微波强化Fenton混凝处理青霉素生产废水工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青霉素生产废水中含有大量的抗生素,发酵残余基质及营养物、溶媒提取过程的萃取液、水中不溶性抗生素的发酵滤液、发酵产生的微生物丝菌体,具有COD值高(10000~80000mg/L)、BOD/COD (B/C)值低、难降解的特点,能够抑制微生物的生长,给废水处理带来极大的困难。
     本文针对青霉素生产废水中可生化性差、难降解的问题,研究开发了酸析—微波强化Fenton混凝处理工艺,并对微波强化Fenton混凝体系的反应机制进行了初步探讨。
     在酸析预处理工艺中,调整pH为4-5,静沉过滤后测定溶液中COD值,去除率达到70%左右(由172587mg/L降至49912mg/L)。将酸析处理后出水进行微波-Fenton混凝预处理,考察各工艺参数对去除效果的影响,获得最佳工艺条件如下:在初始pH为4.5-5的条件下,加入4900 mg/L Fe_2(SO_4)_3,1300 mg/L H_2O_2,在微波功率为300W的条件下辐照6min,,COD和UV_(254)的去除率分别达到57.53%和55.06%。B/C从初始的0.165提高到0.470。
     对微波在处理工艺中的作用进行了系统研究,比较相同反应条件下微波-Fenton、水浴-Fenton、常温-Fenton处理青霉素生产废水的效果,实验表明微波-Fenton体系处理后COD去除率略有提高,达到57%。B/C为0.47,较水浴-Fenton体系高出0.177,较常温-Fenton高出0.094,微波的加入有利于提高Fenton混凝体系的处理效果。
     利用高效液相色谱考察反应前后分子量分布变化,大分子有机物和小分子有机物均得到大量去除。采用透射电子显微镜考察絮体结构,所有的颗粒之间连接得非常好,并呈网状结构。采用Ferron逐时络合光度法分析不同反应条件下Fe~(3+)水解产物的形态分布。实验结果表明,在功率为300W的条件下,产生Fe(c)的含量最多,达到72.61%,说明适当的微波作用有利于促进体系中高聚态铁的生成。对照微波与水浴加热下铁的水解产物,发现在相同温度条件下,微波作用产生更多的Fe(c),较水浴条件下高出25%。此外,不同pH下铁的水解形态有很大差异,强酸条件下铁的水解产物以Fe(a)为主,随着pH的增大,Fe(c)的含量增多。
There are a large deal of antibiotics exist in penicillin production wastewater, as well as residual substances and nutrient of fermentation, extracting liquid of solvent extraction, insoluble antibiotics of fermentation filtrate and microorganism cells generated in fermentation. This kind of wastewater is characterized by high COD (10000~80000 mg/L), low BOD5/COD (B/C) ratio and bad biodegradability, which is hard to be treated due to its inhabitation to the growth of microorganisms.
     Under the context, the present work focused on the investigation of microwave enhanced Fenton-coagulation process for the pre-treatment of high concentration penicillin production wastewater. It is aimed to optimize the operating conditions and explore the mechanism of the effluence of microwave on coagulation system.
     During the experimental runs of acid precipitation, by adjusting the pH in the range of 4 to 5, the load of COD in supernatant decreased from 172587 mg/L to 49912.5 mg/L, resulting in 70% of COD removal was achieved. Then, the effluent was treated by means of Fenton-coagulation. The operating parameters of microwave enhanced Fenton-coagulation process for treatment of penicillin production wastewater were examined, and the optimal conditions were as follows: microwave power was 300 W, radiation time was 6 min, initial pH was 4.45 to 4.5, the dosages of Fe_2(SO4_)_3 and H_2O_2 were 4900 mg/L and 1300 mg/L, respectively. Within these conditions used, the removal ratio of COD and UV_(254) were 57.53% and 55.06%, respectively. Meanwhile, the value of B/C ascended from 0.165 to 0.470. By comparing the results of microwave-Fenton, water bath-Fenton and ambient temperature-Fenton for the treatment of such wastewater under the identical conditions, the B/C of microwave-Fenton was 0.470, which was higher than both of two other processes (0.293 for water bath-Fenton and 0.376 for ambient temperature-Fenton). Therefore, it was believed that microwave was favorable to the enhancement of removal efficiency of Fenton-coagulation system.
     The variation of molecular weight distribution between pre and post treatment were monitored by means of high performance liquid chromatograph. The result suggested that a large amount of both macromolecular and micromolecular organic compounds were eliminated. The structure of flocs was observed with transmission electron micrograph. It displayed a fine linkage between each particle to form a layer-like structure. A ferron-complexation timed spectrophotometric method was used to examine the hydrolysates of Fe~(3+) at different reaction conditions. When microwave power was set at 300 W, the generated Fe(c) reached its maximum, accounting for 72.61% of total ferric, suggesting that proper microwave power was successful to promote the formation of high polymeric ferric species. On the basis of comparative results of microwave and water bath heating, at the same temperature, Fe(c) generated in the former procedure was 25% more than that of latter. Furthermore, the distribution of ferric hydrolysis species was of evident difference at different pH. In the strong acid, the main product is Fe(a). As the increase of pH, the amount of Fe(c) increased gradually.
引文
1 K. Kummerer, A. Al-Ahmad and V. Mersch. Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simpletest. Chemosphere. 2000, 40(9): 701~710
    2 H.J. Stan, T. Heberer. Pharmaceuticals in the aquatic environment. Analysis. 1997, 25: 20~23
    3 D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.R. Barber and T. Herbert. Buxton. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36: 1202~1211
    4 B.H. Sorensen, S.N. Nielsen, P.F. Lankzky, F. Ingerslev, H.C.H. Lützhoft and S.E. Jorgensen. Occurrence, fate and effects of pharmaceutical substances in the environment–A review. Chemosphere. 1998, 36: 357~393
    5 H. Roman, T. Thomas, H. Klaus, et al. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225(14): 109~118
    6 O. Jones, N. Voulvoulis and J. Lester. Aqiuatic environmental assessment of the top 25 English prescription pharmaceuticals. Water. Res. 2005, 36(5): 5013~5022
    7舒为群.抗生素滥用对生态环境及人类安全的威胁.环境与健康杂志. 2003, 17(3): 26~27
    8 S. Hans, A.B. Richard, J.J. David, et al. Toxicity classification and evaluation of four pharmaceuticals classes: antibiotics, antineoplastics, cardiovascular, and sex hormones. Toxicology. 2000, 203(27): 27~40
    9 H. Thomas. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment:a review of recent research data. Toxicol. Lett. 2002, 131(1): 5~17
    10 X. S.Miao, F. Bishay, M. Chen and C.D. Metcalfe. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ. Sci. Technol. 2004, 38 (13): 3533~3541
    11 K. Ohlsen, T. Ternes, G. Werner, U. Wallner, D. Loffler, W. Ziebuhr, W. Witte and J. Hacker. Impact of antibiotics on conjugational resistance gene transfer in Staphylococcus aureus in sewage. Environ. Microbiol. 2003, 5 (8): 711~716
    12 E. Zuccato, S. Castiglioni and R. Fanelli. Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. J. Hazard. Mater. 2005, 122 (3): 205~209
    13 A.W. Brittan, H.S. Val, D. Frank, et al. Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. Environ. Sci. Techol. 2003, 37(9): 1713~1719
    14 S.M. Christa, M. Eva, J.F.S Marc, et al. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt valley watershed, Switzerland. Environ. Sci. Techol. 2003, 37(24): 5479~5486
    15中华人民共和国国家标准污水综合排放标准(GB8978-1996)
    16 K. Kümmerer, A. Al-Ahmad and V. Mersch-Sundermann. Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere. 2000, 40: 701~710
    17李道棠,赵敏钧,杨虹等.深井曝气-ICEAS技术在抗菌素制药废水处理中的应用.给水排水. 1996, 22(3): 21~24
    18胡晓东,胡冠民,景有海. SBR法处理高浓度土霉素废水的试验研究.给水排水. 1995, 21(7): 21~22
    19简英华. ORBAL氧化沟处理合成制药废水.重庆环境科学. 1994, 16(1): 22~24
    20 O.S. KusDu, D.T. Sponza. Performance of anaerobic baffled reactor (ABR) treating synthetic wastewater containing p-nitrophenol. Enzyme. Microb. Tech. 2005, 36 (7): 888~895
    21 N. Tapas, S.N. Kaul. Anaerobic pre-treatment of herbalbased pharmaceutical wastewater using fixed-film reactor with recourse to energy recovery. Water. Res. 2001, 35(2): 351~362
    22买文宁,周荣敏.厌氧复合床处理抗生素废水技术.环境污染治理技术与设备. 2002, 3(5): 23~27
    23刘军,郭茜,翟永彬.厌氧水解生物法处理城市污水的研究. 2000, 26(7): 10~13
    24 E.U. Cokgor, I.A. Alaton, O. Karahan, S. Dogruel and D. Orhon. Biological treatability of raw and ozonated penicillin formulation effluent. J. Hazard. Mater. B. 2004, 116: 159~166
    25吴敦虎,李鹏,王曙光等.混凝法处理制药废水的研究.水处理技术. 2000, 26 (1): 53~56
    26饶义平,唐文浩.复合絮凝处理抗生素废水对其抑菌效力的影响.上海环境科学. 1996, 15(8): 37~40
    27刘国信,叶康钰,夏恒霞.制药废水中回收金霉素的研究.水处理技术. 1995, 21(2): 85~88
    28 S.Z. Li, X.Y. Li and D.Z. Wang. Membrane (RO-UF) filt rationfor antibiotic wastewater treatment and recovery of antibiotics. Sep. Purif. Technol. 2004, 34(1-3): 109~114
    29朱安娜,吴卓,荆一凤等.纳滤膜分离洁霉素生产废水的试验研究.膜科学与技术. 2000, 20(4): 47~50
    30黄昱,李小明.高级氧化技术在抗生素废水处理中的应用.工业水处理. 2006, 26(8): 13~17
    31 I.A. Balc?o?lu, M. Otker. Treatment of pharmaceutical wastewater containing antibiotics by O_3 and O_3 / H_2O_2 processes. Chemosphere. 2003, 50: 85~95
    32 H. Tekin, O. Bilkay, S.S. Ataberk, T.H. Balta, I.H. Ceribasi, F.D. Sanin, F.B. Dilek and U. Yetis. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater, J. Hazard. Mater. B. 2006, 136: 258~265
    33 N. Kulik, M. Trapido, A. Goi, Y. Veressinina and R. Munter. Combined chemical treatment of pharmaceutical effluents from medical ointment production. Chemosphere. 2008, 70: 1525~1531
    34 S. Suarez, J.M. Lema and F. Omil. Pre-treatment of hospital wastewater by coagulation-flocculation and flotation. Bioresource. Technol. 2009, 100: 2138~2146
    35 M. Boroski, A.C. Rodrigues, J.C. Garcia, L.C. Sampaio, J. Nozaki and N. Hioka. Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries. J. Hazard. Mat. 2009, 162: 448~454
    36 V.L. Snoeyink, F. Jenkins.水化学.蒋展鹏,刘希曾译.北京:中国建筑工业出版社. 1990, 126-130
    37汤鸿霄,钱易,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理(上卷:水体颗粒物).北京中国环境科学出版社. 2000, 15-24
    38 P.C. Hiemenz.胶体与表面化学原理.北京:北京大学出版社. 1986, 21-27
    39 D. Hallvard. Optimized particle separation in the primary step of wastewater treatment. Wat. Sci. Technol. 1998, 37(10): 43~53
    40郑怀礼,龙腾锐,舒型武.论可持续发展战略与水污染控制系统规划.世界科技研究与发展. 2001, 23(6): 26~30
    41国家环境保护局.混凝剂与絮凝剂.北京:中国环境科学出版社. 1991
    42姚重华.混凝剂与絮凝剂.北京:中国环境科学出版社. 1999
    43王九思编著.水处理化学.北京:化学工业出版社. 2002
    44顾夏声等.水处理工程.清华大学出版社. 1985: 62~67
    45 W. Stumm, J.J. Morgen. Chemical aspects of coagulation. J. AWWA. 1962, 54: 971~977
    46 H.H. Hahn, W. Stumm. Kinetics of coagulation with hydrolyzed aluminum. J. Coliloid. Inter. Sci. 1968, 28: 133~138
    47 V.K. LaMer, T.W. Healy. Adsorption-flocculation reaction of macro-molecules at the solid-liquid interface. Rev. Pure. Appl. Chem. 1963, 13: 112~115
    48 J. Lyklema. Colloidal stability as a dynamic phenomenon. Pure. Appl. Chem. 1980, 52: 1221~1226
    49 R.F. Packham. Some studies of the coagulation of dispersed clays with hydrolyzed salts. J. Colloid. Sci. 1965, 20: 81~85
    50徐晓军.化学絮凝剂作用原理.北京:科学出版社. 2005, 76-80
    51马青山,贾瑟.絮凝化学和絮凝剂.北京:中国环境科学出版社. 1988, 121-124
    52 L. István. On the type of bond developing between the aluminum and iron(III) hydroxide and organic substances. Water. Sci. Technol. 1993, 24: 242~252
    53周勤,肖锦.给水原水处理中的混凝技术.工业水处理. 1999, 19(2): 3~5
    54李风亭.我国混凝剂硫酸铁的技术发展现状.工业水处理. 2002, 22(1): 5~8
    55 J.Q. Jiang, N.J.D. Graham, C. Harward. Comparison of polyferric sulfate with other coagulants for the removal of algae and algae-derived organic matter. Water. Sci. Technol. 1993, 27: 221~230
    56 C. Ovenden, H. Xiao. Flocculation behavior and mechanisms of cations inorganic microparticles/polymer systems. Colloid. Surface. A. 2002, 197: 225~234
    57苏藤,陆中兴.混凝剂的研究应用于开发动向(一).净水技术. 2000, 18(3): 7~9
    58 J. Burgess.祝振鑫等译.溶液中的金属离子.北京:原子能出版社. 1978, 30-32
    59 C.M. Flynn. Hydrolysis of in organic iron(III) salts. Chem. Rev. 1984, 84: 31~41
    60 B.O.A. Hedstrom. The hydrolysis of the iron(III) ion Fe~(3+). Arkiv. Kemi. 1953, 5: 1~12
    61 G. Biedermann, P. Schindler. On the solubility product of precipitated iron(III) hydroxide. Acta. Chem. Scandinavica. 1957, 11: 731~740
    62 J.Y. Bottero, A. Manceau, F. Villieras and D. Tchoubar. Structure and mechanisms of formation of FeOOH(Cl) polymers. Langmuir. 1994, 10(1): 816~819
    63 J. Dousma, P.L. De Bruyn. Hydrolysis-pecipitation of iron solutions. II Aging studies and the model for precipitation from Fe(III) nitrate solutions. J. Colloid. Interface. Sci. 1997, 64: 154~170
    64 P.J. Murphy, A.M. Posner and J.P. Quirk. Characterization of partially neutralized ferric perchlorate solutions. J. Colloid. Interface. Sci. 1976, 56: 298~311
    65 R.J. Knight, R.N. Sylva. Precipitation in hydrolysed iron(III) solutions. J. Inorg. Nucl. Chem. 1974, 36:591~597
    66 J.Y. Bottero. Partial hydrolysis of ferric nitrate salt: Structure investigation by dynamic lights cateringand small angle X-rays catering. Langmuir. 1991, 7: 1365~1369
    67 W.J.H.A. Vander, P.L. Bruyu. Formation of colloidal dispersions from supersaturated iron(III) nitrate solutions. I. Precipitation of amorphous iron hydroxide. Colloid. Surface. 1983, 8: 55~78
    68 K.M. Towe, W.F. Bradley. Mineralogical constitution of colooidal hydrous ferric oxides. J. Colloid. Interface. Sci. 1967, 24: 384~392
    69 R.R.C. Domingo, M. Blesa. Morphological properties ofα-FeOOH,γ-FeOOH and Fe3O4 obtained by oxidation of aqueous Fe(III) solutions. J. Colloid. Interface. Sci. 1994, 165: 244~252
    70田宝珍,汤鸿霄. Fe(III)水解过程中无机阴离子的影响作用.环境科学. 1993, 164: 244~252
    71 H. Gallard, J. De Laat. Kinetic modelling of Fe(III) / H2O2 oxidation reaction in dilute aqueous solution using atrazine as a modle organic compound. Water. Res. 2000, 34(12): 3l07~3116
    72 J. De Laat, H. Gallard. Catalytic decomposition of hydrogen peroxide by Fe(n1)in homogeneous aqueous solution: mechanism and kinetic modeling. Environ. Sci. Technol. 1999, 33: 2726~2732
    73 J. De Laat, H. Gallard. Kinetics of Oxidation of Chlorobenzenes and Phenyl-ureas by Fe(II)/H_2O_2 and Fe(III)/H_2O_2. Evidence of Reduction and Oxidation Reactions of Intermediates by Fe(II) or Fe(III). Chemosphere. 2001, 42: 405~413
    74 A.A.F. Gurses. Photo-Fenton-like and photo-Fenton-like oxidation of Procaine Penicillin G formulation effluent. J Photoch. Photobio. A: Chemistry, 2004, 165 (3) :165~175
    75 K. Eakalak, W. Roger. Mineralization and biodegradability enhancement of low level p-nitrophenol in water using Fenton’s reagent. J Environ. Eng. 2005, 131(2): 327~331
    76孙凯,赵娜. Fenton氧化法去除酱油生产废水中焦糖色素的研究.给水排水. 2006, 32: 181~183
    77 J. Yoon, S. Cho, Y. Cho and S. Kim. The characteristics of coagulation of Fenton reaction in the removal of landfill leachate organics. Water Sci. Technol. 1988, 38: 209~214
    78 P. Wang, I.W.C. Lau, H.H.P. Fang and D. Zhou. Landfill leachate treatment with combined UASB and Fenton coagulation. J. Environ. Sci. Health. A. 2000, 35: 1981~1988
    79 I.W.C. Lau, P. Wang and H.H.P. Fang. Organic removal of anaerobically treated leachate by Fenton coagulation. J. Environ. Eng. 2001, 27: 666~669
    80 J.L. Tambosi, M. Di Domenico, W.N. Schirmer, H.J. Jose and R. de FPM Moreira. Treatment of paper and pulp wastewater and removal of odorous compounds by a Fenton-like process at the pilot scale. J Chem Technol Biotechnol. 2006, 81: 1426~1432
    81 O. Primo, A. Rueda, M.J. Rivero and I. Ortiz. An Integrated Process, Fenton Reaction-Ultrafiltration, for the Treatment of Landfill Leachate: Pilot Plant Operation and Analysis. Ind. Eng. Chem. Res. 2008, 47: 946~952
    82金钦汉,戴树珊,黄卡玛.微波化学,北京:科学出版社. 1999, 8-20
    83王剑虹,严莲荷,周申范等.微波技术在环境保护领域中的应用.工业水处理. 2003, 23(4): 18~22
    84 S. Horikoshi, H. Hidaka, N. Serpone. Environmental Remediation by an Integrated Microwave/UV-Illumination Method. 1. Microwave-Assisted Degradation of Rhodamine-B Dye in Aqueous TiO_2 Dispersions. Environ. Sci. Technol. 2002, 36: 1357~1366
    85 J.P. Robinson, C.E. Snape, S.W. Kingman and H. Shang. Thermal desorption and pyrolysis of oil contaminated drill cuttings by microwave heating. J. Anal. Appl. Pyrolysis. 2008, 81: 27~32
    86左春英,丁言镁,王建华.微波的生物非热效应的机理研究.沈阳师范大学学报(自然科学版). 2005, 23(3): 254~257
    87苏跃增,孙晓娟,许晓琴.微波对胶体稳定性的影响.化学世界. 2001, 10: 514~516
    88 A.T. Quitain, H. Daimon, K. Fujie, S. Katoh and T. Moriyoshi. Microwave-Assisted Hydrothermal Degradation of Silk Protein to Amino Acids. Ind. Eng. Chem. Res. 2006, 45: 4471~4474
    89郝苗.微波催化处理连续流染料废水的研究.东北师范大学硕士学位论文. 2002
    90 P. Klán, M. Vavrik. Non-catalytic remediation of aqueous solutions by microwave-assisted photolysis in the presence of H_2O_2. J. Photoch. Photobio. A: Chemistry. 2006, 177: 24~33
    91 T.L. Lai, C.C. Lee. Microwave-enhanced catalytic degradation of phenol over nickel oxide. Applied Catalysis B: Environmental. 2006, 68: 147~153
    92 A. Liazid. Investigation on phenolic compounds stability during microwave-assisted extraction. J. Chromatogr. A. 2007, 1140: 29~34
    93 X. Quan, Y.B. Zhang. Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances. J. Mol. Catal. A-Chem. 2007, 263: 216~222
    94张国宇,王鹏,石岩.微波诱导Fe2O3/ Al_2O_3催化剂催化氧化处理水中苯酚.催化学报. 2005, 26(7): 587~601
    95陶长元等.微波和微波Fenton组合法处理渗滤液的对比.辽宁石油化工大学学报. 2006, 26(4): 18~20
    96 G. Cravotto, S. Di Carlo, B. Ondruschka, V. Tumiatti and C.M. Roggero. Decontamination of soil containing POPs by the combined action of solid Fenton-like reagents and microwaves. Chemosphere. 2007, 69: 1326~1329
    97田宝珍,汤鸿霄.Ferron逐时络合比色法测定Fe(Ⅲ)溶液聚合物的形态.环境化学.1989, 8(4):27~34
    98 J.L. Morais, P.P. Zamora. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates, J. Hazard. Mater. 2005, 123:181~186
    99 B.R. Prasannakumar, I. Regupathi and T. Murugesan. An optimization study onmicrowave irradiated decomposition of phenol in the presence of H2O2. J. Chem. Technol. Biotechnol. 2009, 84: 83~91
    100汤鸿霄.无机高分子絮凝理论与絮凝剂.中国建筑工业出版社. 2006, 17-46
    101 Y. Deng, J.D. Englehardt. Treatment of landfill leachate by the Fenton process. Water. Res. 2006, 40: 3683~3694
    102 S.F. Kang, H.M. Chang. Coagulation of textile secondary effluents with Fenton’s reagent. Water Sci. Technol. 1997, 36: 215~222

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700