生物质热解油分类精制基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质热解油通常是纤维类物料,经过快速热解而直接得到的油状液体,又称为生物油(bio-oil)。然而热解所得的生物油含水量和含氧量高,稳定性差,成分十分复杂,难以直接作为燃料使用。目前国际上对生物油改性提质化学炼制的研究,主要集中在催化加氢和催化裂解两个方面,但都存在设备复杂、催化剂易失活等问题。本文根据生物质裂解油组成成分的不同特性,研究应用固体催化剂反应精馏的方式,将原料油中的亲水组分和疏水组分分别进行加工利用,得到优质性能的燃料油和树脂材料的技术路线,避免了通常条件下的高温高压等苛刻的反应条件,为生物质热解油精制加工利用设计了一条新的工艺路线,并得到如下结果。
     1.本研究所用的生物油是一种黑色易流动、具有刺激性气味的液体。含水量33%、pH值2.82、热值14.3 MJ/Kg、密度1.16 g/cm~3、粘度18.5 mm~2/s。平均分子量2042。当储存期超过三个月,会出现分层现象。
     2.采用溶胶-凝胶共沉淀法制备了具有超强酸性的固体酸酯化催化剂。并优化了制备条件。合成了S_2O_8~(2-)促进的含锆介孔分子筛S_2O_8~(2-)/ZrO_2-MCM-41 (孔径2.7 nm),通过XRD、N2吸附脱附以及FT-IR表征了其结构。结果表明:S_2O_8~(2-)/ZrO_2-MCM-41存在介孔分子筛的特征吸收峰,具有良好的成长有序性和结晶度;比表面积577 m2/g,并具有相对较窄的孔径分布;S_2O_8~(2-)与骨架原子形成了化学键,并增强了其酸性,H。≤-12.76。
     3.首次采用反应精馏的方式对生物质热解油进行了催化改性。在所考察的固体酸催化剂中,含锆介孔分子筛(S_2O_8~(2-)/Zr-MCM-41)具有较高的酯化活性,较佳的工艺条件下轻油收率达21%左右。经过高效液相色谱、GC和FT-IR分析,轻油主要成分是酯类化合物(甲酸甲酯、甲酸乙酯、乙酸甲酯、乙酸乙酯),重油主要是原料油中不溶于水且沸点较高的成分。
     4.对精馏操作产生的废水采用萃取方式进行处理,在所选择的萃取剂中,萃取效果较好的试剂是乙酸乙酯,可以萃取出38.1%的废水中有机物。如果采用萃取剂和活性炭联用的方法,可以萃取出68.0%的废水中有机物。通过GC-MS确定主要是酚类和酯类化合物。
     5.以甲醛、苯酚为原料,盐酸为强酸催化剂、醋酸锌为弱酸盐催化剂,采用分段聚合方式,合成了聚合速度30~40 s、软化点85~95℃的速聚型热塑性酚醛树脂。通过DSC量热分析确证所合成的树脂具有较好的固化活性。通过FT-IR分析表明,所合成树脂具有较高比例的邻位结构。通过TG测定,所合成的树脂热稳定温度<200℃。
     6.以生物油疏水组分代替10~40%苯酚,进行高邻位生物基热塑性酚醛树脂的合成。随着生物质热解油用量的增加,通过增加催化剂的用量和反应时间可以调节树脂软化点,但是树脂聚合时间明显增加。通过DSC差热分析、TG热重分析,当使用生物质热解油替代苯酚合成树脂时,树脂加工温度应<200℃。树脂邻位、对位结构通过FT-IR确证。
     本工作为生物质热解油精制提供一个新的选择,为固体酸在生物质热解油的应用提供理论依据。同时为生物质热解油在材料科学方面的研究提供了有益的借鉴。
Biomass pyrolysis oil is a kind of renewable liquid fuel originated from biomass. However, the bio-oil is acidic, viscous, reactive and thermally unstable black liquid. Due to its special properties, many problems arise in its handling and utilization. For possible future use as replacements for hydrocarbon chemical feedstocks and fuels, the oils will require considerable upgrading to improve its fuel characteristics. Currently, most used upgrading techniques are hydrodeoxygenation and catalytic cracking of pyrolysis vapors. However, the yield of upgraded oils is generally low because of the high yields of char, coke and tar. In this work, in order to avoid the problems in hydrodeoxygenation and catalytic cracking of bio-oil, we aim to find another method that would utilization of pyrolysis oils under mild conditions, the obtained results were as followed.
     1. The water content of bio-oil used in this research was 33.0%. The pH value was 2.82. The dynamic viscosity was18.5 mm~2/s, and gross calorific value was 14.3 kJ g~(-1). The average molecular weight was 2042. After 3 months storage, phrase separation was occered.
     2. The mesoporous molecular sieve MCM-41 possesses a hexagonal arrangement of uniformly sized unidimensional mesoporous with diameters 2.7 nm, larger surface area of more than 577 m~2/g, and should therefore be a potential catalyst for the reactions concerned with larger molecule reactants. However, the acidity of MCM-41 is weak and is of low catalytic activity for the reaction using strong acid catalysts. Therefore, enhancing the acidity of MCM-41 is the key to using it as catalysts for the reactions.
     3. S_2O_8~(2-)/ZrO_2-MCM-41 was used as solid acid catalyst in upgrading bio-oil through reactive rectification. The suitable reaction conditions were obtained as follows:catalyst: bio-oil 4% (mass part), reflux ratio 1 : 6, bio-oil : ethanol : hydrogen peroxide(aqueous solution 30%) = 1 : 0.5 : 0.4 (mass ratio). Under above conditions, yield of light oil was about 21.0%(account to original bio-oil). GC and FT-IR analysis showed that light oil contain various ester compounds and the heavy oil was nonviolated compounds in original bio-oil.
     4. The waste water from reactive rectification was treated using ethyl acetate as extraction solvent. It was found out that about 38.1% organic compounds were separated by extraction. We also use active carbon as adsorbent after extraction process. It was determined that 68% organic compounds were separated in total. The separated organic compounds was characterized by GC-MS.
     5. Fast curing novolaks was prepared using HCl and zinc acetate as catalyst through two step manner.cure time of novolaks were range from 30 to 40 s and softening point range from 80℃to 90℃. The structure of novolaks was characterized by DSC and FT-IR.Thermal stability of the resin was characterized by TG.
     6. The possibility of using water insoluble fraction from biomass pyrolysis oil as partial substitute of phenol in synthesis of phenolic novolac under the catalyst of HCl / Zn(AC)_2 has been proved using differential scanning calorimetry(DSC) and fourier transformed infrared spectroscopy(FT-IR). Synthesis of novolac resins with different concentration (10, 20, 30 and 40 wt%) of water insoluble fraction were performed. Curing reaction of synthesized resins with hexamethylenetetramine indicated that in order to obtain cure time of novolak range from 40 to 50 s and softening point range from 85℃to 95℃, the concentration of water insoluble fraction as partial substitute of phenol was below 10%. The structure of novolak was characterized by FT-IR.
     This study provides an alternative method and guidance for solid acid catalyst to be used in bio-oil upgrading. Moreover, these upgrading methods were particularly useful in materials science.
引文
[1] Czernik S, Bridgwater A. V. Overview of Applications of Biomass Fast Pyrolysis Oil Energy & Fuels, 2004, 18 : 590~598
    [2] Elliott D C, Beckman D, Bridgwater A V, et al. Developments in Direct Thermochemical Liquefaction of Biomass: 1983-1990 Energy & Fuels, 1991, 5 : 399~410
    [3] Bridgwater A V, Peacocke G V C. Fast pyrolysis processes for biomass Sustainable and Renewable Energy Reviews, 1999, 4 (1) : 1~73
    [4] Peacocke G V C, Russel P A, Jenkins J D, et al. Physical Properties of Flash Pyrolysis Liquids Biomass Bioenergy, 1994, 7 : 169~178
    [5] Soltes E J, Lin J C K. Hydroprocessing of Biomass Tars for Liquid Engine Fuels[J]. In Progress in Biomass Conversion, 1984, 5: 1~69
    [6] Paul T W, Patrick A H. Analysis of aromatic hydrocarbons in pyrolytic oil derived from biomass Journal of Analyrical and Applied Pyrolysis, 1995, 31 : 15~37
    [7] Piskorz J, Majerski P, Radilein D Conversion of liginins to hyarocabon fuels Energy & Fuels, 1989, 3 : 723~726
    [8] Sheu Y H E, R G Anthony, E J Sohes. Kinetic studies of Upgrading Pine Pyrolytic Oil by Hydrotreatment Feu1 Process Thecho1, 1988, 19 : 31~50
    [9] Gordon D. Love, Colin E. Snape, Andrew D. Carr , et a1. Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis Org. Geochem, 1995, 23(10) : 981~986
    [10] J. Dilcio Rocha, Carlos A. Luengo, Colin E. Snape. The scope for generating bio-oils with relatively low oxygen contents via hydropyrolysis Organic Geochemistry, 1999, 30 : 1527~1534
    [11] Pindoria R. V., Megaritis A., Herod A. A. et al. A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass:effect of catalyst temperature,pressure and catalyst ageing time on product characteristics Fuel, 1998, 77(15) : 1715~1726
    [12] Pindoria R V, Lim J Y, Hawkes J E, et a1. Structural Characterization of Biomass Pyrolysis Tars/Oils from Eucalyptus Wood Wastes: Efect of H2 Pressure and Samples Configuration Fuel, 1997. 76(11): 1013~1023
    [13] Paul T. Williams, Patrick A.Horne. The influence of catalyst type on the composition of upgradedbiomass pyrolysis oils Journal of Analytical and Applied Pyrolysis, 1995, 31 : 39~61
    [14] Adjaye J.D., Bakhshi N.N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil.Part I: Conversion over various catalysts Fuel Processing Technology, 1995, 45 : 161~183
    [15] Paul T. Williams, Nittaya Nugranad. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks Energy, 2000, 25 : 493~513
    [16] Paul T. Williams, Patrick A. Horne. The influence of catalyst regeneration on the composition of zeolite-upgraded biomass pyrolysis oils Fuel, 1995, 74 (12) : 1839~1851
    [17] Adjaye J. D, Bakhshi N. N. Catalytic Conversion Of A Biomass-Derived Oil To Fuels And Chemicals II: Chemical Kinetics, Parameter Estimation And Model Predictions Biomass and Bioenergy, 1995, 8(4) : 265~277
    [18] Park H J, Dong J I, Jeon J K, et a1. Conversion of the pyrolytic vapor of radiata pine over zeolites Journal of Industrial and Engineering Chemistry. 2007, 13(2) : 182~189
    [19] Vitoloa S., Seggiania M., Fredianib P. et a1.Catalytic upgrading of pyrolytic oils to fuel over different zeolites Fuel, 1999, 78 : 1147~1159
    [20] Patrick A. Horne, Paul T. Williams. The effect of zeolite ZSM-5 catalyst deactivation during the upgrading of biomass-derived pyrolysis vapours Journal of Analytical and Applied Pyroylsis, 1995, 34 : 65-85
    [21] Patrick A. Horne, Paul T. Williams. Upgrading of biomass-derived pyrolytic vapours over zeolite ZSM-5 catalyst: effect of catalyst dilution on product yields Fuel, 1996, 75(9) : 1043~1050
    [22] Nokkosmaki M I, Kuoppala E T, Leppamaki E A et a1. Catalytic Conversion of Biomass Pyrolysis Vapours with Zinc Oxide J Anal Appl Pyrolysis, 2000, 55(1) : 119~131
    [23]郭晓亚,颜涌捷.生物质快速裂解油的催化裂解精制化学反应工程与工艺, 2005, 21(3) : 227~233
    [24]郭晓亚,颜涌捷.生物质油精制中失活催化剂的再生及焦炭前驱物分析高校化学工程学报, 2006, 20(2) : 222~226
    [25] Adam J, Blazso M, Moszhros E et al. Pyrolysis of Biomass in the Presence of AI-MCM-41 Type Catalysts Fuel, 2005, 84(12~13) : 1494~l 502
    [26] Park H J, Jeon J K, Jung K Y et al. Catalytic upgrading of bio-oil produced from Japanese larch over MCM-41 Hwahak Konghak, 2007, 45(4) : 340~344
    [27] Antonakou E, Lappas A, Nilsen M et al. Evaluation of various types of Al-MCM-41 materials ascatalysts in biomass pyrolysis for the production of bio-fuels and chemicals Fuel, 2006, 85(14-15) : 2202~2212
    [28] Iliopoulou E. F, Antonakou E. V, Karakoulia S. A et al. Catalytic conversion of biomass pyrolysis products by mesoporous materials: Effect of steam stability and acidity of Al-MCM-41 catalysts Chemical Engineering Journal, 2007, 134(1-3) : 51~57
    [29] Adam J, Antonakou E, Lappas A et al. In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials Microporous and Mesoporous Materials, 2006, 96(1-3) : 93~101
    [30] Cedric B, Andri L, Arievander L. A new synthesis of mesoporous MSU-X silica controlled by a two-step pathway Chem Mater, 2000, 12 : 2902-2913
    [31] Triantafyllidis K S, Iliopoulou E F, Antonakou E V. Hydrothermally stable mesoporous aluminosilicates (MSU-S) assembled from zeolite seeds as catalysts for biomass pyrolysis Microporous and Mesoporous Materials, 2007, 99(1-2) : 132~139
    [32] Vitolo S, Bresei B, Seggiani M et a1. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-regenerating cycles Fuel, 2001, 80 : 17~26
    [33] Srimat T. Srinivas, Aiay K, Dalai, Narendra N. Bakhshi. Thermal and catalytic upgrading of a Biomass-Derived Oil in a dual reaction system The Canadian Journal of Chemical Engineering, 2000, 78 : 343~354
    [34] James P. Diebold, Stefan Czernik. Additives To Lower and Stabilize the Viscosity of Pyrolysis Oils during Storage Energy & Fuels 1997, 11 : 1081~1091
    [35] G. Lopez Juste, J.J. Salva Monfort. Preliminary test on combustion of wood derived fast pyrolysis oils in a gas turbine combustor Biomass and Bioenergy, 2000, 19 : 119~128
    [36] Ikura M, Mirmiran S, Stanciulescu M, Sawatzky H. Pyrolysis liquid-in-diesel oil microemulsions US 5820640, 1998
    [37] Michio I, Maria S, Ed H. Emulsifcation of pyrolysis derived bio-oil in diesel fuel Biomass and Bioenergy, 2003, 24 : 221~232
    [38] Chiaramontia D., Boninia M., Fratinia E. et a1. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines-Part 1: emulsion production Biomass and Bioenergy, 2003, 25 : 85~99
    [39] Chiaramontia D., Boninia M., Fratinia E. et a1. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—Part 2: tests in diesel engines Biomass and Bioenergy, 2003, 25 : 101~111
    [40] Qi Z, Jie C, TieJun W et a1. Upgrading Bio-oil over Different Solid Catalysts Energy & Fuels, 2006, 20 : 2717~2720
    [41]张琦,常杰,王铁军.固体酸改质生物油的研究燃料化学学报. 2006, 34(6) : 680~684
    [42]张琦,常杰,王铁军等.固体酸催化剂SO_4~(2-)/40%SiO_2-TiO_2的制备及其催化酯化性能催化学报. 2006, 27(11) : 1033~1038
    [43] Xu J M, Jiang J C, Sun Y J et a1. Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics Biomass and Bioenergy, 2008, 32(11) : 1056~1061
    [44] Jarvelin H. New etherification process commercialized in finland Oil&Gas Journa1. 1997, 95(7) : 44~45
    [45] Wi1liam J Pie1. Ethers wi11 P1ay Kay Role in C1ean Gaso1ine B1ends Oi1&Gas Journa1, 1989, 87(49) : 40~44.
    [46] Union Oi1 Company. Gaso1ine Composition Containing Antiknock Malonate Ester US 4602919, 1986
    [47] Toshio Okuhara, Water-Tolerant Solid Acid Catalysts Chem. Rev. 2002, 102(10) : 3641~3666
    [48]张玉玲,毕颖丽,崔湘浩等. SO_4~(2-)/ZrO_2-Al_2O_3及载Pt催化剂上正丁烷异构化反应高等化学学报, 2000, 21(1) : 112~115.
    [49] Yori Y C, Damato M A, Darera J, et a1. Isomerization of n-Butane on Pt/SO_4~(2-)-ZrO_2 and mechanical mixtures of Pt/Al2O3+ SO_4~(2-)/ZrO_2 J Catal, 1995, 153(2) : 218~223
    [50]胡建平,储伟,许忠强等. SO_4~(2-)/ZrO_2-TiO_2-SiO_2固体酸催化苯乙烯选择氧化反应的研究合成化学, 2000, 8(4) : 326~330
    [51] Arata K, Mats A H, Hino M et a1. Synthesis of solid superacids and their activities for reactions of alkanes J Catal, 2003, 81 : 17~30
    [52]夏勇德,华伟明,高滋等. S_2O_8~(2-)处理的ZrO_2固体超强酸上的正丁烷异构化反应化学学报, 1999, 57(12) : 1325~1331.
    [53]东平,吴东辉.固体酸S_2O_8~(2-)/Fe_2O_3-ZrO_2催化制备马来酸二己酯精细与专用化学品, 2004, 12(10) : 16~20.
    [54]罗根祥,陈平,肖进兵等. Fe-MCM-41介孔材料的合成、表征及催化性能研究石油化工高等学校学报, 2001, 14(l) : 33~36
    [55]张东,田一光,乔迁等. Fe-MCM-41的微波合成及氧化还原行为研究温州师范学院学报(自然科学版), 2001, 22(6) : 19~22
    [56] Badamali S, Sakthivel A, Selvam P. Tertiary Butylation of Phenol over Mesoporous H-FeMCM-41 Catal Lett, 2000, 65(1~3) : 153~157
    [57]银董红,李文怀,钟炳等.中孔分子筛HMS负载钴催化剂在费托合成中的应用—载体HMS的孔径对钴基催化剂性能的影响催化学报, 2002, 23(2) : 118~120
    [58] Yin D H, Li W H, Yang W, Sh Xiang H W, Sun Y H, Zhong B. Microporous HMS molecular sieves supported cobalt catalysts for Fischer-Tropsch synthesis Microporous Mesoporous Mater, 2001, 47(l) : 15~24
    [59] Gadalla A M, Sommer M E. Carbon dioxide reforming of methane on nickle catalysts Chem Eng Sci, 1989, 44(12) : 2825.
    [60] Erdohelyi A, Cserenyi J, Solymosi F. Activation of CH4 and its reaction with Cq over supported Rh catalysts J Catal,1993, 141: 287.
    [61]田宏,王晓来,柳海涛. Ni/ MCM-41催化剂上CH_4-CO_2重整反应的初步研究天然气化工, 2002, 27(5) : 12~15
    [62] Corma A, Navarra M T, Perez-Pariente J. Synthesis of an Ultrolarge Pore Titanium Silicate Isomorphous to MCM-41 and its Application as a Catalyst for Selective Oxidation of Hydrocarbons J Chem Soc Chem Commun, 1994, 1 : 147~148
    [63] Comra A, Iglesias M, Sanchez F et al. Large Pore Bifunctional Titanium-Aluminosilicates:the Inorganic Non-enzymatic Version of the Epoxidase Conversion of Linalool to Cyclic Ethers J Chem Soc Chem Commun, 1995, 16 : 1635~1636
    [64] Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides US 4410501 1983.10.18
    [65]李钢,王祥生,金长子等. Ti-HMS分子筛的合成与表征催化学报, 2004,25(4) : 315~318
    [66]罗勇,卢冠忠,黄家祯等.用无机钛源合成Ti-HMS中孔分子筛华东理工大学学报, 2002, 128(5) : 529~532
    [67] Corma A, Navarra M T, Perez-Pariente J. Synthesis of an Ultrolarge Pore Titanium SilicateIsomorphous to MCM-41 and its Application as a Catalyst for Selective Oxidation of Hydrocarbons J Chem Soc Chem Commun, 1994, 1 : 147~148
    [68] Comra A, Iglesias M, Sanchez F et al. Large Pore Bifunctional Titanium-Aluminosilicates:the Inorganic Non-enzymatic Version of the Epoxidase Conversion of Linalool to Cyclic Ethers J Chem Soc Chem Commun, 1995, 16 : 1635~1636
    [69] Raja H P R, Christopher P, Landry C et al. Synthesis, Characterization, and Catalytic Properties of a Microporous/Mesoporous Material, MMM-1 J Sol State Chem, 2002,167:363
    [70]赵培庆,于超英,彭志光等.新型分子筛Ti-MMM-1的合成及其催化性能的研究分子催化, 2004, 18(3) : 208~213
    [71] Zhao D, Feng J, Huo Q et al. Stucky G D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores Science, 1998, 279(5350) : 548
    [72] Peng W., Takashi T. Postsynthesis. Characterization and Catalytic Properties in Alkene Epoxidation of Hydrothermally Stable Mesoporous Ti-SBA-15 Chem Mater, 2002, 14 : 1657~1664
    [73] Luan Z., Estelle M.M., Paula W.H. Incorporation of Titanium into Mesoporous Silica Molecular Sieve SBA-15 Chem Mater, 1999, 11 : 3680~3686.
    [74] Bharat L N, Johnson O, Sridhar K. Direct Synthesis of Titanium-Substituted Mesoporous SBA-15 Molecular Sieve under Microwave-Hydrothermal Conditions Chem Mater, 2001, 13 : 552~557.
    [75] Xiao F, Han Y, Yu Y, Meng X, Yang M, Wu S.J. Hydrothermally Stable Ordered Mesoporous Titanosilicates with Highly Active Catalytic Sites Am Chem Soc, 2002, 124 : 888~889.
    [76] Xiu K L, Wei J J, Jing Z et al. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO_2, MCM-41, and SBA-15 Journal of Catalysis, 2005, 236 : 181~189
    [77]朱金华,沈伟,徐华龙.水热一步法合成Ti-SBA-15分子筛及其催化性能研究化学学报, 2003, 61(2) : 202~207
    [78] She T W, Hong P L, Chung Y M. Tubular MCM-41-supported transition metal oxide catalysts for ethylbenzene dehydrogenation reaction Applied Catalysis A: General, 2000, 198 : 103~114
    [79] Cedric B, Andri L, Arie van der L. A New Synthesis of MesoPorous MSU-X Silica Controlled by a Two-step Pathway Chem Mater, 2000, 12 : 2902~2913
    [80]张小明,张兆荣,索继栓等.含钛中孔分子筛Ti-MSU的合成和表征化学通报, 2000, 7 : 29~31
    [81]郑珊,高镰,郭景坤. TiO_2在MCM-41内表面单层及双层分散的结构表征无机材料学报, 2001,16(1) : 98~102
    [82]郑珊,高镰,张青红等. TiO_2修饰的介孔分子筛MCM-41的合成、表征及光催化性研究化学学报, 2000, 58(11) : 1403~1408
    [83]聂春发,索继栓.杂化MCM-41固载催化剂的合成、表征及催化研究物理化学学报, 2004, 20(2): 149~153
    [84] Sayari A. Catalysis by crystalline mesoporous molecular sieves Chem Mater, 1996, 8 : 1840~1852.
    [85]张美英,王乐夫,李雪辉等. Cu-HMS分子筛的合成及其表征化工进展, 2003, 22(11) : 1203~1206
    [86]张美英,王乐夫,黄仲涛. Cu-HMS分子筛的合成条件及其催化性能催化学报, 2003, 24(12): 914~918
    [87]孙建敏,孟祥举,王润伟等. Cu修饰的MCM-41的合成、表征及对芳烃羟化反应催化作用的研究高等学校化学学报, 2000, 21(9) : 1451~1454
    [88] Fujiyama H, Kohara I, Iwai K, et al. Liquid-Phase Oxidation of 2,6-di-tert-butylphenol with Cu-Impregrated MCM-41 Catalysts in the Presence of Alkai Metals J Catal, 1999, 188(2) : 417~425
    [89] Ying J Y, Mehnert C P, Wong M S. Synthesis and applications of supramolecular templated mesoporous materials Angew Chem Int Ed, 1999, 38 : 56~77
    [90] Jones D J, Jimenez J J, Jimenez L A et al. Surface characterization of zirconium doped mesoporous silica Chem Commun, 1997, 5 : 431~432
    [91] Tuel A, Gontier S, Teissier R. Zirconium Containing Mesoporous Silicas:New Catalysts for Oxidation Reactions in the Liquid Phase J Chem Soc Chem Commun, 1996, 5 : 651~652
    [92]郭建维,王乐夫,黄仲涛.中孔杂原子分子筛Me-HMS的合成研究精细石油化工, 2001, 4 : 45~49
    [93] Matsuhashi H, Tanka H, Nakamura H. Formation of acid sites in ordered pores of FSM-16 by modification with sulfated zirconia Applied Catalysis:General. 2001, 208 : l~5
    [94] Chen C L, Cheng S, Lin H P et al. Sulfated zirconia catalyst supported on MCM-41 mesoporous molecular sieve Applied Catalysis A:General. 2001, 215(l~2) : 21~30
    [95] Huang Y., Sachtler W.M.H . Preparation of mesostructured lamellar zirconia Chem Commun, 1997, 13 : 1181~1182
    [96] Debra J.M., Ronald A.K. Tailoring the pore size of mesoporous sulfated zirconia Microporous and Mesoporous Materials. 2000, 37: 281~289
    [97]廖世军,季山,简弃非.具有中孔结构的SO_4~(2-)/Zr-HMS型固体超强酸的合成和结构表征高等学校化学学报, 2003, 24(3) : 469~472
    [98]于世涛,李露,刘福胜等.含锆中孔分子筛SO_4~(2-)/Zr-MCM-41催化松节油水合反应林产化学与工业, 24(s): 37~40
    [99]郭昌文,戴维林,冬曹勇. W-SBA-15的原位合成及其在环戊烯氧化反应中的催化性能研究化学学报, 2003, 61(9) : 1496~1499
    [100] D. Eliche-Quesada, J. Mérida-Robles, P. Maireles-Torres, et al. Effects of preparation method and sulfur poisoning on the hydrogenation and ring opening of tetralin on NiW/zirconium-doped mesoporous silica catalysts Journal of Catalysis, 2003, 220 : 457~467
    [101] Choudhary Vasant R, Jana Suman K, Kiran B P, et al. Highly Active and Moisture-insensitive Solid Catalysts-GaCl3 and InCl3 Supported on Montmorillonite-K10 and Si-MCM-41 for Benzylation of Benzene Catal Lett, 2000, 64(2~4) : 223~226
    [102] A?′da Luz Villa de P, Edwin Alarco′n, Consuelo Montes de C. Nopol synthesis over Sn-MCM-41 and Sn-kenyaite catalysts Catalysis Today, 2005(107-108): 942~948
    [103] Chondhary Vasant R, Jana Suman K, Kiran B P, et al. Highly Active Si-MCM-41-Supported Ga2O3 and In2O3 Catalysts for Friedel-Crafts-Type Benzylation and Acylation Reactions in the Presence or Absence of Moisture J Catal, 2000, 192(2) : 257~261
    [104]袁志庆,蔡哗,慎炼等.钒硅中孔分子筛的合成、表征及其催化性能研究高校化学工程学报, 2002, 16(2) : 145~148
    [105]胡冰,施剑林,陈航榕.镧系金属掺杂MCM-41分子筛的合成与表征无机材料学报, 2004, 19(2) : 329~334
    [106] Kyutae N, Toshio O, Makoto M. Skeletal isomerization of n-butane over caesium hydrogen salts of 12-tungstophosphoric acid Faraday Transactions, 1995, 91 : 367
    [107] Hibi T, Okuhara T, Misono M, et al. Selective synthesis of light olefins from dimethyl ether over acidic salts of H3PW12O40 with l,3,5-trizine Chem Lett, 1982, 11(8): 1275~1276
    [108] Okuhara T, Hayakawa N, Kasai A, et al. Catalysis by heteropoly compounds, Vl The role of the bulk acid sites in catalytic reactions over NaxH3-xPW12O40 J Catal, 1983, 83 : 121~130
    [109]张雪峥,乐英红,高滋. PW/SBA-15负载型催化剂的性能研究高等学校化学学报, 2001, 22(7): 1169~1172
    [110] Rahiala H, Beurroies I, Eklund T, et al. Preparation and Characterization of MCM-41 Supported Metallocene Catalysts for Olefin Polymerization J Catal, 1999, 188(1) : 14~23
    [111] Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis Chem Rev, 1997, 97 : 2373~2420
    [112]宋家乐,陈立新,景晨丽.游离酚壳法用热塑性酚醛树脂的合成热加工工艺, 2007, 36(5) : 37~39
    [113]黄发荣,焦杨声酚醛树脂及其应用北京:化学工业出版社, 2003, 15
    [114]李荣启,李远才,张浩然.速聚型壳法用热塑性酚醛树脂的合成铸造, 2004 ,53 (4) : 288~290
    [115]夏春,李远才,刘洋.微波辐射下壳法用高邻位酚醛树脂的合成2005, 26(4): 270~272
    [116]夏春,李远才.微波辐射下热塑性酚醛树脂的合成铸造, 2004, 53(5) : 365~368.
    [117]张巧玲,李永祥,陈守东.高邻位热塑性酚醛树脂的合成山西化工. 2001, 21(4) : 13~15
    [118]顾庆龙.乌桕梓油化学成分及其变化趋势的研究贵州教育学院学报, 2001, 12(4) : 39~42.
    [119] Lukaszewicz M, Szopa J, Krasowska A. Susceptibility of Lipids from Different Flax Cultivars to Peroxidation and Its Lowering by Added Antioxidants Food Chemistry, 2004, 88(2) : 225~231
    [120] Summers G J, Ndawuni M P, Summers C A. Chemical Modificationof Polysulfone:Anionic Synthesis of Dipyridyl Functionalized Polysulfone Polymer, 2001, 42 : 397~402
    [121]马路,赵勇,闫振.落叶松树皮热解油酚醛树脂胶黏剂的制备与性能表征林产工业, 2007, 34(1) : 35~37
    [122] Roy. Process for the production of phenolic-rich pyrolysis oils for use in making phenol-formaldehyde resole resins US 6143856, 2000
    [123] Giroux. Natural resin formulations US 6326461 2001
    [124] Sipila K, Kbo ppala E, Fagernas L. Characterization of biomass-based flash pyrolysis oils Biomass and Bioenergy, 1998, 14(2) : 103~113
    [125]张素萍,颜涌捷,任铮伟等.生物质快速裂解液体产物分析华东理工大学学报, 2001, 27(6) : 666~668
    [126]戴先文,吴创之,周肇秋等.循环流化床反应器固体生物质的热解液化太阳能学报, 2001, 22(2) : 124~130
    [127]刘荣厚,张春梅.我国生物质热解液化技术的现状可再生能源, 2004, (2) : 9~12
    [128]廖艳芬,王树荣,洪军等.生物质热裂解制取液体燃料的实验研究能源工程, 2003, 3 : 1~3
    [129]陆强,朱锡锋,李全新等.生物质快速热解制备液体燃料化学进展, 2007, 19(7/8) : 1064~1070
    [130]易维明,柏雪源,何芳等.利用热等离子体进行生物质液化技术的研究山东工程学院学报, 2000, 14(1) : 9~12
    [131]任铮伟,徐清陈明强.流化床生物质快速裂解制液体燃料太阳能学报, 2002,23, (4) : 462~466
    [132] Zheng J L, Zhu X F, Guo Q X et a1. Thermal conversion of rice husks and sawdust to liquid fuel[J]. Waste Manage. 2006, 26 : 1430~1435
    [133]朱满洲,朱锡锋,郭庆祥等.以玉米秆为原料的生物质热解油的特性分析中国科学技术大学学报, 2006, 36(4) : 374~377
    [134]周海峰.固体酸催化酯化反应的研究进展精细与专用化学品, 2004, 23(12) : 2
    [135] Sanderson R. T. Chemical Bonds and Energy New York : Academic Press, 1976, 23~30
    [136]韩维屏催化化学导论北京:科学出版社, 2003, 201-204
    [137] Lee J S, Park D S. Interaction of pyridine and ammonia with a sulfate-promoted iron oxide catalyst J Catal, 1989, 120 : 46~54
    [138] Parera J M. Promotion of zirconia acidity by addition of sulfate ion Catal Today, 1992, 15 : 481~490
    [139] Yamaguchi T, Jin T, Tanabe K.Structure of acid sites on sulfur-promoted iron oxide J Phys Chem, 1986, 90: 3148~3152
    [140] Barlow S J, Clark J H. Activation of Clayzic and its effect on the relative rates of benzylation of aromatic substrates J Chem Soc Perkin Trans, 1994, 411~414
    [141] Fraenkel D. Structure of Sulfated Metal Oxides and Its Correlation with Catalytic Activity Ind Eng Chem Res, 1997, 36: 52~59
    [142]于世涛,王志强,杨锦宗. SO_4~(2-)/TiO2-Al2O3复合固体超强酸的结构表征工业催化, 1996(4) : 44~48
    [143] Beck J C, Vartuli J C, Roth W J, et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates J Am Chem Soc, 1992, 114(27) : 10834~10843
    [144] Tanev P T, Pinnavaia T J. Biomimetic Templating of Porous Lamellar Silicas by Vesicular Surfactant Assemblies Science, 1995,267 : 865-867
    [145] L.H. Little Infrared Spectra of Adsorbed Species London : Academic Press, 1966, 25
    [146] Xia Q H, Hidajat K, Kawi S. Effect of ZrO2 Loading on the Structure, Acidity, and Catalytic Activity of the SO_4~(2-)/ZrO2/MCM-41 Acid Catalyst J Catal, 2002, 205(2) : 318~331
    [147] Sohn J R, Decanio S J, Lunsford J H, Odennell D. Determination of framework aluminium content in dealuminated Y-type zeolites: a comparison based on unit cell size and wavenumber of i.r. bands. Zeolites, 1986, 3 : 225~227
    [148]安振国,张晓杰,任万忠.反应精馏技术的研究进展化学工业与工程技术, 2007, 28(1) : 14~19
    [149] Hoffmann A, Noeres C, Gorak A. Scale-up of reactive distillation column with catalytic packings Chemical Engineering and Processing, 2004, 43(3) : 397~395
    [150] Al Arfaj M A, Luyben W L. Comparative control study of ideal and methyl acetate reactive distillation Chemical Engineering Science. 2002, 57(24) : 5039~5050
    [151] Rustamov V R, Kerimov V K, Schachbazov S J et al. Mechanism and main regularities of the alkaline pyrolysis of wood Energy Conversion and Management. 2002, 43 : 1901~1910
    [152] R. T. Sanderson Chemical Bonds and Energy New York : Academic Press, 1976, 192
    [153] Q Zhang, J Chang, T J Wang.Upgrading Bio-oil over Different Solid Catalysts Energy & Fuels, 2006, 20 : 2717~2720
    [154] Xu J M, Jiang J C, Sun Y J, Lu Y J. Bio-oil upgrading by means of ethyl ester production in reactive distillation to removewater and to improve storage and fuel characteristics Biomass and Bioenergy, 2008, 32, 1056~1061
    [155]刘相伟.工业含酚废水处理技术的现状与进展工业水处理. 1998, 18(2) : 4~6.
    [156]王天寿.我国含酚废水处理技术应用近况石化技术. 1997, 4(1) : 63~66.
    [157]王晓军.用萃取法处理含酚废水甘肃化工. 2004, 18(1) : 43~44.
    [158]江燕斌,钱宇.炼油碱渣废水处理萃取剂反萃再生实验研究化学工程. 2002, 30(5) : 58~61
    [159]殷荣惠酚醛树脂及其应用北京.化学工业出版社, 1990, 215
    [160]李荣启,李远才,张浩然等.速聚型壳法用热塑性酚醛树脂的合成铸造, 2004, 53(4) : 288~290
    [161] Kim S, Lee Y K, Kim H J, Lee H H. Physico-mechanical properties of particleboards bonded with pine and wattle tannin-based adhesives J. Adhes. Sci. Technol. 2003, 17 : 1863
    [162] Regi G, Barry F, Robert G. Natural resin formulations US 6326461, 2001
    [163] Pena C., Larranaga M., Gabilondo N. et al. Synthesis and Characterization of Phenolic Novolacs Modified by Chestnut and Mimosa Tannin Extracts Journal of Applied Polymer Science. 2006, 100 : 4412~4419
    [164] Chiho S, Yoshiaki N, Tadamasa N. Synthesis of new novolaks from natural phenolic compoundsNettowaku Porima, 2006, 27(4) : 218~220
    [165]杨进元,李新法,王荣法.梓油改性酚醛树脂的合成及结构分析高分子材料科学与工程. 1995, 11(5) : 138~140
    [166] Lukaszewicz M, Szopa J, Krasowska A. Susceptibility of Lipids from Different Flax Cultivars tO Peroxidation and Its Lowering by Added Antioxidants Food Chemistry,2004, 88(2) : 225~231
    [167] Summers G J, Ndawuni M P, Summers C A. Chemical Modification of Polysulfone:Anionic Synthesis of Dipyridyl Functionalized Polysulfone Polymer, 2001, 42 : 397~402
    [168]马路,赵勇,闫振等.落叶松树皮热解油酚醛树脂胶黏剂的制备与性能表征林产工业, 2007, 34(1) : 35~37
    [169] Czernik S., Bridgwater A. V. Overview of Applications of Biomass Fast Pyrolysis Oil Energy & Fuels 2004, 18 : 590~598
    [170]徐俊明,蒋剑春,卢言菊.生物热解油精制改性研究进展现代化工, 2007, 27(7) : 13~17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700