阳离子型聚丙烯酰胺的疏水改性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在染料和印染废水脱色处理中,絮凝沉降法是当前国内外重点研究的方向之一,而絮凝脱色法的效果关键取决于絮凝剂的性能。近年来,随着絮凝理论和化学工业的发展,水处理絮凝剂在我国发展十分迅速。絮凝剂从无机低分子到有机高分子,从功能单一型到多功能型,从单独使用到复配使用,形成了品种系列化、功能多样化、使用成本经济化等特点,引起了科研和水处理工业的广泛关注。
     近年来的研究认为,阳离子型有机高分子絮凝剂由于其分子链段上带有正电荷基团,对废水或污水中带有负电荷的有机物质具有较好的去除效果,特别是对毒害性较大、难于脱除的染料分子具有较好的絮凝效果。在研究中发现,阳离子絮凝剂具有脱色效果好、适用范围广、受pH影响小、用量少、絮凝速度快等特点,所以,目前国内外积极研发新型高效的阳离子型有机高分子絮凝剂。丙烯酰胺类阳离子絮凝剂无疑是研究最多的品种。目前聚合所用的阳离子单体主要依赖进口,成本较高,而絮凝剂分子中阳离子密度较低时,对染料脱色效果又很不理想,为了解决生产成本和絮凝能力之间的矛盾,本论文在保持阳离子度较低的条件下,对目前流行的阳离子型高分子絮凝剂进行了疏水改性。通过在分子结构中引入功能型基团,增强絮凝剂分子和有机物分子之间的相互作用,降低絮凝剂分子和絮体的水溶性,从而使染料分子快速地从水中分离出来,提高阳离子型絮凝剂的絮凝效果。
     论文首先以丙烯酰胺(AM)和二烯丙基二甲基氯化铵(DADMAC)为共聚单体,利用反相乳液聚合法合成了共聚物P(AM-DADMAC),考察了复合乳化剂、分散介质、引发剂种类、油水体积比、引发剂浓度、单体浓度等因素对乳液稳定性和共聚物特性粘度的影响,确定了较理想的反相乳液体系。在此基础上,以煤油为分散介质、Va-044为引发剂,Span80/Tween80为复合乳化剂、乙烯基三甲氧基硅烷(VTMS)为疏水改性单体、丙烯酰胺(AM)和二甲基二烯丙基三甲基氯化铵(DADMAC)为主要共聚单体进行三元共聚,利用反相乳液聚合法制备了疏水改性阳离子型絮凝剂P(AM-DADMAC-VTMS),克服了水溶液聚合的不足。考察了VTMS和DADMAC单体投料率对产物性能的影响。利用红外谱图(FT-IR)证实了三元共聚物的结构。利用扫描电镜(SEM)对乳液中颗粒和聚合固体粉末进行了形貌观察。利用合成的P(AM-DADMAC-VTMS)对活性艳红X-3B进行了脱色研究,结果表明,随着VTMS含量的增加,改性絮凝剂的脱色能力提高,当共聚摩尔比为AM/DADMAC/VTMS=79.2/19.8/1.0时,最大脱色率为94.24%;随着DADMAC含量的增加,改性絮凝剂的最佳剂量降低,但脱色率也降低;改性絮凝剂最佳的pH使用范围为2-5,VTMS含量越高,脱色率受pH的影响越小;P(AM-DADMAC-VTMS)的脱色效果随NaCl浓度的增加而下降,但随VTMS含量的增高,脱色率受NaCl浓度的影响减小。
     甲基丙烯酰氧乙基三甲基氯化铵(DMC)也是常用的阳离子聚合单体,因此我们以AM、DMC和VTMS为共聚单体,通过反相乳液聚合法制备了疏水改性阳离子聚丙烯酰胺P(AM-DMC-VTMS)。通过对活性艳红X-3B的脱色研究发现:在DMC投料率相近的条件下,P(AM-DMC-VTMS)的脱色能力优于P(AM-DMC),且随着VTMS含量的增加,活性染料的脱色率提高;随着DMC含量的增加,P(AM-DMC-VTMS)脱色能力提高;最佳pH使用范围为2-5;VTMS含量越高,脱色率受pH影响越小,脱色率受NaCl浓度的影响越小。对分散橙30的脱色研究显示,VTMS的引入大大提高了絮凝剂对分散染料的去除能力,且随着VTMS的增加,最佳脱色率增加。当共聚摩尔比为AM/DMC/VTMS=79.2/19.8/1.0时,共聚物对活性艳红X-3B的最大脱色率为89.3%,对分散橙30的最大脱色率为98.1%,而P(AM-DMC)在共聚摩尔比AM/DMC=80/20时,对活性艳红X-3B的最大脱色率为41.7%,对分散橙30的最大脱色率为46.9%。
     为进一步研究疏水单体对染料废水脱色的影响,选择了甲基丙烯酰氧丙基三甲氧基硅烷(MPMS)作为疏水改性单体,以AM,DMC为主要聚合单体,制备了P(AM-DMC-MPMS)。P(AM-DMC-MPMS)的水溶性略差于P(AM-DMC-VTMS),对活性艳红M-8B有较好的脱色效果,当共聚摩尔比为AM/DMC/MPMS=79.2/19.8/1.0,最佳剂量为180mg/L时,染料分子被完全脱除;阳离子度增加,最佳剂量减小。在对分散染料、高岭土悬浮液的絮凝实验中,P(AM-DMC-MPMS)的絮凝效果均优于P(AM-DMC)。对实际染织废水脱色时,P(AM-DMC-MPMS)的脱色能力优于PFS。P(AM-DMC-MPMS)对M-8B的脱色机理表明,染料分子的脱除是靠电性中和、疏水相互作用和分子间氢键共同作用完成的。在阳离子度相对较低时,分子间氢键和疏水相互作用是染料脱色的最关键因素。
     P(AM-DMC-MPMS)/PFS是复合相容体系,能够形成互相穿插的网状结构。对M-8B和分散橙染料废水进行脱色研究,结果显示:最佳剂量分别为15.45mg/L和30.9mg/L,脱色率分别为99.8%和99.39%;最佳pH使用范围为3-6。对实际染织废水脱色时,P(AM-DMC-MPMS)/PFS的脱色效果优于PFS,P(AM-DMC-MPMS)/PFS在最佳剂量为55.68mg/L,最大脱色率为82.57%,而PFS在74.24mg/L时,脱色率也只有59.52%。
The removal of dye and dissolved organic matter by flocculation is one of important research areas in textile wastewater treatments.The color removal efficiency mainly depends on the properties of flocculants.In recent year,flocculants develop rapidly along with the development of the flocculants' theory and chemical industry.Various flocculants categories have been developed including inorganic flocculants,organic flocculants,low molecular weight flocculants,organic polymer flocculants and composite flocculants.Wide attention has been drawn in science research and water-treatment industry.
     Due to positive charge in molecular chain,cationic organic-polymer flocculants can remove organics with negative charge efficiently from waste-water,especially,dye wastewater,which is toxical and hard to remove from water.It has been found that cationic flocculants have the advantages that high decolorization efficiency,wide application areas, small pH effect,low dosage and quick flocculation speed,etc.Therefore,cationic organic-polymer flocculants have been extensively studied and applied to waste-water treatment in the world.Cationic polycarylamide is one of most popular flocculants.At present, cationic monomers used to polymerize mainly depend on import,so that cost is high.In order to solve the contradiction between cost and flocculability,popular cationic-polymer flocculants were hydrophobically modified by introducing functional groups into flocculants molecular chain in this paper.This enhanced the intermolecular interaction between flocculant and dye,reduced water-solubility of floccutant and floes.And so floes dye molecules were removed from water quickly and flocculation efficiency rose.
     Firstly,P(AM-DADMAC) was synthesized in inverse emulsion.The effects of composite emulsifier、disperse medium,kind of initiator,volume ratio of oil and water、concentration of initiator and monomer on stability of inverse emulsion and intrinsic viscosity of copolymer.The suitable polymeric system was chosen by studying the polymerization of AM and DADMAC in inverse emulsion.On the basis,a flocculant of P(AM-DADMAC-VTMS) was synthesized in inverse emulsion,with kerosene as disperse phase,Va-044 as an initiator,Span80/Tween80 as composite emulsifier,VTMS as a hydrophobically modified monomer,AM and DADMAC as main comonomers,overcoming the shortage of aqueous solution polymerization.The effects of feed ratio of VTMS and DADMAC on characteristics of polymer were investigated.The structure of terpolymer is confirmed by FT-IR.Particles in inverse emulsion and polymer powders were investigated by the scanning electronic microscopy(SEM).The color removal of reactive brilliant red X-3B (X-3B) by P(AM-DADMAC-VTMS) has been studied.The results showed that removal ratio of X-3B increased largely with increasing the content of VMS,and when AM/DADMAC/VTMS=79.2/19.8/1.0,the largest removal ratio is 94.28%;optimal dose and removal ratio decrease with DADMAC increase;modified flocculant has better flocculability when pH is 2-5;the addition of NaCI to waste-water shield the function of charge neutralization between flocculant and dye,but the more the content of VTMS is,the less the effects ofpH and NaC1 on color removal are.
     Methacryloxyethyltrimethyl ammonium chloride(DMC) is also a typical cationic monomer used to synthesize cationic flocculant.Therefore,the paper synthesized a novel flocculant P(AM-DMC-VTMS),with DMC、AM and VTMS as comonomerso The color removal of X-3B and dispersion orange 30 were investigated by P(AM-DMC-VTMS).It is found that the decolorization efficiency of P(AM-DMC-VTMS) is better than that of P (AM-DMC).With the content of VTMS increase,removal ratio of reactive dye and dispersion dye increase.With the content of DMC,removal ratio of reactive dye increase. Optimal pH ranges is 2-5.When molar ratio of trepolymer is AM/DMC/VTMS=79.2/19.8/1.0, maximum decolorization of X—3B is 89.3%and that of dispersion organe 30 is 98.1%. While P(AM-DMC) with similar molar ratio,maximum decolorization is only 41.7%and 46.9%for X-3B and dispersion organe 30,respectively.
     In order to further study the effect of hydrophobically modified monomer on decolorization,the paper choose another monomer-methacryloxypropyltrimethoxy silane (MPMS) as a modified agent and synthesized a novel flocculation P(AM-DMC-MPMS). Water-solubility of P(AM-DMC-MPMS) is lower than that of P(AM-DMC-VTMS).when molar ratio of terpolymer is AM/DMC/MPMS=79.2/19.8/1.0,optimal dose is 180mg/L and M-8B was removed completely.With the content of DMC increase,optimal dose decreases. P(AM-DMC-VTMS) is better efficiency than P(AM-DMC) as flocculant to treat waste-water of dispersion dye and suspension of kaolin.The study on the decolorization of printing and dyeing wastewater showed that decolorizing performance of P(AM-DMC-MPMS) is better than that of PFS.Decolorization mechanism showed that dye molecules removal of M-8B depend on the cooperation of charge neutralization、hydrophobic interaction and intermolecular hydrogen bond.Intermolecular hydrogen bond and hydrophobic interaction are key factors of decolorization when their cationicity are low.
     P(AM-DMC-MPMS)/PFS is compatible system and can form network structure.The color removal of M-8B and dispersion organ 30 by composite flocculant was investigated. Removal ratio of M-8B by P(AM-DMC-MPMS)/PFS and P(AM-DMC)/PFS is 99.8%and 99.39%,respectively,and for dispersion organ 30,removal ratios are both above 98%when pH is 3-6.P(AM-DMC-MPMS)/PFS have more efficiency than PFS when as flocculation for printing and dyeing waste-water.Optimal dose and removal ratio of the former are 55.68mg/L and 82.57%,respectively.However,for the latter,when dose is 74.24mg/L,removal ratio only is 59.29%.
引文
[1]李旭东,杨芸等.废水处理技术及工程应用.北京:机械工业出版社.2003.
    [2]李风亭,张善发,赵艳.混凝剂与絮凝剂.北京:化学工业出版社,2005.
    [3]Nacheva P M,Bustillos L T,Camperos E R,et al.Characterization and coagulation-flocculation treatability of Mexico city wastewater applying ferric chloride and polymers.Water Sci Technol,1996;34(3/4):235-247.
    [4]Torres L G,Jaimes J,Mijaylova P,et al.Coagulation-flocculation pretreatment of high-load chemical-pharmaceutical industry wastewater:mixing aspects.Water Sci Technol,1997,36(2/3):255-262.
    [5]雷宇凝,王静华,袁虹,等.阳离子型PAM/PAC复合絮凝剂对活性染料废水的脱色作用.精细化工,2005,22(7):540-542.
    [6]何铁林.水处理化学品手册.北京:化学工业出版社,1997.
    [7]Zhao H Z,Luan Z K,Gao B Y,et al.Synthesis and flocculation properties of poly (diallyldimethyl ammonium chloride-vinyl trimethoxy silane) and poly(diallyldimethyl ammonium chloride-acrylamide-vinyl trimethoxy silane).J Appl Polym Sci,2002,84(2):335-342.
    [8]Choi J H,Shin W S,Lee S H,et al.Application of synthetic Poly(DADM) Flocculants for Dye Waste water Treatment.Environ Technol,2001,22(9):1025-1033.
    [9]尚宏周,刘建平,郑玉斌,等.阳离子型聚丙烯酰胺的研究进展.现代化工,2007,27(S1):118-121.
    [10]Svetlana B,valentine A,Simona S,et al.Enhanced flocculation of oil-in-water emulsion by hydophobically modified chitosan derivatives.Colloids surf A,2006,275:168-176.
    [11]Dragan S,Maftuleac A,Dranca I,et al.Flocculation of montmorillonite by some hydrophobically modified polycations containing quaternary ammonium salt groups in the backbone,J Appl Polym Sci,2002,84:871-876.
    [12]Ge X W,Ye Q,Zhang Z C,et al.Studies of inverse emulsion copolymerzation of (2-methacryloyloxyethyl) trimethyl ammonium chloride and acrylamide.J Appl Polym Sci,1998,67:1005-1010.
    [13]Ma J T,Cui P,Zhao L,et al,Synthesis and solution behavior of hydrophobic association water-soluble polymers containing arylalkyl group,Eur Polym J,2002,38(8):1627-1633.
    [14]高保娇,曹霞,酒红芳.丙烯酰胺与4-乙烯基吡啶共聚物的季胺化及其若干性能.高分子学报,2002,(4):487-492.
    [15]王蕊欣,郭建峰,高保娇.高分子吡啶季胺盐的抗菌性能及机理的探讨.应用化学,2006,23(2):184-187.
    [16]沈一丁,李刚辉,李培枝,等.疏水化CPAM絮凝剂处理造纸白水的研究.中国造纸学报,2008,23(2):55-59.
    [17]刘祥义,徐晓军.疏水缔合淀粉的制备及其对含油污水絮凝研究.石油炼制与化工,2006,37(1):51-54.
    [18]陈鸿,张熙,梁兵.疏水改性阳离子型高分子絮凝剂P(AM-DMDAAC-BA)的合成与性能研究.高分子材料科学与工程,2003,19(2):97-100.
    [19]Hill A,Candau F,Selb J,Properties of hydrophobically associating polyacrylamides:influence of the method of synthesis.Macromolecules,1993,26:4521-4532.
    [20]Kacmaz A,G(u∣¨)rdag G.Swelling behavior of N-butylacrylamide copolymer and terpolymers.Macromol Symp,2006,239:138-151.
    [21]Grassl B,Francois J,Billon L.Associating behavior of polyacrylamide modified with a new hydrophobic zwitterionic monomer.Polym Int,2001,50:1162-1169.
    [22]Candau F,Selb J.Hydrophobically-modified polyacrylamides prepared by micellar Polymerization.Adv Colloid Interface Sci,1999,79:149-172.
    [23]Ye L,Mao L J,Huang R H.Synthesis and aqueous solution behavior of hydrophobically modified polyelectrolytes,J hppl Polym Sci,2001,82:3552-3557.
    [24]Shaikh S,Ali S A,Hamad E Z,et al.Synthesis and solution properties of poly (acrylamide-styrene) block copolymers with high hydrophobic content,Polym Eng Sci,1999,39:1962-1968.
    [25]何瑾馨.染料化学.北京:中国纺织出版社,2004.
    [26]李家珍.染料、染色工业废水处理.北京:化学工业出版社,1997.
    [27]Kong H L,Wu H F.Pretreatment of textile dyeing wastewater using an anoxic baffled reactor.Bioresource Technology,2008,99:7886-7891.
    [28]Okazaki S Y,Nagasawa S I,Goto M,et al.Decolorization of azo and anthraquinone dyes in hydrophobic organic media using microperoxidase-11 entrapped in reverse micelles.Biochem Eng J,2002,12:237-241.
    [29](O∣¨)zacar M,Sengil(?) A.Adsorption of reactive dyes on calcined alunite from aqueous solutions.J Hazard Mater,2003,98:211-224.
    [30]Herrera F.Photochemieal deeoloration of Remazol Brilliant Blue and Uniblue A in the Presence of Fe~(3+) and H_2O_2.Environ Sci Technol,1999,33:3145-3151.
    [31]康琪.模拟染料废水化学絮凝法脱色过程分析方法研究:(博士学位论文).山东:山东大学,2006.
    [32]张襄楷,季会明,范晓丹.微波法制备污泥活性炭及其脱色性能的研究.碳素,2008,(2):40-43.
    [33]高如琴,郑水林,张娟,等.硅藻土基多孔陶瓷对孔雀石绿的脱色研究.非金属矿,2008,31(4):62-65.
    [34]Rastogi R,Sahu J N,Meikap B C,et al.Remval of methylene blue from waste water using fly ash as an adsorbent by hydrocyclone.J Hazard Mater,2008,158:531-540.
    [35]Yu L L,Zhong Q.Preparation of adsorbents made from sweage sludges for adsorption of organic materials from wastewater.J Hazard Mater,2006,B137:359-366.
    [36]Trajan D,Sofia E A O,Martin O M.Removal of the indigo color by laser beam-denim interaction.Optical and Lasers in Engineering,2000,34:179-189.
    [37]Pereira M F R,Soares S F,(?)rf(a∣¨)o J J M,et al.Adsorption of dye on actived carbons:influence of surface chemical groups.Carbon,2003,41(4):811-821.
    [38]Mohan S V,Rao N C,Karthikeyan J.Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents:a kinetic and mechanistic study.J Hazard Mater,2000,90(2):189-204
    [39]Wang S B,Ma Q,Zhu Z H.Characteristics of coal of fly ash and adsorption application.Fuel,2008,87(15-16):3469-3473.
    [40]Ting T M,Jamaludin N.Decolorization and decompostition of organic pollutants for reactive and disperse dyes using electron beam technology:Effect of the concentrations of pollutants and irradiation dose.Chemosphere,2008,73(1):76-80.
    [41]Catanho M,Malpass G R P,Motheob A J,et al.Photoelectrochemical treatment of the dye reactive red 198 using DSA electrodes.Appl Catal B:Environ,2006,62(3-4):193-200.
    [42]Akyol A,Mahmut B.The degradation of an azo dye in a batch slurry photocatalytic reactor.Chem Eng Process:Process intensification,2008,47(12):2150-2156.
    [43]Daneshvar N,Behnajady M A,Mohammadi M K A,et al.UV/H_2O_2 treatment of Rhodamine B in aqueous solution:Influence of operational parameters and kinetic modeling.Desalination,2008,230(1-3):16-26.
    [44]Wu J N,Doan H,Upreti S.Decolorization of aqueous textile reactive dye by ozone.Chem Eng J,2008,142(2):156-160.
    [45]Lei L C,Dai Q Z,Zhou M H,et al.Decolorization of cationic red X-GRL by wet air oxidation:Performance optimization and degradation mechanism.Chemosphere,2007,68(6):1135-1142.
    [46]Fujii T,Sugino H,Rouse J D,et al.Characterization of the Microbial Community in an Anaerobic Ammouium-Oxidizing Biofilm Cultured on a Nonwoven Biomass Carrier.J Biosci Bioeng,2002,94(5):412-418.
    [47]Ju D J,Byun I G,Park J J,et al.Biosorption of a reactive dye(rhodamine-B) from an aqueous solution using dried biomass of activated sludge.Bioresour Technol,2008,99:7971-7975.
    [48]Khalaf M A.Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and spirogyra sp.Bioresour Technol,2008,99(14):6631-6634.
    [49]王艳,高宝玉,于慧,等.PAN-DCD用于染料废水的脱色研究.环境化学,1995,14(6):531-536.
    [50]赵华章,栾兆坤,岳钦艳,等.PDMDAAC系列絮凝剂的脱色性能研究.环境化学,2002,21(2):149-154.
    [51]沈俊菊,庄源益.有机絮凝剂P(AM-DMC)的脱色性能.南开大学学报(自然科学版),2006,39(1):25-28.
    [52]郭明远,杨牛珍.纳滤膜分离活性染料溶液的研究.水处理技术,1996,(2):97-99.
    [53]刘梅红,姜坪.膜法染料废水处理试验研究.膜科学与技术,2001,21,(3):50-52.
    [54]Chakraborty S,Purkait M K,Dasgupta S,et al.Nanofiltration of textile plant effluent for color removal and reduction in COD.Sep Purif Technol,2003,31(2):141-151.
    [55]Szygula A,Guibal E,Ruiz M,et al.The removal of sulphonated azo-dyes by coagulation with chitosan.Collids and Surfaces A:Physicochemical and Engineering Aspects.(In press).
    [56]吴彬,邓皓,肖遥.工业水处理絮凝剂的发展状况与前景.石油与天然气化工,1999,28(1):71-74.
    [57]张国杰,王栋,程时远.有机高分子絮凝剂的研究进展.化学与生物工程,2004,1:10-13.
    [58]Mallon R D.Cationic Water-Souble Polymers Precipitationin Salt Solution[P].US,6013708.20002-01-11.
    [59]舒型武,郑怀礼.阳离子型有机絮凝剂研究进展.现代化工,2001,21(10):13-16.
    [60]The Dow Chemical Company(US).Process for production of himolecular weight copolymers of diallylammonium monomers in solution[P].US,5110883.1992-05-05.
    [61]Nalco Chemkal Company(US).Use of diallyldimethyl ammonium chloride acrylamide dispersion copolymer in a papermaking process[P].US,6238521.2001- 05-29.
    [62]沈一丁,张宇.P(DMC-AM)高分子絮凝剂的制备和絮凝性能.精细化工,2005,22(5):607-610,624.
    [63]李建文,丘化玉,詹怀宇.水包水型CPAM乳液增强剂的合成及应用.精细化工,2005,22(10):788-791,797.
    [64]唐宏科,周鹏刚.阳离子淀粉-丙烯酰胺接枝共聚物絮凝剂的制备及其絮凝性能.化工环保,2006,26(3):246-249.
    [65]龙柱,车大军,李建华,等.阳离子聚丙烯酰胺的制备及其增强效果.国际造纸,2003,22(5):54-57.
    [66]张红杰,陈夫山,胡惠仁.高分子质量阳离子聚丙烯酰胺的合成及其应用.中国造纸,2003,22(4):15-18.
    [67]Seiko Kagaku Kogyo Co Ltd(JP).Aqueous solution of modified polyacrylamides cation,use thereof and production thereof[P].JP,55108 405.1980-08-20.
    [68]Seiko Kagaku Kogyo Co Ltd(JP).Cation-modified polyacrylamide,and use and preparation of the same[P].JP,56008 409.1981-01-28.
    [69]Arakawa Chem Ind Co Ltd(JP).Production of cation-modified polyacrylamide[P].JP,57192 408.1982-11-26.
    [70]Harima Chem Inc(JP).Aqueous solution of cation-modified polyacrylamides and paper-making additive[P].JP,62059 602.1987-03-16.
    [71]杨旭,赵立志.阳离子絮凝剂研制.重庆环境科学,1995,17(5):17-19.
    [72]卢珍仙,吕延文.高相对分子质量阳离子聚丙烯酰胺的研究.浙江师范大学学报:自然科学版,2003,26(2):164-166.
    [73]马喜平,邵定波.阳离子化聚丙烯酰胺的合成及絮凝性能研究.油田化学,1996,16(1):37-40.
    [74]刘瑞恒,韩卿.阳离子聚丙烯酰胺的合成工艺及其应用特性.纸和造纸,2004(3):53-55.
    [75]李卓美.一种新型阳离子聚丙烯酰胺.广州化工,1995,23(4):60-63.
    [76]赵吉滨.共聚粉状阳离子型聚丙烯酰胺的生产方法[P].中国,03139189.3.2003-09-01.
    [77]孟昆,赵京波,张兴英.反相乳液聚合制备DMDAAC/AM 阳离子型共聚物.北京化工大学学报,2004,31(5):106-109.
    [78]Ge X W,Ye W,Xu M L,et al.Radiation copolymerization of acrylamide and cationic monomer in an inverse emulsion.Polymer,1998,39(10):1917-1920.
    [79]李朝艳,王玉鹏,于跃芹,等.甲基丙烯酰氧乙基三甲基氯化铵/丙烯酰胺反相乳液的聚合及表征.青岛科技大学学报,2005,26(1):31-35.
    [80]Larsson A,Walldal C,Wall S.Flocculation of cationic polymers and nanosized particles.Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,159:65-76.
    [81]Pabon M,Corpart J M,Selb J,et al.Synthesis in inverse emulsion and associating behavior of hydrophobically modified polyacrylamides.Journal of Applied Polymer Science,2004,91:916-924.
    [82]牛晓军.纳米SiOx复合聚丙烯酰胺阳离子絮凝剂及其制备方法[P].中国,02152320.7.2002-11-12.
    [83]大庆东昊投资有限公司.制备高分子量阳离子型聚丙烯酰胺方法[P].中国,200410044187.1.2004-12-28.
    [84]许振举.阳离子聚丙烯酰胺的制备方法[P].中国,200610042600.X.2006-02-26.
    [85]Inchausti I,Sasia P M,Katime I.Copolymerization of dimethylaminoethylacrylate-methyl chloride and acrylamide in inverse emulsion.J Mater Sci,2005,40:4833-4838.
    [86]Gao B J,Lv Y X,Jiu H F.Synthesis and properties of Cationic polyacrylamides containing pyridine quaternarysalt.Polym Int,2003,52:1468-1473.
    [87]陈鸿,张熙,梁兵.疏水改性阳离子型高分子絮凝剂P(AM-DMDAAC-BA)的合成与性能研究.高分子材料科学与工程,2003,19(2):97-100.
    [88]丁伟,张艳秋,于涛,等.新型超高相对分子量阳离子聚丙胺的合成.胶体与聚合物,2004,22(4):23-25.
    [89]Allied corporation(US).Inverse emulsion polymers with improve incorporation of diallyldimethyl ammonium chloride[P].US,4617362.1986-10-14.
    [90]Atofina(FR).Acrylamide and trialkylammouium salt copolymer,method for obtaining same and coated testile[P].US,6444770.2002-09-03.
    [91]Bruzzano S,Sieverling N,Wieland C,et al.Cationic polymer grafted starch from nonsymmetrically substituted macroinitiators.Macromolecules,2005,38:7251-7261.
    [92]Efrat Biopolymers Limited(IL).Cationic polysaccharide compositions[P].US,6958325.2002-10-25.
    [93]Xie F W,Yu L,Liu H S,et al.Starch modification using reactive extrusion.Starch/Starke,2006,58:131-139.
    [94]路婷,何静,王岩.LiCl/DMAC非水溶液中纤维素均相接枝制备絮凝剂材料.精细与专用化学品,2006,14(6):23-25.
    [95]Nayak B R,Singh R P.Development of graft copolymer flocculating agents based on hydroxypropyl guar gum and acrylamide.J Appl Polym Sci,2001,81:1776-1785.
    [96]Khalil M L,Aly A A.Preparation and evaluation of some cationic starch derivatives as flocculants.Starch/Starke,2001,53:84-89.
    [97]Pal S,Mal D,Singh R P.Cationic starch:An effective flocculating agent.Carbohydrate Polymers,2005,59:417-423.
    [98]赵彦生,李万捷.淀粉-丙烯酰胺接枝共聚物的合成及其性能.水处理技术,1994,20(6):370-373.
    [99]具本植,张淑芬,杨锦宗.干法制备刚离子淀粉:Ⅰ.反应效率的研究.化学通报,2001,64(11):707-710.
    [100]Lu S J,Lin S b,Yao K D.Study on the synthesis and application of starch-graft -poly(AM-co-DADMAC) by using a complex initiation system of CS-KPS.Starch/Starke,2004,56:138-143.
    [101]唐星华,舒红英,吴再国.CTS-AM-DMC强阳离子型天然高分子絮凝剂的合成.水处理技术,2005,31(9):52-55.
    [102]Xu S M,Cao L Q,Wu R L,et al.Salt and pH responsive property of a starch-based amphoteric superabsorbent hydrogel with quaternary ammonium and carboxy groups(Ⅱ).J Appl Polym Sci,2006,101:1995-1999.
    [103]臧庆达,李卓美.疏水相互作用对阳离子聚电解质与染料键合的影响.物理化学学报,1993,9(1):21-25.
    [104]臧庆达,李卓美.新型阳离子(苯乙烯-丙烯酰胺)共聚物的研究Ⅱ.阳离子(苯乙烯-丙烯酰胺)共聚物与染料的相互作用.功能高分子学报.1993.6(1):63-69.
    [105]沈俊菊,庄源益.絮凝剂P(AM-DMC)对活性艳红K-2BP的脱色作用.城市环境与城市生态,2006.19(1):39-41.
    [106]Shen J J,Ren L L,Zhuang Y Y.Interaction between anionic dyes and cationic flocculation P(AM-DMC) in synthetic solution.J Hazard Mater,2006,B136:805-819.
    [107]Vanderhoff J W,Bradford E B,Tarkowski H L,et al.Inverse emulsion polymerization.Adv Chem Ser,1962,34:32-51.
    [108]廖刚.二甲基二烯丙基氯化铵的反相乳液共聚合.西南石油学院学报,1997,19(4):102-105,7.
    [109]Xu Z S,Yi C F,Cheng S Y,et al.The inverse emulsion polymerization of acrylamide using poly(methyl methacrylate)-graft-polyoxyethylene as the stabilizer.J Appl Polym Sci,2001,79(3):528-534.
    [110]黄鹏程.二甲基二烯丙基氯化铵反相乳液聚合动力学及机理的研究.化学学报,1996,54:209-217.
    [111]徐相凌,张志成,费宾,等.丙烯酸反相乳液聚合.高分子学报,1998,(2):134-138.
    [112](?)UP(?)REK J,(?)ERM(?)K V.Inverse emulsion polymerization of acrylamide and salts of acrylic acid.Eur Polym J,1997,33(8):1345-1352.
    [113]哈润华,胡金生.丙烯酰胺进展.石油化工,1985,14(6):363-370.
    [114]岳饮艳,李勇,高宝玉,等.PDMDAAC-AM共聚物的反相乳液聚合研究.山东大学学报(理学版),2004,39(6):86-94.
    [115]徐生,郭玲香.丙烯酰胺/二甲基二烯丙基氯化铵共聚物的反相微乳液聚合研究.精细石油化工,2006,23(1):22-25.
    [116]胡慧萍,张丽娟,张琨瑜,等.高固含量丙烯酰胺共聚物反相微乳液的合成及絮凝性能.轻金属,2007,(8):13-16.
    [117]蔡英明,张兴英.丙烯酰胺-二甲基二烯丙基氯化铵反相微乳液体系的制备与表征.石油化工,2007,36(6):579-583.
    [118]哈润华,候斯健.(2-甲基丙烯酰氧乙基)三甲基氯化铵-丙烯酰胺反相微乳液共聚合研究.高分子学报,1993,(5):570-575.
    [119]Inchausti I,Sasia P M,Katime I.Copolymerization of dimethylaminoethyl acrylatemethyl chloride and acrylamide in inverse emulsion.J Mater Sci,2005,48:4833-4838.
    [120]韩利娟,罗平亚,叶仲斌,等.疏水缔合聚丙烯酰胺的微观结构研究.天然气工业,2004,24(12):119-121.
    [121]赵勇,何炳林,哈润华.反相微乳液中疏水缔合型聚丙烯酰胺的合成及其性能研究.高分子学报,2000,(5):550-553.
    [122]Shaikh S,Ali S A,Hamad E Z,et al.Synthesis and Solution Properties of Poly (Acrylamide-Styrene) Block copolymers with High Hydrophobic Content.Polym Eng Sci,1999,39(10):1962-1968.
    [123]Xue W,namley I W,Castelletto V,et al.Synthesis and characterization of hydrophobically modified polyacyrlamides and some observations on rheological properties.Eur Polym J,2004,(40):47-56.
    [124]王东贤,王琳,宫清涛,等.改性聚丙烯酰胺水溶液的疏水缔合性质.感光科学与光化学,2005,23(3):197-202.
    [125]胡秋平,任鲲,高金森,等.疏水缔合聚丙烯酰胺溶液的稳定性研究.应用化学,2004,33(4):32-34.
    [126]戴玉华,吴飞鹏,李妙贞,等.新型缔合聚合物P(AM-POEA)溶液的流变性质.高分子材料科学与工程,2005,21(3):121-124.
    [127]Yahaya G O,Ahdab A A,Ali S A,et al.Solution behavior of hydrophobically associating water-soluble block copolymers of acrylamide and N-benzylacrylamide.Polymer,2001,42:3363-3372.
    [128]Ren H J,Chen W N,Zheng Y F,et al.Effect of hydrophobic group on flocculation properties and dewatering efficiency of cationic acrylamide copolymers.React Funct Polym,2007,67:601-608.
    [129]李刚辉,沈一丁,李付萱,等.氟碳改性疏水缔合型阳离子聚丙烯酰胺的特性黏数及絮凝作用,石油化工,2007,36(5):492-496.
    [130]沈一丁,李刚辉,李培枝.疏水缔合型阳离子聚丙烯酰胺的溶液性能与应用研究.现代化工,2007,27(4):38-41.
    [131]陈鸿,张熙,梁兵.疏水改性阳离子型高分子絮凝剂P(AM-DMDAAC-BA)的合成与性能研究.高分子材料科学与工程,2003,19(2):97-100.
    [132]岳钦艳,赵华章,高宝玉.有机高分子絮凝剂P(DMDAAC-VMS)和P(DMDAAC-AM-VTMS)的合成及絮凝性能研究.工业水处理,2001,219(3):16-20.
    [133]曲撑囤,王新强,陈杰瑢.P(AM-DM)的反相乳液聚合研究.西安石油大学学报(自然科学版),2005,20(6):41-44.
    [134]吴建军,马喜平,郑锟,等.反相乳液聚合合成AM/DMDMAC阳离子共聚物.石油化工,2005,34(2):140-143.
    [135]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社,1997,165.
    [136]Kerr E M,Ramesh M.DADMAC/Vinyl Trialkoxysilane Copolymers for Dewatering in the Mining Industry[P].US005622 647A,Apr.22,1997.
    [137]Chuang D K,Ramesh M.DADMAC/Vinyl Trikoxysilane Copolymers for Treatment of Food Processing Wastes[P].US005597490A,Jan.28,1997.
    [138]常青.水处理絮凝学[M].北京:化学工业出版社,2003:157.
    [139]候斯华,哈润华.二烯丙基二甲基氯化铵-丙烯酰胺反相乳液聚合的动力学特征研究.高分子学报,1995,(3):349-354.
    [140]李朝艳,武玉民,王玉鹏,等.二甲基二烯丙基氯化铵-丙烯酰胺共聚物反相乳液合成工艺研究.化学工业与工程技术,2004,25(5):20-25.
    [141]Klotz I M,Harris J U.Macromolecule-Small Molecule Interactions.Strong Binding by Intramolecularly cross-Linked Polylysine,Biochemistry,1971,10(6):923-926.
    [142]Kim Y D,Klotz I M.A cross-linked copoly peptide with increased affinity for cations.Biopolymers,1972,11(2):431-441.
    [143]Takagishi T,Klotz I M.Macromolecule-small molecule interactions:introduction of additional binding sites in polyethyleneimine by disulfide cross-linkages.Biopolymers,1972,11(2):483-491.
    [144]Daydé S,Champmartin D,Rubini P and G.Berthon,Aluminium speciation studies in biological fluids.Part 8.A quantitative investigation of Al(Ⅲ)-amino acid complex equilibria and assessment of their potential implications for aluminum metabolism and toxicity,Inorganica Chemica Acta,2002,(339):513-524.
    [145]Tanaka H.Copolymerization of Cationic monomers with acrylamide in an aqueous solution.J Poly Sci,Part A:Polym Chem,1986,24(1):29-36.
    [146]巩冠群,尹家贵,张英杰.反相乳液聚合法制备丙烯酰胺-丙烯酰氧乙基三甲基氯化铵共聚物絮凝剂.精细石油化工,2002(2):16-18.
    [147]刘祥,晁芬,范晓东.高固含量聚丙烯酰胺反相微乳胶的制备.精细化工,2005,22(8):631-640.
    [148]Capek I.Inverse emulsion polymerization of acrylamide initiated by oil- and water-soluble initiators:effect of emulsifier concentration.Polym J,2004,36(10):793-803.
    [149]刘立华.新型聚季胺盐与聚合硫酸铁复合絮凝剂合成及其基础理论与应用研究(博士学位论文).湖南:中南大学,2004.
    [150]曾德芳,徐保林,张森.无机-有机高分子复合絮凝剂处理含油废水.山西化工,2007,27(6):12-13,43.
    [151]汤争争,赵林,鲁逸人,等.新型复配絮凝剂处理三次采油废水的试验研究.工业水处理,2006,26(11):50-52.
    [152]陈夫山,胡惠仁,张红杰,等.改性PAM/PAC在造纸脱墨废水处理中的应用.中国造纸,2003,22(10):25-27.
    [153]李泗清,胡勇有,程建华.壳聚糖三元接枝高分子絮凝剂对垃圾渗滤液生化处理出水的絮凝研究.环境污染与防治,2006,28(10):744-747.
    [154]赵树发,赵立群,戴继伟,等.无机/有机高分子复合絮凝剂处理含油废水.环境保护科学,2006,32(5):29-32.
    [155]马俊,熊剑琴,龙荷云.复合絮凝剂(JSPAC)净水特性试验研究.工业用水与废水,1998(1):48-49,47.
    [156]邵颖,叶玉汉.聚合铝-壳聚糖复合絮凝剂的絮凝性能及其在重金属废水中的应用.宁波大学学报(理工版),2002,15(1):83-85.
    [157]Gao B Y,Wang Y,Yue Q Y,et al.The size and coagulation behavior of a novel composite inorganic-organic coagulant.Sep Purif Technol,2008,62:544-550.
    [158]高宝玉,王燕,岳钦艳,等.PAC与PDMDAAC复合絮凝剂中铝的形态分布.中国环境科学,2002,22(5):472-476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700