光电催化氧化处理水中的邻苯二甲酸二甲酯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境激素类有机污染物是一类影响及破坏生物体内分泌系统、神经系统和生殖系统的化学物质,其具有毒性大、结构稳定、较难降解等特点。因此寻求高效廉价的处理工艺已成为目前环境工程领域研究的热点。基于此,本研究开发了新颖的TiO_2/Ni光电催化氧化(PECO)工艺体系来处理水中的有机环境激素类物质-邻苯二甲酸二甲酯(DMP)。
     本文采用微波辅助法制备了TiO_2/Ni光电极,并优化得到最佳制备工艺为:微波反应体系温度90℃,微波辐照时间30min,n(H+)/n(Ti)=1:1,浸渍-提拉速率1.0mm/s,提膜15层,采用40℃恒温干燥箱作为层间干燥方式。采用X射线衍射(XRD)、扫描电镜(SEM)、傅里叶红外光谱仪(FT-IR)等结构分析方法对制备的光电极进行了表征,结果表明,微波辅助法制得的TiO_2溶胶具有完整的锐钛矿晶型,且在泡沫镍基体表面形成了连续、均匀的纳米膜。
     以自制的镍基二氧化钛(TiO_2/Ni)为光阳极,纤维状石墨毡材料(GF)为光阴极,饱和甘汞电极(SCE)为参比电极组建了TiO_2/Ni PECO工艺体系,以降解DMP为模型反应,通过实验获得此工艺体系的最佳运行参数:当紫外光强为42.6μW/cm2 ,DMP初始浓度为15mg/L时,外加偏转电压1.5V,曝氧速率40mL/min,光电极有效面积为4cm2 ,溶液pH值为6.0。在此条件下,DMP的去除率可达80%以上。
     进一步研究实验结果表明,TiO_2/Ni PECO体系对DMP有较高的矿化降解性能,矿化率达45.5%。且该体系光电之间存在协同效应。
     本文还研究探讨了TiO_2/Ni PECO工艺降解反应动力学和HO·的生成规律,通过研究各反应条件对降解动力学的影响,确定了反应级数和反应动力学常数。得到总反应速率常数公式为
     并确定了当DMP初始浓度一定时,影响TiO_2/Ni PECO氧化速率各因素的强弱排序为:催化剂面积A>紫外光强I>曝氧速率O_2>外加偏转电压V。HO·的生成规律实验证明了TiO_2/Ni PECO工艺较常见的TiO_2光催化工艺具有更强的氧化能力,本文研究结果为难降解的环境激素类物质提供了一种行之有效的处理方法。
The danger of environmental hormone organisms that can destroy incretory、neural and genital system is terrible, and it is difficult to be degraded because of its longer stay time and higher toxicity. Photo catalysis of TiO_2 is applied in the treatment of water or wastewater, particularly in toxic wastewater treatment for its performance. With the aggravation of environmental pollution and enhancement of environmental consciousness, it is time to develop a highly effective treatment to water or wastewater. Based on the above problems, TiO_2/Ni photoelectrocatalytic oxidation (PECO) system was designed and its application in Dimethy Phthalate (DMP) treatment was studied in this research.
     Nanostructured TiO_2 porous film supported on nickel was prepared through microwave process. The optimum preparation parameters were as follows: microwave temperature 90℃, heating time 30min, n(H+)/n(Ti)=1:1, impregnation-pulling velocity 1.0mm/s, TiO_2-coated 15 layers and each layer was dried at 40℃in constant temperature ovens. XRD、SEM and FTIR Experimental results showed that TiO_2 crystal phase was mainly anatase,and nano-size film coated on the porous Ni surface equably.
     A PECO system was designed with the TiO_2/Ni photoelectrode as anode, GF (Graphite Felt) was used as cathode and SCE(Saturated Camel Electrode) was used as reference electrode. The technical parameters of this system were optimized. Under 42.6μW/cm~2 UV-A irradiation strength and 15mg/L DMP concentration, the optimum parameters were as follows: 1.5V voltage, 40mL/minO_2, 4cm2 TiO_2/Ni electrode and 6.0 pH value. Under the optimal conditions,degradation of DMP was up 80%.
     Experimental results showed that TiO_2/Ni PECO system and had a high mineralization rate.Mineralization of DMP could be 45.5%.Furthermore,current and UV-A irradiation in this system had a cooperation effect which enhances the degradation to pollutant.
     Kinetics and HO·generation of this TiO_2/Ni PECO system were studied based on the above experiments. The experimental results determined Kinetics orders and constants. And get a formula of total rate constant:
     If the initial concentration of DMP is a constant,The order of the effects sorted from strongness to weakness is: .The experiment of HO·proved that main oxide was HO·and degradation of DMP was mainly caused by it. This paper provided an effective disposal approach for the endocrine disruptor compounds.
引文
1 Hoffmanm.M.R, Martin.S.T, Choi.W. et al. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1995):69-96
    2 He.C, Xiong.Y, Chen.J. Photoelctrochemicals performance of Ag-TiO2/ITO film and photoelectrocatalytic activity towards the oxidation of organic pollutants. J. Photochem. & Photobio. A: Chem. 157(2003):71-79
    3 Li.X.Z,Li.F.B, Yang.C.L. Photocatalytic activity of WOx-TiO2 under visible light irradiation. J. Photochem. & Photobio. A: Chem. 141(2001): 209-217
    4 Ji.M, Jin.L.N, Fu.J.F. Potential bias on the photoelectrocatalytic degradation of fulvic acid. Environ. Sci. 25(2006):145-148
    5 Li.X.Z. and Liu.H. Photocatalytic oxidation using a new catalyst-TiO2 Microsphere-for water and wastewater treatment. Environ. Sci.Technol. 37(2003):3989-3994
    6 Li.J.Q, Li.L.P, Zheng.L. Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcinations method. Electrochim. Acta. 51(2006):4942-4949
    7石爱军,李振声,庄树春等.废水中有机污染指标监测方法的选择[J].中国环境监测, 2002, 18(2):4 -7
    8宋明,詹滨秋.海水中溶解有机碳的测定[J].海洋湖沼通报, 1992, (1):2 1-2 8
    9金鹏康,王晓昌.水中天然有机物的臭氧氧化处理特性[J].环境化学, 2002, 21(3):2 60-2 65
    10 Trapido.M. Ozonation an advanced oxidation process of polycylicaromatic hydrocarbons in aqueous solutions - akinetic study[J]. Environ Technol, 1995, 16:7 29-7 40
    11傅云娜,徐光环.碱性高锰酸钾法测定海水COD的影响因素研究[J].海洋通报, 1997, 16(5): 44-4 7
    12徐学仁,张志忠.海水COD测量的分光光度法研究[J].海洋环境科学, 2003, 22(3):6 1-6 3
    13 Hardwick.T.J. The free radical mechanism in the reactions of hydrogen peroxide. J. Can. J. Chem., 35(1957):428-434
    14 Weiss.J. Investigation on the radical HO2 in solution. Trans. Faraday Soc., 31(1935):668-674
    15 Hoigne.J, Bader.H. The role of hydroxyl radicao reactions in ozonation processes in aqueous solutions. Water Res., 10(1976):377-384
    16 Bidga.R.J. Consider Fenton chemistry for wastewater treatment. Chem. Eng. Prog. 91 (1995):62–66
    17 Lee.B.D, Hosomi.M. Fenton oxidation of ethanol-washed distillation concentrated benzo(a)pyrene: reaction product identification and biodegradability. Water Research 35 (2001):2314–2319
    18 Arana.J, Rendon.E.T, Rodr?′guez.J.M.D. et al. Highly concentrated phenolic wastewater treatment by the photo-Fenton reaction, mechanism study by FTIR-ATR. Chemosphere 44 (2001): 1017-1023
    19 Kositzi.M, Poulios.I, Malato.S. et al. Campos, A. Solar photocatalytic treatment of synthetic municipal wastewater. Water. Res. 38 (2004):1147-1154
    20 Rosa.M, Pen.O, Engracia.M. et al. Factorial experimental design of winery wastewaters treatment by heterogeneous photo-Fenton process. Water Res. 40 (2006):1561-1568
    21 Beata.T, Antoni.W.M, Michio.I. et al. The kinetics of phenol decomposition under UV irradiation with and without H2O2 on TiO2, Fe- TiO2 and Fe-C- TiO2 photocatalysts. App. Catal. B: Environ. 65 (2006) 86–92
    22 Sabhi.A. and Kiwi.J. Degradation of 2,4-dichlorophenol by immobilized rion catalysis. Water Res. 35(2001):1994-2002
    23 Laat.J. and Gallard.H. Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ. Sci. & Technol. 33(1999):2726-2732
    24 Pellon.G.E. Photochemical reaction of ozone in solution. Adv. Chem. Ser., 219(1989):639-645
    25 Shu.H.Y. and Huang, C.R. Degradation of commercial azo dye in water using ozonation and UVenhanced ozonation process. Chemosphere, 31(1995):3813-3825
    26 Guittonneau.S. The chain reactions between ozone and hydrogen peroxide. J. Ozone Sci. & Eng., 12(1990):73-82
    27 De.K.A, Bhattacharjee.S, Butta.B.K. Kinetics of phenol photooxidation by hydrogen peroxide and ultraviolet radiation. J. Ind. Eng. Chem. Res., 36(1997):3607-3615
    28 Quan.X, Liu.X.T, Bo.L.L. et al. Regeneration of acid orange 7-Exhausted granular activated carbons with microwave irradiation. Water. Res. 38(2004):4484-4490
    29 Wang.C, Yediler.A, Lienert.D. et al. Ozonation of an azo dye C.L. removral black 5 and toxicological assessment of its oxidation products. Chemosphere, 52(2003):1225-1232
    30 Horikoshi.S, Hidaka.H, Serpone.N. Environmental remediation by an integrated microwave/UV-irradiation method-enhanced degradation of rhodamine-B dye in aqueous TiO2 dispersions. Environ. Sci. & Technol. 36 (2002):1357-1366
    31 Mohammadi.M.R, Cordero-Cabrera.M.C, Fray.D.J. et al. Preparation of high surface area titania (TiO2) films and powders using particulate sol-gel route aided by polymeric fugitive agents. Sensors and actuators B: Chem. 120(2006):86-95
    32 Murayama.M, Yamazaki.E, Nishikawa.N. et al. Low-temperature fabrication of TiO2 necking electrode by sol-gel method and its application to dye-sensitized solar cell. J. Japan. Appl. Phys. Part 1: Regular papers brief Commu. & Review papers 45 (2006): 7917-7921
    33陈曦,陈孝云,郭成等.溶胶-凝胶制备工艺对纳米TiO2光催化活性的影响. 6(2006):2813-2816
    34 Zhao.G, Kozuka.H, Lin.H. et al. Sol-gel preparation of TiO1-xVxO2 solid solution film electrodes with conspicuous photoresponce in the visible region. Thin Solid Films 339(1999):123-128
    35 Choi.H, Kim.Y.J, Varma.R.S. et al. Thermally sTablele nanocrystalline TiO2 photocatalysts synthesized via sol-gel methods modified with ionic liquid and surfactant molecules. J. Chem. Mater. 18 (2006): 5377-5384
    36 Sharma.S.D, Singh.D, Saini.K.K. et al. Sol-gel-derived super-hydrophilic nickel doped TiO2 film as active photo-catalyst. Appl. Catal. A: General 314 (2006): 40-46
    37 Kallel.W, Bouattour.S, Kolsi.A.W. Structural and conductivity study of Y andRb co-doped TiO2 synthesized by the sol-gel method. J. Non-Crystalline Solides 352(2006):3970-3978
    38 Michael.L.H, Tian.F. Studies of TiO2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol. J. Electroanal. Chem. 539 (2002):165-172
    39 Yi.J.H, Bernard.C, Variola.F. et al. Characterization of a bioactive nanotextured surface created by controlled chemical oxidation of titanium. Surf. SCi. 600 (2006):4613-4621
    40 Dekker.J, Kolari.K, Puurunen.R.L. Inductively coupled plasma etching of amorphous Al2O3 and TiO2 mask layers grown by atomic layer deposition. J. Vacuum Sci. & Technol. B: 24(2006):2350-2355
    41 Li.C.Z, Shi.L.Y, Xie.D.M. et al. Morphology and crystal structure of Al-doped TiO2 nanoparticles synthesized by vapor phase oxidation of titanium tetrachloride. J. Non-Crystalline Solides 352 (2006):4128-4135
    42 Davila-Martinez.R.E, Cueto.L.F, Sanchez.E.M. Electrochemical deposition of silver nanoparticles on TiO2/FTO thin films. Surf. Sci. 600 (2006):3427-3435
    43 Luca.D, Macovel.D, Teodorescu.C.M. Characterization of titania thin films prepared by reactive pulsed-laser ablation. Surf. Sci. 600 (2006):4342-4346
    44 Eufinger.K, Janssen.E.N, Poelman.H. et al. The effect of argon pressure on the structural and photocatalytic characteristics of TiO2 thin films deposited by d.c. magnetron sputtering. Thin Solid Films 515(2006):425-429
    45 He.C, Li.X.Z, Graham.N. Preparation of TiO2/ITO and TiO2/Ti photoelectrodes by magnetron sputtering for photocatalytic application. Appl. Catal. A: General 305 (2006):54-63
    46 Liao.J.D, Chen.H.J, Chang.C.W. et al. Thin-film photo-catalytic TiO2 phase prepared by magnetron sputtering deposition, plasma ion implantation and metal vapor vacuum arc source. Thin Solid Films 515(2006):176-185
    47 Tamemura.S, Miao.L, Wunderlich.W. et al. Fabrication and characterization of anatase/rutile-TiO2 thin films by magnetron sputtering: a review. J. Sci. & Technol. Adv. Mater. 6(2005):11-17
    48 Xie.Y.B, Li.X.Z. Preparation and characterization of TiO2/Ti film electrodes by anodization at low voltage for photoelectrocatalytic application. J. Appl. Electrochem. 36 (2006):663-668
    49张春光,邵磊,陈建峰等.超重力法制备纳米二氧化钛影响因素的研究.功能材料, 34(2003):662-664
    50 Wang.H.W, Kuo.C.H, Lin.H.C. et al. Rapid formation of active mesoporous TiO2 photocatalysts via micelle in a microwave hydrothermal process. J. Chinese. Environ. Sci. 14 (2006):64-72
    51 Huseyin.S, Marc.A.A. Effect of pH, charge separation and oxygen concentration in photoelectrocatalytic systems: active chlorine production and chlorate formation. Desalination 176 (2005):219-227
    52 Li.J.Q, Li.L.P, Zheng.L. et al. Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcination method. Electrochimica Acta 51 (2006):4942-4949
    53崔斌,杨亚婷,王飞利. TiO2薄膜光催化降解4-(2-吡啶偶氮)间苯二酚的研究.化学研究与应用. 12(2000):394-397
    54 Leng.W.H, Zhang.L, Cheng.S.A. Photocatalytic degradation of p-chloroaniline in water on immobilized TiO2. Environ. Sci. 11(2000):46-50
    55 An.T.C, Xiong.Y, Li.G.Y. Synergetic effect in degradation of formic acid using a new photoelectrochemical reactor. J. Photochem. & Photobio. A: Chem. 152 (2002):155-165
    56 Maria.V.B, Zanoni1.J.J, Marc.A.A. Photoelectrocatalytic degradation of Remazol Brilliant Orange 3R on titanium dioxide thin-film electrodes. J. Photochem. & Photobio. A: Chem.157 (2003): 55–63
    57 Zhan.H, Chen.K, Tian.H. Photocatalytic degradation of acid azo dyes in aqueous TiO2 suspension II. The effect of pH values. Dyes and Pigments. 37(1998):241-247
    58 Fernández.J, Kiwi.J, Baeza.J. et al. Orange II photocatalysis on immobilised TiO2 Effect of the pH and H2O2. Appl. Catal. B: Environ. 48 (2004): 205-211
    59 Park.D.R, Zhang.J, Ikeue.K. et al. Photocatalytic oxidation of ethylene to CO2 on ultrafine powdered TiO2 photocatalysis in the presence of O2 and H2O2. J. Catal. 185(1999):114-119
    60 Park.D.R, Zhang.J, Ahn.B.J, Park.H.S. et al. Photocatalytic oxidation of ethylene to CO2 and H2O on ultrafine powdered TiO2 photocatalysts: effect of the presence of O2 and H2O2 and the addition of Pt. Korean J. Chem. Eng. 18(2001):930–93
    61 Selcuk.H, Zaltner.W, Sene.J.J. Photocatalytic and photoelectrocatalytic performance of 1% Pt doped TiO2 for the detoxification of water. J. Appl. Electrochem. 34(2004):653-658
    62 Cho.K.C, Hwang.K.C, Sano.T. et al. Photocatalytic performance of Pt-loaded TiO2 in the decomposition of gaseous ozone. J. Photochem.& Photobiol.161(2004):155-161
    63 Li.F.B, Li.X.Z. The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere 48 (2002):1103-1111
    64 Li.X.Z, Li.F.B. Surface characterization and photocatalytic reactivity of innovative Ti/TiO2 and Ti/Pt– TiO2 mesh photoelectrodes. J. Appl. Electrochem. 32(2002):203-210
    65 He.C, Shu.D, Xiong.Y. Comparison of catalytic activity of two platinised TiO2 films towards the oxidation of organic pollutants. Chemosphere 63 (2006):183-191
    66 He.C, Li.X, Xiong.Y. et al. The enhanced PC and PEC oxidation of formic acid in aqueous solution using a Cu– TiO2/ITO film. Chemosphere 58(2005):381-389
    67 He.C, Xiong.Y, Chen.J. Photoelectrochemical performance of Ag–TiO2/ITO film and photoelectrocatalytic activity towards the oxidation of organic pollutants. J. Photochem. & Photobio. A: Chem. 157(2003): 71-79
    68 Wang.Y, Jiang.Z.H, Yang.F.J. Effect of Fe-doping on the pore structure of mesoporous titania. Mater. Sci. & Eng B: Solid State Mater. for Adv. Technol. 134 (2006):76-79
    69 Trapalis.C.C, Keivanidis.P, Kordas.G. et al. TiO2(Fe3+) nanostructured thin films with antibacterial properties. Thin Solid Films 433(2003):186-190
    70 Li.X.Y, Yue.P.L. Kutal CSynthesis and photocatalytic oxidation properties of iron doped titanium dioxide nanosemiconductor particles. J. New J. Chem. 27(2003):1264-1269
    71 Su.C.C, Chen.C.C, Tsai.C.S. et al. Photochemistry of monolayer CH3I on Ag-Covered TiO2 (110) surface. J. Japan. Appl. Physics Part 1-Regu. Papers Brief Commun. & Review Papers 45(2006):7845-7853
    72 Orlov.A, Chan.M.S, Jefferson.D.A. et al. Photocatalytic degradation of water-soluble organic pollutants on TiO2 modified with goldnanoparticles. Environ. Technol. 27(2006):747-752
    73 Xu.C.K, Killmeyer.R, Gray.M.L. et al. Enhanced carbon doping of n-TiO2 thin films for photoelectrochemical water splitting. Electrochem. Commun. 8(2006):1650-1654
    74 Ekou.T, Vicente.A, Lafaye.G. et al. Bimetallic Rh-Ge and Pt-Ge catalysts supported on TiO2 for citral hydrogenation I. Preparation and characterization of the catalysts. Appl. Catal. A: General 314(2006):64-72
    75 Ekou.T, Vicente.A, Lafay.G. et al. Bimetallic Rh-Ge and Pt-Ge catalysts supported on TiO2 for citral hydrogenation II. Catalytic properties. Appl. Catal. A: General 314(2006):73-80
    76 Morikawa.T, Irokawa.Y, Ohwaki.T. Enhanced photocatalytic activity of TiO2-xNx loaded with copper ions under visible light irradiation. Appl. Catal. A: General 314(2006):123-127
    77 Panpranot.J, Kontapakdee.K, Praserthdam.P. Selective hydrogenation of acetylene in excess ethylene on micron-sized and nanocrystalline TiO2 supported Pd catalysts. Appl. Catal. A: General 314(2006):1228-133
    78 Zhou.M.H, Yu.J.G, Cheng.B. Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. J. Hazard. Mater. 137(2006):1838-1847
    79 Kalevaru.V.N, Benhmid.A, Radnik.J. et al. Effect of Sb loading on Pd nanoparticles and its influence on the catalytic performance of Sb-Pd/TiO2 solids for acetoxylation of toluene. J. Catal. 243(2006):25-35
    80 Menard.L.D, Xu.F.T, Nuzzo.R.G. et al. Preparation of TiO2-supported Au nanoparticle catalysts from a Au-13 cluster precursor: Ligand removal using ozone exposure versus a rapid thermal treatment. J. Catal 243(2006): 64-73
    81 Kang.M, Choi.D.H, Choung.S.L. Methyl orange removal in a liquid photo-system with nanometer sized V/TiO2 particle. J. Indu. Eng. Chem. 11(2005):240-247
    82 Sahoo.C, Gupta.A.K, Pal.A. Photocatalytic degradation of crystal Violet (CI Basic Violet 3) on silver ion doped TiO2. Dyes and Pigments 66(2005):189-196
    83 Toma.S.H. and Toma, H.E. Versatile electrochromic displays based on TiO2 nanoporous films modified with triruthenium clusters. Electrochem.Commun. 8(2006):1628-1632
    84 Morikawa.T, Irokawa.Y, Ohwaki.T. Enhanced photocatalytic activity of TiO2-xNx loaded with copper ions under visible light irradiation. Appl. Catal. A: General 314(2006):123-127
    85曹亚安,孟庆巨,宋庆.苯封四聚苯胺/TiO2/ITO薄膜电极光致界面电荷转移.高等学校化学学报, 26(2005):1677-1681
    86 Okada.M, Yamada.Y, Yoshimura.K. Change in the chemical and electronic properties of TiO2/SnO2: F stacked-layers induced by the photocatalytic reaction. Surf. Sci. 600(2006):4385-4389
    87 Al-Kahlout.A, Pawlicka.A, Aegerter.M. Brown coloring electrochromic devices based on NiO-TiO2 layers. Solar Energy Mater. Solar Cells 90(2006):3583-3601
    88 Udovic.M, Valant.M, Jancar.B. et al. Phase formation and crystal-structure determination in the Bi2O3-TiO2-TeO2 system prepared in an oxygen atmosphere. J. Amer. Ceramic Society 89(2006):3462-3469
    89 Hao.Y.Z, Lu.J.A, Cai.C.L. Photoelectrochemical studies on TiO2-ZnO composite nanostructure electrodes. J. Chem. Chinese Universities 27(2006): 1953-1957
    90 Schimmoeller.B, Schulz.H, Pratsinis.S.E, et al. Ceramic foams directly-coated with fame-made V2O5/TiO2 for synthesis of phthalic anhydride. J. Catal 243(2006):82-92
    91 Li.Y. and Wu.C.Y. Role of moisture in adsorption, photocatalytic oxidation, and reemission of elemental mercury on a SiO2-TiO2 nanocomposite. Environ. Sci & Technol 40(2006): 6444-6448
    92黄行九,叶刚等.新型复合电极对偶氮染料分子的光催化降解.化学物理学报. 16(2003):390-394
    93 Lee.J.C, Kim.M.S, Kim.B.W. Removal of paraquat dissolved in a photoreactor with TiO2 immobilized on the glass-tubes of UV lamps. Water Res. 32(2002) 1776-1782
    94 Leng.W.H, Zhu.W.C, Ni.J. Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode. Appl. Catal. A: General 300 (2006): 24-35
    95冷文华,张昭,成少安.光电催化降解苯胺的研究-外加电压的影响,环境科学学报. 21(2001):710-714
    96 Chih.H.S, Tse.C.C. Kinetics and Mechanism of Photoelectrochemical Oxidation of Nitrite Ion by Using the Rutile form of a TiO2/Ti Hotoelectrode with Electric Field Enhancement. Ind Eng. Chem. Res., 37(1998):4027-4035
    97符小荣,张校刚,宋世庚. TiO2/Pt/Glass纳米薄膜的制备及对可溶性燃料的光电催化降解.应用化学, 14(1997):77-79
    98 Vinodgopal.K, kamat.P.V. Enhanced rates of photocatalytic degradation of an Azo-dye using SnO2/TiO2 coupled semiconductor thin films. Environ. Sci. & Tech. 29(1995):841-845
    99程沧沧,邓南圣,吴峰等.光电催化降解邻苯二甲酸二乙酯的研究.分子催化19(2005):42-46
    100 Yeber.M.C, Freer.J, Martinez.M. Bacterial response to photocatalytic degradation of 6-chlorovanillin. Chemosphere, 41(2000):1257-1261
    101益群,史载峰,徐南平.光催化膜反应器用于亚甲基兰的降解.南京化工大学学报21(1999):49-52
    102 Herrmann.J.M, Matos.Juan. Solar photocatalytic degradation of 4- dichlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension. Catal. Today 54(1999):255-265
    103 Hisashi.H. Sonophotocatalytic decomposition of water using TiO2 photocatalyst. Ultras. Sonochem. 8(2001):55-58
    104 Lee.J.M, Kima.M.S. Photodegradation of acid red 114 dissolved using a photo-Fenton process with TiO2. Dyes and Pigments 56(2003):59-67
    105 Li.X.Z, Liu.H.S. Development of an E-H2O2/TiO2 Photoelectrocatalytic Oxidation System for Water and Wastewater Treatment. Environ. Sci. & Technol. 39(2005) :4614-4620
    106 Bandala.E.R, Gelover.S, Leal.M.T. et al.Solar photocatalytic degradation of Aldrin. Catal. Today 76(2002):189-199
    107 Mahmoodi.N.M, Arami.M, Limaee.N.Y. Photocatalytic degradation of triazinic ring-containing azo dye (Reactive Red 198) by using immobilized TiO2 photoreactor: Bench scale study. J. Hazard. Mater 133(2006):113-118
    108 Du.Y.K. and Rabani.J. Flocculation-Induced homolysis of hydrogen peroxide in aqueous colloid solution of titanium dioxide nanoparticles. J. Phys. Chem. B:110(2006):6123-6128
    109 Rincon.A.G and Pulgarin.C. Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water. Appl. Catal. B: Environ. 63(2006):222-231
    110 Xia.Q.B, Li.Z, Xi.H.X. et al. Activation energy for dibenzofuran desorption from Fe3+/TiO2 and Ce3+/TiO2 photocatalysts coated onto glass fibres. Adsorp. Sci & Technol. 23(2005):357-366
    111 Mahmoodi.N.M., Arami.M, Limaee.N.Y. et al. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J. Colloid and interface Sci. 295 (2006):159-164
    112 Hong.S.H, Isii.H, Touge.M. et al. Investigation of chemical mechanical polishing of GaAs wafer by the effect of a photocatalyst. Key Eng. Mater. 291-292(2005):381-384
    113 Mahmoodi.N.M, Arami.M, Limaee.N.Y. et al. Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst. J. Chem. Eng. 112 (2005):191-196
    114 Dominguez.J.R, Beltran.J, Rodriguez.O. Vis and UV photocatalytic detoxification methods (using TiO2, TiO2/H2O2, TiO2/O-2, TiO2/S2O82-, O-2, H2O2,S2O82-, Fe3+/ H2O2 and Fe (3+)/ H2O2/C2O42-) for dyes treatment. Catal. Today 101(2005):389-395
    115 Lee.S.M, Kim.Y.G, Cho.I.H. Treatment of dyeing wastewater by TiO2/ H2O2/UV process: Experimental design approach for evaluating total organic carbon (TOC) removal efficiency. J. Environ. Sci and Heal. Part A: Toxic/Hazard. Subs. & Environ. Eng. 40(2005):423-436
    116 Irmak.S, Kusvuran.E, Erbatur.O. Degradation of 4-chloro-2-methylphenol in aqueous solution by UV irradiation in the presence of titanium dioxide. Appl. Catal. B:Environ 54(2004): 85-91
    117 Martyanov.I.N, Savinov.E.N, Parmon.V.N. Comparative study of efficiency of photooxidation of organic contaminants in water solutions in various photochemical and photocatalytic systems .1. Phenol photooxidation promoted by hydrogen peroxide in a flow reactor. J. Photochem. & Photobio. A: Chem. 107(1997):227-231
    118 Chen.T.F, Doong.R.A, Lei.W.G. Photocatalytic degradation of parathion inaqueous TiO2 dispersion: The effect of hydrogen peroxide and light intensity. Water Sci. Technol. 37(1998):187-194
    119 Sakthivel.S, Shankar.M.V, Palanichamy, M. Photocatalyti decomposition of leather dye - Comparative study of TiO2 supported on alumina and glass beads. J. Photochem. & Photobio. A: Chem. 148(2002): 153-159
    120 Chen.J.S, Liu.M.C, Zhang.J.D. Photocatalytic degradation of organic wastes by electrochemically assisted TiO2 photocatalytic system. J. Environ. Management 70 (2004):43-47
    121 Herrera-Melian.J.A, Rendon.E.T, Rodriguez.J.M.D. et al. Incidence of pretreatment by potassium permanganate on hazardous laboratory wastes photodegradability. Water Res. 34(2000):3967-3976
    122 Christensen.P.A, Curtis.T.P, Egerton.T.A. et al. Photoelectrocatalytic and photocatalytic disinfection of E. coli suspension by titanium dioxide. Appl. Catal. B Environ. 41(2003), 371-386.
    123 Yang.J, Chen.C.C, Ji.H.W. et al. Mechanism of TiO2-Assisted Photocatalytic Degradation of Dyes under Visible Irradiation: Photoelectrocatalytic Study by TiO2-Film Electrodes. J. Phys. Chem. B 2005, 109(2005):21900-21907
    124 Leng.W.H, Zhang.Z, Zhang.J.Q. et al. Investigation of the Kinetics of a TiO2 Photoelectrocatalytic Reaction Involving Charge Transfer and Recombination through Surface States by Electrochemical Impedance Spectroscopy. J. Phys. Chem. B 109(2005):15008-15023
    125 Egerton.T.A, Janus.W, Morawski.A.W. New TiO2/C sol–gel electrodes for photoelectrocatalytic degradation of sodium oxalate. Chemosphere 63(2006): 1203-1208
    126 Walder.G, Pourmodji.M, Bauer.R. et al. Photoelectrocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes. Chemosphere 50(2003):989-998
    127 Christensen.P.A, Egerton.T.A, Kosa.S.A.M. et al. The photoelectrocatalytic oxidation of aqueous nitrophenol using a novel photoelectrochemical reactor. J. Appl. Electrochem. 35(2005):683–692
    128 S?onia.M. A. J, Jeosadaque.J.S. Photoelectrocatalytic treatment of p-nitrophenol using Ti/TiO2 thin-film electrode. J. Photochem. & Photobio. A: Chem.174 (2005):71-75
    129程沧沧,吴峰,万昆.光电催化降解双酚A的研究.华中师范大学学报(自然科学版), 39(2005):365-369
    130 Xie.Y.B. Photoelectrochemical application of nanotubular titania photoanode Electrochimica Acta 51(2006):3399-3406
    131 Mintsouli.N, Philippidis.I.P. Photoelectrochemical characterisation of thermal and particulate titanium dioxide electrodes. J. Appl. Electrochem. 36(2006):463-474
    132 Christensen.P.A, Egerton.T.A, Kosa.S.A.M. The photoelectrocatalytic oxidation of aqueous nitrophenol using a novel reactor. J. Appl. Electrochem. 35(2005):683-692
    133 Osugi.M.E, Umbuzeiro.G.A, De Castro.F.J.V. et al. Photoelectrocatalytic oxidation of remazol turquoise blue and toxicological assessment of its oxidation products. J. Hazard. Mater 137(2006):871-877
    134 Yang.S.G, Quan.X, Li.X.Y. et al. Photoelectrocatalytic treatment of pentachlorophenol in aqueous solution using a rutile nanotube-like TiO2/Ti electrode. Photochem. & photobio. Sci. 5(2006):808-814
    135 Li.M.C. and Shen.J.N. Photoelectrochemical oxidation behavior of organic substances on TiO2 thin-film electrodes. J. Solid State electrochem. (2006):980-986
    136 Egerton.T.A, Christensen.P.A, Onoka.B. et al. Photoelectrocatalysis by titanium dioxide for water treatment. J. International Environ. & pollu. 27 (2006):2-19
    137 Yang.S.G, Liu.Y.Z, Sun.C. Preparation of anatase TiO2/Ti nanotube-like electrodes and their high photoelectrocatalytic activity for the degradation of PCP in aqueous solution. Appl. Catal. A: General 301(2006):284-291
    138 Selcuk.H, Sarikaya.H.Z, Bekbolet.M. et al. Bromate formation on the non-porous TiO2 photoanode in the photoelectrocatalytic system. Chemsphere 62(2006):715-721
    139 Zainal.Z. and Lee.C.Y. Properties and photoelectrocatalytic behaviour of sol-gel derived TiO2 thin films. J. Sol-gel Sci. & Technol. 37(2006):19-25
    140 Jiang.Y.L, Liu.H.L, Wang.Q.H. et al. Determination of hydroxyl radicals in TiO2/Ti photoelectrocatalytic oxidation system using Fe(phen)(3)(2+) spectrophotometry. J. Environ. Sci.-China 18(2006):158-161
    141 Yang.J.Chen, C.C, Ji.H.W. et al. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: Photoelectrocatalytic study by TiO2-film electrodes. J. Phys. Chem. B:109 (2005):21900-21907
    142 Osugi.M.E, Umbuzeiro.G.A, Anderson.M.A. et al. Degradation of metallophtalocyanine dye by combined processes of electrochemistry and photoelectrochemistry. Electrochimica Acta 50(2005):5261-5269
    143 Wilson.G.J, and Will.G.D. Photoelectrochemical measurements of a heterosupramolecular system under visible light irradiation. Photochem. & Photobio. Sci. 4 (2005):602-608
    144 McMurray.T.A, Byrne.J.A, Dunlop.P.S.M. et al. Photocatalytic and electrochemically assisted photocatalytic oxidation of formic acid on TiO2 films under UVA and UVB irradiation. J. Appl. Electrochem. 35(2005): 723-731
    145 Quan.X, Yang.S.G, Ruan.X.L. et al. Preparation of titania nanotubes and their environmental applications as electrode. Environ. Sci. & Technol. 39 (2005): 3770-3775
    146 Fan.C.M, Gu.X.D, Liang.Z.H, et al. Preparation and photoelectrocatalytic properties of TiO2 thin film electrode. Rare metal Mater. & Eng. 34 (2005):409-412
    147 Jiang.Y.L, Liu.H.L, Lu.C.M. Kinetics of photoelectrocatalytic degradation of humic acid using B2O3 center dot TiO2/Ti photoelectrode. J. Environ. Sci-China 17(2005): 208-211
    148 Zanoni.M.V.B, Sene.J.J, Selcuk.H. et al. Photoelectrocatalytic production of active chlorine on nanocrystalline titanium dioxide thin-film electrodes. Environ. Sci. & Technol. 38(2004):3203-3208
    149 McMurray.T.A, Byrne.J.A, Dunlop.P.S. et al. MIntrinsic kinetics of photocatalytic oxidation of formic and oxalic acid on immobilised TiO2 films. Appl. Catal. A: General 262(2004):105-110
    150 Sakthivel.S, Shankar.M.V, Palanichamy.M et al. Photocatalytic decomposition of leather dye - Comparative study of TiO2 supported on alumina and glass beads. J. Photochem. & photobio. A: General 148(2002): 153-159
    151 Ohtani B, Zhang S, Hanada J et al. J photo chem PhotobilA:Chem[J],1992,64:223~230
    152 Yu XiBin, Wang Guihua, LuoYanqing et al. Chemical Research and Application [J],2000,12(1):14~19
    153 Tao Yuewu, Zhao Mengyue, Chen Shifu et al. Chinese Journal of Catalysis [J],1997,18(4):345~347
    154丁震,冯小刚,陈晓东等.金属泡沫镍负载纳米TiO2光催化降解甲醛和VOCs.[J].环境科学,2006 09-1814-06:1814~1819
    155吴立群,黄培,徐南平等.高校化学工程学报(Wu L Q ,Huang P , Xu N P et al . J Chem Eng Chin Univ) 1999 ,13 (3) : 205
    156颜晓莉,史惠祥,雷乐成.负载型二氧化钛光电催化降解苯酚废水的反应动力学.化工学报,2004,55:426-433
    157 H.Maria and H.Sandra. Photoelectrocatalytic degradation of diazo dye on nanostructured WO3 electrode. Electrochimica Acta,2005,50:5278-5291
    158 J.L.Cao, W.H.leng, J.Q,zhang. Adsorption behavior and photooxidation kinetics of OH- at TiO2 thin film electrodes. Acta. Phys. Chim. Sin., 2004, 20:735-739
    159韩鹤友,何治柯,曾云鹗.钌(Ⅱ)邻菲咯啉偶合化学发光法测定Fenton反应产生的羟自由基.分析化学. 27(1999):890-893
    160邰超,邹洪,谷学新等.电化学方法简便测定芬顿反应产生的羟基自由基.分析化学.31(2003):121-124
    161杨敏,龚泰石,柯跃华等.酸性氧化电位水中羟自由基的顺磁共振测定法.环境与健康杂志. 23(2006):552-555
    162 Kaur.H, Hallinell.B. Aromatic hydroxyl lation of phenylalanine as an assay for hydroxyl radicals.Measurement of hydroxyl radical formation from ozone and inblood from premature babies using improved HPLC methodology. Analy. Biochem. 220(1994):11-15
    163 Yang.X.F, Guo.X.Q. Investigation of theanthracene nitroxide hybrid molecule as a probe for hydroxyl radicals. The Royal Society of Chemistry, Analyst. 126(2001):1800-1804

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700