matter affects sorption of pesticides.l.Relationships with carbon chemistry as determined by 13C CPMAS NMR spectroscopy[J].Environmental Science&Technology,2001,35:878-884.
    
    [2] Alexander R R, M Alexander. Genotoxicity of two polycyclic aromatic hydrocarbons declines as they age in soil[J]. Environmental Toxicology and Chemistry, 1999, 18: 1140-1143.
    
    [3] Arvola L, Tulonen T. Effects of allochthonous dissolved organic matters and inorganic nutrients on the growth of bacteria and algae from a highly humic lake. Environ. Int, 1998, 24(526):509-520
    
    [4] Barriuso E, Baer U, Caivet R. Dissolved organic matters and adsorption-desorption of dimefuron, atrazine and carbetamide by soils. J Environ Qual, 1992, 21:359-367
    
    [5] Benner B A Jr, Bryner N P, Wise S A. Polycyclic aromatic hydrocarbon emission from the combustion of crude oil on water.Environ. Sci. Technol, 1990,24:1418-1427
    
    [6] Bjorseth A. Handbook of Polycyclic aromatic hydrocarbons. Marcel Dekker. New York, 1983: 727-733
    
    [7] Blumer M. Polycyclic aromatic compounds in nature. Scientific American, 1976, 234: 34-45
    
    [8] Pan B., Saikat Ghosh, Xing B. Nonideal Binding between Dissolved Humic Acids and Polyaromatic Hydrocarbons. Environ. Sci. Technol, 2007,41 (18): 6472 -6478
    
    [9] Bowmer K H. Atrazine persistence and toxicity in two irrigated soils of Australia [J]. Aust. J. Soil Res, 1991,29: 339-350.
    
    [10] Brusseau M. L, P. S.C. Rao. Sorption nonideality during organic contaminant transport in porous media. Crit. Rev. Environ. Control, 1989,19:33-99
    
    [11] Budzinski H, Jones I, Bellocq J, et al. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary[J]. Marine Chemistry, 1997, 58: 85-97.
    
    [12] Busche U, Hirner A V. Mobilization potential of hydrophobic organic compounds (HOCs) in contaminated soils and waste materials. Part II: Mobilization potential of PAH, PCBs and phenols by natural waters [J]. Acta Hydrochim. Hydrobiol, 1997, 25: 248-252.
    
    [13] Carmichael L M, Christman R F, Pfaender F K. Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soil. Environmental Science Technology, 1997, 31:126-132
    
    [14] Caron G, Suffet I, Belton T. Effect of dissolved organic carbon on the environmental distribution of nonpolar organic compounds. Chemosphere, 1985,14: 993-1000
    
    [15] Cheng W, Zhang Q, Coleman DC, et al. Is available carbon limiting microbial respiration in the rhizosphere. Soil Biol Biochem, 1996,28:1283-1288
    
    [16] Chiou CT, Malcolm RL, Brinton TI, et al. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ Sci Technol, 1986, 20: 502-508
    
    [17] Christensen ER, Zhang X. Source of Polycyclic aromatic hydrocarbons to Lake Michigan determined from sedimentary records. Environ. Sci. Technol, 1993, 27:139-146
    
    [18] Chung N, M Alexander. Effect of concentration on sequestration and bioavailability of two polycyclic aromatic hydrocarbons [J]. Environmental Science& Technology, 1999, 33: 3605-3608.
    
    [19] Cole F A, B L Boese, R C Swartz, et al. Effects of storage on toxicity of sediments spiked with fluoranthene to the amphipod Rhepoxynius abronius[J]. Environmental. toxicology and Chemistry, 2000,19: 744-748.
    
    [20] Conrad A U, S D Comber, K Simkiss. Pyene bioavailability: effect of sediment— chemical contact time on routes of uptake in an oligochate worm[J]. Chemosphere, 2002, 49: 447-454.
    
    [21] Cook B D, Allan D L. Dissolved organic carbon in old field soils: compositional changes during the biodegration of soil organic matter. Soil Biol Biochem, 1992, 24 (6): 595-600.
    
    [22] Cousins I T, Gevao B, Jones K C. Measuring and modeling the vertical distribution ofsemi-volatile organic compounds in soils: I. PCB and PAH soil core data[J]. Chemosphere, 1999, 39(14): 2507-2518.
    
    [23] Crnkovic D, Ristic M, Jovanovic A, et al. Level of PAHs in the soils of Belgrade and its environs[J]. Environ Monit Assess, 2007,125(1-3): 75-83.
    
    [24] Currie WS, Aber JD. Modeling leaching as a decomposition process in humid montane forests. Ecology, 1997, 78:1844-1860
    
    [25] de Jonge, Lis W, Moldrup, Per, de Jonge, Hubert, Celis, Rafael. Sorption and leaching of short-term-aged BAHs in eight European soils: Link to physicochemical properties and leaching of dissolved organic carbon. Soil Science. 2008,173(1): 13-24
    
    [26] Doring UM. Water solubility enhancement of Benzo (a) pyrene and 2, 2, 5, 5'2 terachlorobiphenyl by dissolved organic matters. Phys Chem Earth, 1998,23 (2): 193-197
    
    [27] Douben P E T. PAHs: An ecotoxicological perspective [M]. New York: Wiley, 2003:1-377.
    
    [28] Edwards NT, Harris WF. Carbon cycling in a mixed deciduous forest floor. Ecology, 1977,58: 431-437
    
    [29] Edwards NT. Polycyclic aromatic hydrocarbons in the terrestrial environment a review. J. Environ. Qual, 1983,12: 427-444
    
    [30] Enell A, Reichenberg F, Warfvinge P, et al. A column method for determination of leaching of polycyclic aromatic hydrocarbons from aged contaminated soil[J]. Chemosphere, 2004,54:707-715.
    
    [31] Fernandes M B, Sicre M A, Boireau A, et al.Polyaromatic hydrocarbons distributions in the Seine river and its estuary. Marine pollution Bulletin, 1997,34(11): 857-867
    
    [32] Fraser M P, Gass G R, Simoneit B R, et al. Air quality model evaluation data for organics.5.C6-C22 nonpolar and semipolar aromatic compounds[J].Environ.Sci. Technol, 1998,32:1760-1770.
    
    [33] Freeman D J, Cattell F C. Wood burning as a source of atmospheric polycyclic aromatic hydrocarbons. Environ.Sci.Technol, 1990, 24:1581-1585.
    
    [34] Gao Yanzheng, Xiong Wei, Ling Wanting, Wang Xiaorong, Li Qiuling. Impact of exotic and inherent dissolved organic matter on sorption of phenant hrene by soils[J]. Journal of Hazardous Materials, 2006,53: 5766-5772
    
    [35] Gevao B, Semple KT, Jones KC. Bound pesticide residues in soils: A review. Environmental Pollution, 2000,108: 3-14
    
    [36] Gordon G E. Recept or models. Environ.Sci.Technol, 1988, 22:1132-1142
    [37] Grasso D, Chin Y P, Weber W J J. Structural and behavioral characteristics of a commercial humic acid and natural dissolved aquatic organic matter[J]. Chemosphere, 1990, 21(10-11): 1181-1 198.
    
    [38] Guggenberger G, Zech W, Schulten H R. Formation and mobilization pathways of dissolved organic matter: Evidence from chemical structural studies of organic matter fractions in acid forest floor solutions. Org Geochem, 1994b, 21: 51-66
    
    [39] Guo Mingxin, Chorover Jon. Transport and fractionation of dissolved organic matter in soil column. Soil Science. 2003,168(2): 108-118
    
    [40] Hassett J P, Anderson MA. Effects of dissolved organic matter on adsorption of hydrophobic organic compound by river and sewage-borne particles. Water Res, 1982,16: 681-686
    
    [41] Hatzinger P, M Alexander. Effect of aging of chemicals in soil on their biodegradability and extractability[J], Environmental Science Technology, 1995, 29: 537-545.
    
    [42] Herbert BE, Bertsch PM. Characterization of dissolved and colloidal organic matter in soil solution: A review. In: Kelly JM, McFee WWeds. Carbon Forms and Functions in Forest Soils. Madison: SSSA, 1995, 63-88
    
    [43] Homann P S, Grigal D F. Molecular weight distribution of soluble organics from laboratory manipulated surface soils. Soil Sci Soc A m J, 1992, 56:1305-1310.
    
    [44] Hopke P k. Receptor modeling in environmental chemistry[M]. New York: John Wiley and sons, 1985,1-399
    
    [45] Hoss H, Traunspurger W. Effects of dissolved organic matters on the bioconcentration of organic chemicals in aquatic organisms. Chemosphere, 1998, 37 (7): 1335-1362
    
    [46] Huang WZ, Schoenau JJ. Distribution of water-soluble organic carbon in an aspen forest soil. Can J For Res, 1996, 26:1266-1272
    
    [47] Huang Y, Eglinton G, van der Hage ERE, et al. Dissolved organic matter and its parent organic matter in grass upland soil horizons studied by analytical pyrolysis techniques. Eur J Soil Sci, 1998, 49: 1-15
    
    [48] Hwang S, Cutright T J. Statistical implications of pyrene and phenanthrene sorptive phenomena: Effects of sorbent and solute properties. Arch. Environ. Toxicol, 2003, 44: 152-159
    
    [49] Hwang S, Cutright T J. Biodegradability of aged pyrene and phenanthrene in a natural soil[J]. Chemosphere, 2002,47: 891-899.
    
    [50] Kogel-Knabner I, KU Totsche, B Raber. Desorption of Polycyclic Aromatic Hydrocarbons from Soil in the Presence of Dissolved Organic Matter: Effect of Solution Composition and Aging Journal of Environmental Quality, 2000, 29: 906-916
    
    [51] Isam S, Menahem R, Zev G. An independent prediction of the effect of dissolved organic matter on the transport of polycyclic aromatic hydrocarbons[J].J.Contaml Hydr, 2004,75:55-70.
    
    [52] M.Munch J, KU Totsche & K Kaiser. Physicochemical factors controlling the release of dissolved organic carbon from columns of forest subsoils. European Journal of Soil Science, 2002,53(2): 311-320
    
    [53] Jager T, F A Anton Sanchez, B Muijs, et al. Toxic kinetics of polycyclic aromatic hydrocarbons in Eisenia Andrei (oligochaeta) using spiked soil[J]. Environmental Toxicology and Chemistry, 2000,19: 953-961.
    
    [54] Johansson G. Release of organic C from growing roots of meadow fescue. Soil Biol Biochem, 1992,24: 427-433
    
    [55] Johnson D L, Jams K C, Langdon C J, et al. Temporal changes in earthworms availability and extractability of polycyclic aromatic hydrocarbons in soil[J]. Soil Bio Biochem, 2002,34:1363 -1370.
    
    [56] Johnson WP, Amy GL. Facilitated transport and enhanced desorption of polycyclic aromatic hydrocarbon by natural organic matter in aquifer sediments. Environ.Sci Technol, 1995, 29: 807-817
    
    [57] Jones E J, Corgie S C, Mellal A N, et al. Nutritional constraints to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere. Soil Biology and Biochemistry, 2002, 34:859-864
    
    [58] Jones K C, Stratford J A, Waterhouse K S, et al.Increases in the polynuclear aromatic hydrocarbon content of an agricultural soil over the last century [J]. Environment Science & Technology, 1989, 23: 95-101.
    [59] Jones K C. Contaminated trends in soils and crops[J]. Environment Pollution, 1991, 69:311-325.
    
    [60] Jones KC, Stratford JA, Waterhouse KS, Furlong ET, Giger G, Hites RA, Schaffner C, Johnston AE. Increases in the polynuclear aromatic hydrocarbon content of an agricultural soil over the last century. Environ.Sci.Technol, 1989, 23: 95-101
    
    [61] Jota MAT, Hasset J P. Effect of environmental variables on binding of a PCB congener by dissolved humic substances. Environ Tox Chem, 1991,10:483-491
    
    [62] Kai Uwe Totsche and Ingrid Kogel-Knabner. Mobile Organic Sorbent Affected Contaminant Transport in Soil-Numerical Case Studies for Enhanced and Reduced Mobility. Vadose Zone Journal. 2004,3: 352-367
    
    [63] Kaiser K, ZechW. Rates of dissolved organic matter release and sorption in forest soils. Soil Science. 1998,163(9): 714-725
    
    [64] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci, 2000,165: 277-304
    
    [65] Keith LH, Telliard WA. Priority pollutants I: A perspective review. Environmental Science & Technology, 1976,13:416-423
    
    [66] Kelsey J W, B D Kottler, M Alexander. Selective chemical extractants to predict bioavailability of soil-aged organic chemicals[J]. Environmental Science& Technology, 1997, 31: 214-217.
    
    [67] Kogel-Knaber I, Totsche KU. Influence of dissolved and colloidal phase humic substances on the transport of hydrophobic organic contaminants in soils. Phys Chem Earth, 1998. 23 (2): 179-185
    
    [68] Kogel-Knaber I, Totsche KU. Desorption of polycyclic aromatic hydrocarbons from soil in the presence of dissolved organic matters. J Environ Qual, 2000, 21: 906-916
    
    [69] Kottler B D, M Alexander. Relationship of properties of polycyclic aromatic hydrocarbons to sequestration in soil[J]. Environmental Pollution, 2001. 113: 293-298.
    
    [70] Kukonnen J, McCarthy J F, Qikari A. Effects of XAD28 fractions of dissolved organic carbon on the sorption and bioavailability of organic micropollutants. Arch Environ Contam Tox, 1990,19: 551-557
    
    [71] Petruzzelli L, L.Celi, A.Cignetti, F.Ajmone Marsan. Influence of soil organic matter on the leaching of polycyclic aromatic hydroncarbons in soil. Journal of Environmental Science and Health, Part B, 2002,37(3): 187-199
    
    [72] Laegdsmand M, de Jonge L.W, Moldrup P. Leaching of colloids and dissolved organic matter from columns packed with natural soil aggregates. Soil Science. 2005, 170(1): 13-27
    
    [73] Lee S C, Ho K F, Chan L Y, et al. Polycyclic aromatic hydrocarbons (PAHs) and carbon compounds in urban atmosphere of Hong Kong[J]. Atmospheric Environment, 2001,35: 5949-5960.
    
    [74] Leenheer J A, Huffman EW D. Classification of organic solutes in water by using macro reticular resins. Journal Research U S Geol Survey, 1976, 4 (6): 737-751.
    [75] Lise S P, Larsen E H, Larsen P B, et al. Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils[J]. Environ.Sci.Technol, 2002, 36: 3057-3063.
    [76] Alexander.M. Critical review: Aging, bioavailability, and overestimation of risk from environmental pollutants[J]. Environ.Sci.Technol, 2000,54(20): 4259-4265.
    [77] Mackay A A, Gschwend P M. Enhanced concentrations of PAHs in groundwater at a coal tar site. Environ.Sci.Technol, 2001,35:1320-1 328
    
    [78] Mahmood S K, Rao P R. Microbial abundance and degradation of polycyclic aromatic hydrocarbons in soil. Bulletin of Environmental Contamination and Toxicology, 1993,50: 486-49
    
    [79] Marschner B. Sorption of polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in soil. Zeitsch riftfur Pflanz enernah rung und Bod enkunde, 1999,162 (1): 1-14.
    
    [80] Maxin CR, Kegel-Knaber I. Partitioning of polycyclic aromatic hydrocarbons (PAH) to water-soluble soil organic matter. Eur J Soil Sci, 1995,46:193-204
    [81] McCarthy J F, Roberson L E, Burrus LW. Association of benzo[a]pyrene with dissolved organic matter: Prediction of dome from structural and chemical properties of the organic matter. Chemosphere, 1989,19: 1911-1920
    
    [82] McCarthy J F, Williams T M, Liang L, et al. Mobility of natural organic matter in a sandy aquifer. Environ Sci & Tech, 1993, 27(4): 667-676.
    [83] McDowell, Likens. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecological Monographs, 1988, 58(3): 177-195.
    
    [84] Michalzik B, Matzner F. Fluxes and dynamics of dissolved organic nitrogen and carbon in a spruce (Picea abies Karst) forest ecosystem. Eur J Soil Scil, 1999,50: 579-590
    
    [85] Miller-Wegener U. Interaction of humic substances with biota. In: Frimmel FH, Christman RFeds. Humic Substances and Their Role in the Environment. ChichestenJohn Wiley and Sons. 1988,179-192
    
    [86] Morrison DE,BK Robertson, M Alexander. Bioavailability to earthworms of aged DDT, DDE, DDD and Dieldrin in soil[J]. Environmental Science& Technology, 2000, 34: 709-713.
    
    [87] Murphy DV, Macdonald AJ, Stockdale EA, et al. Soluble organic nitrogen in agricultural soils. Biol Fertil. Soils, 2000. 30: 374-387
    
    [88] Nam K, J Y Kim, D Oh. Effect of soil aggregation on the biodegradation of phenanthrene aged in soil[J]. Environmental Pollution, 2003,121:147-151.
    
    [89] Nam K, M Alexander. Relationship between biodegradation rate and percentage of a compound that becomes sequestered in soil[J]. Soil Biology & Biochemistry, 2001, 33: 787-792.
    
    [90] Nam K, N Chung, M Alexander. Relationship between organic matter content of soil and the sequestration of phenanthrene[J]. Environmental Science& Technology, 1998, 32: 3785-3788.
    
    [91] Nanthi S, Bolanl, Domy C, et al. Dynamics and environmental significance of dissolved organic matter in soil. 3rd Australian New Zealand Soils Conference, 5-9 December 2004, University of Sydney, Australia.
    
    [92] Pignatello J.J, B.Xing. Mechanism of slow sorption of organic chemicals to natural particles. Environ.Sci.Technol, 1996, 30:1-11
    
    [93] Pohlman A A, McColl J G. Soluble organics from forest litter and their role in metal dissolution. Soil Sci Soc AmJ, 1988, 52: 265-271.
    
    [94] Quails RG, Haines BL, Swank WT. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology, 1991, 72: 254-266
    
    [95] Raber B, Kogel-Knaber I, Stein C, et al. Partitioning of polcyclic aromatic hydrocarbons to dissolved organic matter from different soils.Chemosphere, 1998, 36 (1): 79-97
    
    [96] Raber B, Kogel-Knaber I. Influence of origin and properties of dissolved organic matter on partition of polycyclic aromatic hydrocarbons.European Journal of soil science, 1997, 48: 443-455
    
    [97] Reid B J, K C Jones, K T Semple. Bioavailability of persistent organic pollutants in soils and sediments - a perspective on mechanisms, consequences and assessment[J]. Environmental Pollution, 2000,108: 103-112.
    
    [98] Richard A B. Distribution patterns of dissolved organic matter fractions in natural waters from eastern Canada. Org Geochem, 1989,14 (1): 97-107.
    
    [99] Robertson B K, M Alexander. Sequestration of DDT and Dieldrin in soil: disappearance of acute toxicity but not the compounds[J]. Environmental Toxicology and Chemistry, 1998,17:1034-1038.
    
    [100] Rockne K J, Shor L M, Youngl Y, et al. Distributed sequestration and release of PAHs in weathered sediment: the role of sediment structure and organic carbon properties[J]. Environment Science & Technology, 2002, 36(12): 2636-2644.
    
    [101] Rost H, A P Ixiibner, M Hasinger, et al. Behavior of PAHs during cold storage of historically contaminated soil samples[J]. Chemosphere, 2002,49:1239-1246.
    
    [102] Schlautman MA, Morgan JJ. Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. Environ.Sci.Technol, 1993,27: 961-969
    
    [103] Scribner S I, T R Benzing, S Sun, et al. Desorption and bioavailability of aged simazine residues ill soil from a continuous comfield[J]. Journal of Environmental Quality, 1992, 21:115-120.
    
    [104] Shen Y H, Sorption of Natural Dissolved Organic Matter on Soil. Chemosphere, 1999,38(7): 1505-1515
    
    [105] Sims R C, Overash M R. Fate of polynuclear aromatic hydrocarbons in soil-plant systems. Residue Reviews, 1983, 88:1-68
    
    [106] Steinberg S.M, J.J.Pignatello, B.L.Sawhney. Persistence of 1,2-dibromoethane in soils: Entrapment in intraparticle pores. Environ.Sci. Technol, 1987, 21: 1201-1208
    
    [107] Sverdrup L E, Jensen J, Krogh P H, et al. Studies on the effect of soil aging on the toxicity of pyrene and phenanthrene to a soil dwelling springtail[J]. Environ Toxicol Chem, 2002, 21: 489-492.
    
    [108] Thornton SF. Attenuation of landfill leach ate by U K Triassic sandstone aquifer materials II .Sorption and degradation of organic pollutants in laboratory columns. J Contain Hydro, 2000,43: 355-383
    
    [109] Totsche KU, Danzer J, Kogel-Knaber I. Dissolved organic matter-enhanced retention of polycyclic aromatic hydrocarbons in soil miscible displacement experiments. J Environ Qual, 1997,26:1090-1100
    
    [110] Weber W.J, P.M.McGinley, L.E.Katz. A distribution reactivity model for sorption by soils and sediments. Conceptual basis and equilibrium assessments. Environ.Sci.Technol, 1992, 26:1955-1962
    
    [111] White J C, J W Kelesey, P B Hatzinger, et al. Factors affecting sequestration and bioavailability of phenanthrene in soils [J]. Environmental Toxicology and Chemistry, 1997,16: 2040-2045.
    
    [112] Wild S R, Jones K C. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source in inventory and budget[J]. Environment Pollution,1995,101(1): 91-108
    
    [113] Wilson S C, Jones K C. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons: a review. Environmental pollution, 1993, 81: 229-249
    
    [114] Witt G. Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea[J]. Mar Pollut Bull, 1995, 31(4-12): 237-248.
    
    [115] Wu S.C, P.M.Gschwend. Sorption kinetics of hydrophobic organic compound to natural sediments and soils. Environmental Science Technology, 1986,20: 717-725
    
    [116] Wu Ying, Zhang Jing, Li Dao-ji, et al. Polycyclic aromatic hydrocarbons in the sediments of the Yalujiang Estuary, North China[J]. Marine Pollution Bulletin, 2003, 46(5): 619-625.
    
    [117] Xing B. Sorption of naphthalene and phenanthrene by soil humic acid. Environmental Pollution, 2001, 111: 303-309
    [118]Yanzheng Gao,Wei Xiong,Wanting Ling et al.Impact of exotic and inherent dissolved organic matter on sorption of phenanthrene by soils.Journal of Hazardous Materials.2007,140(1-2):138-144
    [119]Yong-Jin K,Masahiro O.Leaching characteristics of polycyclic aromatic hydrocarbons(PAHs) from spiked sandy soil[J].Chemosphere,2003,51:387-395.
    [120]Yongkoo S,Linda SL.Effect of dissolved organic matters in treated effluents on sorption of atrazine and prometryn by soils.Soil Sci Soc,2000,64:1976-1983
    [121]Yuejin Zhang,Shuquan Zhu,Ru Xiao,et al.Vertical transport of polycyclic aromatic hydrocarbons in different particle-size fractions of sandy soils.Environ Geol,2008,53:1165-1172
    [122]Yunker M B,Macdonald R W,Vingarzan R,et al.PAHs in the Fraser River basin:A critical appraisal of PAH ratios as indicators of PAH source and composition[J].Organic Geochemistry,2002,33:489-515.
    [123]Zeng Y E,Vista C L.Organic pollutants in the coastal environment of San Diego California.I.Source Identification and assessment by compositional indices of polycyclic aromatic hydrocarbons[J].Environmental Toxicology and Chemistry,1997,16(2):179-188.
    [124]Zheng G J,Man B K W,Lam J C W,et al.Distribution and sources of polycyclic aromatic hydrocarbons in the sediment of a subtropical coastal wetland[J].Water Research,2002,36:1457-1468.
    [125]Zheng M,Fang M.Particle-associated polycyclic aromatic hydrocarbons in the atmosphere of Hong Kong[J].Water,Air,and Soil Pollution,2000,117:175-189.
    [126]Zsolnay A.Dissolved humus in soil waters.In:Piccolo Aed.Humic Substances in Terrestrial Ecosystems.Amsterdam,1996,171-223
    [127]汤国才.气溶胶中多环芳烃的污染源识别方法.环境科学研究,1993,6(3):37-41
    [128]李生.环境中苯并[a]芘卫生标准的研究进展.中国环境科学,1983,3:73-75
    [129]李久海,潘根兴.外加芘在2种水稻土及其团聚体培养中的老化及其可浸提性和生物有效性的变化.环境科学,2005,26(6):131-137
    [130]黄擎,李发生,陈洪.多环芳烃在黑土有机-矿质复合体中的老化行为.北京理工大学学报,2007,27(10):93-940
    [131]陈同斌,陈志军,土壤中溶解性有机质及其对污染物吸附和解吸行为的影响.植物营养与肥料学报,1998,4(3):201-210
    [132]赵劲松,张旭东,袁星,王晶.土壤溶解性有机质的特性与环境意义.应用生态学报.2003,14(1):126-130
    [133]李睿,屈明.土壤溶解性有机质的生态环境效应.生态环境2004,13(2):271-275
    [134]杨佳波,曾希柏.水溶性有机物在土壤中的化学行为及其对环境的影响.中国生态农业学报.2007,15(5):206-212
    [135]黄泽春,陈同斌,雷梅.陆地生态系统中水溶性有机质的环境效应.生态学报,2002,22(2):258-269
    [136]凌婉婷,徐建民,高彦征,汪海珍.溶解性有机质对土壤中有机污染物环境行为的影响.应用生态学报.2004,15(2):326-330
    [137]丁应祥,朱琰等,有机污染物在土壤2水体系中的分配理论.农村生态环境,1997,(2):42-45
    [138]徐玉芬,吴平霄,党志.水溶性有机质对土壤中污染物环境行为影响的研究进展.矿物岩石地球化学通报.2007,26(3):307-313
    [139]张天彬,杨国义,万洪富等.东莞市土壤中多环芳烃的含量、代表物及其来源.土壤,2005,37:265-271
    [140]葛成军,安琼,董元华,等.南京某地农业土壤中有机污染分布状况研究[J].长江流域资源与环境,2006,15(3):361-365.
    [141]郝蓉,宋艳暾,万洪富,等.南亚热带典型地区农业土壤中多环芳烃和有机氯农药研究[J].生态学报,2007,27(5):2021-2029.
    [142]杨国义,张天彬,高淑涛,等.珠江三角洲典型区域农业土壤中多环芳烃的含量分布特征及其污染来源[J].环境科学,2007,28(10):2350-2354.
    [143]刘泓,熊德中,方惠云.福州市郊蔬菜地土壤汞、铜污染综合评价[J].中国生态农业学报,2005,13(4):147-149.
    [144]魏为兴.福州市主要蔬菜基地土壤重金属的影响评价[J].福建地质,2007,26(2):100-107.
    [145]鲁如坤主编.土壤农业化学分析法.北京:中国农业科技出版社,1999,12-1
    [146]葛成军,安琼,董元华.钢铁工业区周边农业土壤中多环芳烃(PAHs)残留及评价[J].农村生态环境,2005,21(2):66-69,73.
    [147]章海波,骆永明,黄铭洪,等.香港土壤研究Ⅲ.土壤中多环芳烃的含量及其来源初探[J].土壤学报,2005,42(6):936-941.
    [148]陈静,王学军,陶澍,等.天津地区土壤多环芳烃在剖面中的纵向分布特征[J].环境科学学报,2004,24(2):286-290
    [149]王静,朱利中.空气中多环芳烃的污染源研究.浙江大学学报(理学版)[J],2001,28(3):302-308.
    [150]倪进治,骆永明,魏然.土壤有机和无机组分对多环芳烃环境行为影响的研究进展.土壤,2006,38(5):559-564
    [151]熊毅等.土壤胶体(第二册).北京:科学出版社,1985
    [152]倪进治,骆永明,张长波.长江三角洲地区土壤环境质量与修复研究Ⅲ.农业土壤不同粒径组分中菲和苯并[a]芘的分配特征.土壤学报,2006,43(5):717-722
    [153]王帅杰,朱坦.持久性有机污染物在土壤中的老化行为研究进展.城市环境与城市生态,2003,16(3):39-42
    [154]占新华,周立祥,杨红等.水溶性有机物与多环芳烃结合特征的红外光谱研究.土壤学报,2007,44(1):47-53
    [155]Sequarisa JM,Lavorentib A,Burauela P.Equilibrium partitioning of ~(14)C-benzo(a)pyrene and ~(14)C-benazolin between fractionated phases from an arable topoil.Envrion.Pollut,2005,135:491-500

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700