低强度超声波/碱对剩余污泥破解机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能量密度为0.05W·mL-1和pH范围3.0~12.0条件下,研究了超声波辐射以及热作用对污泥溶胞效果的影响,考察剩余污泥的溶胞效果与溶胞条件的关系。通过环境扫描电镜(SEM)技术分析了超声波、酸、碱以及热作用对污泥中微生物的形态影响以及各种预处理方法对污泥溶胞效果的影响关系。同时考察了低强度超声波对溶解性化学需氧量(SCOD)的声化降解作用,探索了超声波在协同碱对污泥溶胞过程中的作用机理。
     结果表明,溶解性化学需氧量(SCOD)、溶解性磷(SP)和溶解性糖(SA)含量随pH增大均呈先降后升趋势,而且强碱性环境有利于污泥溶胞。超声波辐射可显著提高污泥溶胞率,而且pH越大超声波辐射改善的溶胞效率越高,SCOD随pH呈指数增长趋势。实验条件下,SCOD随超声波时间均呈线性关系,超声波/碱协同污泥溶胞为一级反应。另外,溶胞效果SCOD数据随污泥浓度呈线性增加。依据上述规律,提出了污泥超声波碱协同溶胞的4参数数学模型SCCD=k0 exp(k1pH2+k2pH)Cs(t+k3)并通过54组试验数据,应用非线性优化技术得到模型参数,该数学模型回归指数R2为0.872。为了对超声波/碱污泥溶胞技术中经济成本的分析,也研究了污泥浓度以及pH对耗碱量的数学模型及其参数。利用数学模型可视化地分析了剩余污泥溶胞条件和污泥浓度对溶胞效果和成本影响关系,并采用等高线技术分析了溶胞效果与溶胞成本相互关系,明确了超声波/碱剩余污泥溶胞优化规律和方向。低强度超声波的机械作用和热效应在协同碱对剩余污泥溶胞中的主要作用是分散污泥颗粒、改善碱在污泥颗粒缝隙中传质速率、强化碱与剩余污泥细胞的化学反应、以及促进剩余污泥胞外物质的脱附溶解,而超声波声化降解作用可以忽略。
     超声波/碱的协同溶胞过程机理和效果的研究,以及数学模型的建立和分析为改善剩余污泥溶胞效果、降低溶胞成本,为污泥源头减量化技术的探索和创新提供了实验和理论依据。
The effect of ultrasonic irradiation with energy density of 0.05 W·mL-1 and thermal action on activated sludge cell lysis under pH ranging from 3.0 to 12.0 has been studied experimentally in detail. The relationships between efficiencies and conditions of cell lysis were also studied. Through environmental scanning electron microscope (SEM), the effects of ultrasound, acid, alkaline and thermal action on the microorganism shape in sludge were analysised. In this paper, the biodegradation action of low intensity ultrasound on SCOD was investigated. And the breakage mechanism of activated sludge by the combination action of low intensity ultrasound and alkaline was also studied.
     The results indicated that the concentrations of soluble chemical oxygen demand (SCOD), soluble phosphor (SP) and soluble polysaccharide (SA) reduced with pH first, and then increased. Strong alkaline circumstance would benefit for cell lysis. Ultrasonic irradiation could largely improve the efficiency of cell lysis, moreover, the higher the pH, the higher the lysis efficiency enhanced by ultrasonic treatment, and SCOD increased exponential with pH. Under the conditions of experiment, the contents of SCOD increased linearly with time. Cell lysis by ultrasonic/alkaline combined treatment was first order reaction. Also the increasing of effect of cell lysis (SCOD) was linear along with the of the sludge content. Based on the above principles and 54 groups of experimental data, a mathematic model with 4 parameters and index of regression of 0.872, describing the relationships between SCOD and pH, irradiation time and the sludge concentration, has been obtained using no-linear optimization method. In order to analysis the cost of cell lysis, the relationship between the amount of alkaline consumed and pH and sludge concentration, has also been obtained using no-linear optimization method. Based on the above mathematical models, using matlab software and the contour line technique, the relationships between operation conditions and cell lysis efficiencies and cost were visually analyzed. Some useful information for the optimization of cell lysis by ultrasound/alkaline was presented. The mechanical and thermal effects of low intensity ultrasound, in the coordination of alkaline are to disperse the sludge particles, improve the mass transfer of alkaline in sludge and strengthen chemical reaction between alkaline and sludge, as well as accelerate the desorption and the dissolution of extracellular polymeric substances, but the biodegeneration effect of low density ultrasonic wave may be neglected.
     Studying the breakage mechanism and efficiencies of activated sludge by the combination action of low intensity ultrasound and alkaline, and establishing and analyzing mathematical model which have provided the experimental and the theory basis for improving the efficiency of cell lysis, reducing the cost, and the exploration and the innovation of sludge source reduction technologies.
引文
[1]尹军,谭学军.污水污泥处理处置与资源化利用[M].北京:化学工业出版社,2005
    [2]何岩,周恭明.剩余污泥减量化技术的研究发展[J].环境技术,2004,(1):39-42
    [3]张雷,洪瑛,李昭,等.城市污水处理的污泥减量技术[J].市政技术,2005,23(5):314-317
    [4]梁鹏,黄霞,钱易.污泥减量化技术的研究进展[J].环境污染治理技术与设备,2003,4(1):44-52
    [5]张雷,余光.浅谈污泥减量技术[J].中国资源综合利用,2005,(6):24-28
    [6]张自杰.排水工程(下册)[M].北京:中国建筑工业出版社,1999.353-354.
    [7]王治军,王伟.热水解预处理改善污泥的厌氧消化性能[J].环境科学,2005,26(1):68-71
    [8]王治军,王伟.剩余污泥的热水解实验[J].中国环境科学,2005,25(Suppl):56-60
    [9]Wang Q H, Fujisaki K,Ohsumi Y, et al. Enhancement of dewaterability of thickened waste activated sludge by freezing and thawing treatment[J]. Journal of Environmental Science and Healt,2001,36(7):1361-1371
    [10]Choi H B, Hwang K Y, Shin E B. Effects on anaerobic digestion of sewage sludge pretreatment[J]. Water Science and Technology,1997,35(10):200-207
    [11]Nah I W, Kang Y W, Hwang K Y, et al. Mechanical pretreatment of waste activated sludge for anaerobic digestion process [J]. Water Research,2000, 34(8):2362-2368
    [12]汪群慧,刘建丽,艾恒雨,等.提高污泥厌氧消化效率的溶胞预处理技术[J],黑龙江大学自然科学学报,2005,22(5):614-618
    [13]戴前进,方先金,邵辉煌.城市污水处理厂污泥厌氧消化的预处理技术[J].中国沼气,2006,25(2):11-14
    [14]Scheminske A, Krull R, Hempel D C. Oxidative treatment of a wastewater stream from a molasses processing using ozone and advanced oxidation technologies[J]. Science and Engineering,1997,12(2):157-168
    [15]Sohn K D, Neppolian B, Choi, H. Effect of soil organic matter (SOM) and soil texture on the fatality of indigenous microorganisms in intergrated ozonation and biodegradation[J]. Journal of Hazardous Materials,2008,150(3):809-817
    [16]王琳,王宝贞,张相忠.利用臭氧氧化实现污泥减量[J].中国给水排水,2003,19(5): 38-40
    [17]Azize A. Enzymatic treatment effects on dewaterability of anaerobically digested biosolids-I:Performance evaluations[J]. Process Biochemistry,2005,40(7):2427-2434
    [18]Barjenbruch M, Kopp low O. Enzymatic, mechanical and thermal pre-treatment of surplus sludge[J]. Advances in Environmental Research,2003,7(20):715-720
    [19]Sears K J, Alleman J E, Gong W L. Feasibility of using ultrasonic irradiation to recover active biomass from waste activated sludge [J]. Journal of Biotechnology, 2005,119(4):389-399
    [20]Gronroos A, Kyllonen H, Korpijarvi K, et al. Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion[J]. Ultrasonics Sonochemistry,2005,12(1-2):115-120
    [21]Yu G H, He P J, Shao L M, et al. Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment[J]. Wat Res.,2008,42(6-7):1644-1650
    [22]Onyeche T I, Schlafer O, Bormann H, et al. Ultrasonic cell disruption of stabilised sludge with subsequent anaerobic digestion [J]. Ultrasonics,2002,40(1-8): 31-35
    [23]Wang Q H, Kuninobu M, Kakimoto K, et al. Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment[J]. Journal of Biotechnology,1999, 68(3):309-313
    [24]Yasui H, Shibata M. An Innovative Approach to Reduce Excess Sludge Production in the Activated-Sludge Process [J]. Water Science and Technology,1994, 30:11-20
    [25]傅大放,蔡明元,华建良,等.污水厂污泥微波处理试验研究[J].中国给水排水,1999,15(6):56-57
    [26]闵怀.污泥脱水和干燥新技术——微波加热工艺简评[J].环境污染与防治,1992,14(3):40-41
    [27]林楚娟,孙水裕,方明中,等.超声波技术在污泥减量化中的应用研究现状[J].广东化工,2007,34(5):40-42
    [28]杜功焕,朱哲民,龚秀芹.声学基础[M].南京:南京大学出版社,2001
    [29]冯若,李化茂.声化学及其应用[M].合肥:安徽科学技术出版社,1992
    [30]袁易全.近代超声原理与应用[M].南京:南京大学出版社,1996
    [31]Jean D S. Reduction of microbial density level in sewage sludge through pH adjustment and ultrasonic treatment[J]. Water Science and Technology,2000,42(9): 97-102
    [32]张宁宁,吴胜举,程欣.论述超声处理污泥的影响因素[J].能源环境保护,2007,21(1):6-9
    [33]王芬.剩余污泥超声破解的性能与机理研究[D].天津大学,2004
    [34]曹秀芹,陈珺,唐臣,等.超声处理后剩宗污泥性质变化及分析[J].环境工程,2005,23(5):84-86
    [35]薛玉伟,季民,李文彬.超声破解污泥影响因素分析[J].环境工程学报,2006,1(6):118-122
    [36]曾晓岚,龙腾锐,丁文川,等.低能量超声波辐射提高好氧污泥活性研究[J].2006,22(5):88-91
    [37]王芬,季民.剩余污泥超声破解性能研究[J].农业环境科学学报,2004,23(3):584-587
    [38]王芬,季民.污泥超声破解预处理的影响因素分析[J].天津大学学报,2005,38(7): 649-653
    [39]龙腾锐,蒋洪波,丁文川,等.不同工况的低强度超声波处理对活性污泥活性的影响[J].环境科学,2007,28(2):392-295
    [40]马守贵,许红林,吕效平,等.超声波促进处理剩余活性污泥中试研究[J].化学工程,2008,36(2):46-49
    [41]沈劲锋,殷绚,谷和平,等.超声与阳离子型聚丙烯酰胺联合作用对剩余活
    性污泥脱水的影响[J].化学工业与工程技术,2005,26(6):22-25
    [42]Gronroos A, Kyllonen H, Korpijarvi K, et al.Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion[J]. Ultrasonics Sonochemistry,2005,12(1-2):115-120
    [43]李绍锋,王宏杰,王雪芹,等.超声波树脂联用法提取活性污泥中的胞外聚合物[J].安全与环境学报,2006,6(5):11-13
    [44]左社强,唐志坚,等.超声波技术在环境保护领域中的应用[J].环境科学与技术,2003,26:82-84
    [45]曹秀芹,陈珺.超声波技术在污泥处理中的研究及发展[J].环境工程,2002,20(4): 23-25
    [46]Uwe Neis. Ultrasound in water, wastewater and sludge treatment[J]. Water 21,2000,21(4):36-39
    [47]Chiu, Ying-Chih, Chang, et al. Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion[J]. Water Science and Technology,1997,36(11):155-162
    [48]Schlafer O, Sievers M., Klotzbucher H, et al. Improvement of biological activity by low energy ultrasound assisted Bioreactors[J]. Ultrasonics,2000,38(8):711-716
    [49]杨虹,王芬,季民,等.超声与碱耦合作用破解剩余污泥的效能分析[J].环境污染治理技术与设备,2006,7(5):78-81
    [50]Chang C N, Ma Y S, Lo C W. Application of oxidation-reduction potential as a controlling parameter in waste activated sludge hydrolysis[J]. Chemical Engineering Journal,2002,90(3):273-281
    [51]Rocher M, Roux G, Goma G, et al. Excess sludge reduction in activated sludge process by integrating biomass alkaline heat treatment[J]. Water Science and Technology,2001,44(2-3):437-444
    [52]Neyens E, Baeyens J, Creemers C. Alkaline thermal sludge hydrolysis[J]. Journal of Hazardous Materials,2003,97(1-4):295-314
    [53]Woodard S E, Wudasch R F. Hydrolysis/thickening/filtration process for the treatment of waste activated sludge[J]. Water Science and Technology,1994, 30(3):29-38
    [54]Feijco G, Soto M, Mendez R, et al. Sodium inhibition in the anaerobic digestion process[J]. Enzyme andMicrobial Technology,1995,17(2):180-188
    [55]Penaud V, Delgenes J P, Moletta R. Thermo-chemical pretreatment of a microbial biomass:influence of sodium hydroxide addition on solubilization and anaerobic biodegradability[J]. Enzyme and Microbial Technology,1999,25(3-5):258-263
    [56]孙文田,谢忠雷,赵晓波.剩余污泥的吸附特性及其在污水处理中的应用[J].工程技术,2008,402:71-73
    [57]刘雪粉,俞云良,陆向红,等.超声波应用于吸附/脱附过程的研究进展[J].化工进展,2006,25(6):639-645
    [58]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998
    [59]国家环保局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,1998
    [60]Zhang G M, Yang J, Liu H Z, et al. Sludge ozonation:Disintegration, supernatant changes and mechanisms [J]. Bioresource Technology,2009,100 (3): 1505-1509
    [61]韦林,刘绍根,倪丙杰,等.污泥吸附性能的研究[J].工业用水与废水,2005,36(1): 38-40
    [62]何锡文.近代分析化学教程,高等教育出版社,2005.25-26
    [63]肖本益,刘俊新.污水处理系统剩余污泥碱处理融胞效果研究[J].环境科学,2006,27(2):319-323

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700